×
19.01.2018
218.016.0193

Результат интеллектуальной деятельности: Статическое устройство для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны вдоль её трека

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптических измерений и касается статического устройства для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны (ПЭВ) вдоль ее трека. Устройство включает в себя источник монохроматического излучения, первый фокусирующий цилиндрический объектив, элемент преобразования излучения в ПЭВ, образец с направляющей волну плоской поверхностью, пересекающее трек ПЭВ плоское зеркало, размещенный над треком вне поля ПЭВ второй фокусирующий цилиндрический объектив, фотодетекторы, измерительные приборы и устройство обработки информации. Отражающая грань плоского зеркала образует с поверхностью образца тупой угол, причем обращенное к этой поверхности ребро плоского зеркала параллельно ей и удалено от нее на расстояние, превышающее глубину проникновения поля ПЭВ в окружающую среду. Верхняя точка отражающей грани зеркала в плоскости падения удалена от образца на расстояние h, определяемое соотношением: h≥x⋅tg(α), где x - расстояние от элемента преобразования до проекции верхней точки отражающей грани на трек, α - угол наклона максимума диаграммы направленности объемного излучения с трека ПЭВ. Технический результат заключается в увеличении отношения сигнал/шум и повышении точности измерений. 1 ил.

Изобретение относится к бесконтактным исследованиям поверхности металлов оптическими методами, а именно - к определению инфракрасных (ИК) спектров поглощения самой поверхности или ее переходного слоя путем промера распределения интенсивности поверхностной электромагнитной волны (ПЭВ), направляемой этой поверхностью, и может найти применение в исследованиях физико-химических процессов на поверхности твердого тела, в ИК-спектроскопии окисных и адсорбированных слоев, в контрольно-измерительной ИК-технике, в лазерной и интегральной оптике.

Спектроскопия поверхности твердого тела - одна из основных областей применения ПЭВ [1]. В ИК-диапазоне применяют, главным образом, абсорбционную ПЭВ-спектроскопию, в которой измеряемой величиной является длина распространения ПЭВ L (расстояние вдоль трека, на котором интенсивность поля ПЭВ уменьшается в е≈2.718 раз), достигающая в этом диапазоне 1000λ (где λ - длина волны излучения, возбуждающего ПЭВ) и которая поэтому может быть измерена непосредственно. Причем так как расстояние взаимодействия излучения с поверхностью в этом методе макроскопическое, а интенсивность поля ПЭВ максимальна на направляющей ее поверхности, то чувствительность ПЭВ-спектроскопии значительно выше чувствительности иных оптических методов контроля проводящей поверхности в ИК-диапазоне.

Точность определения величины L, а следовательно, и точность самого метода ПЭВ-спектроскопии, пропорциональна числу N измерений интенсивности ПЭВ в различных точках трека (где N≥2) и в значительной степени зависит от времени регистрации распределения интенсивности ПЭВ и стабильности во время измерений условий преобразования ПЭВ в детектируемую фотоприемниками объемную волну (ОВ); перемещение одного из элементов преобразования (излучения источника в ПЭВ или ПЭВ в ОВ) может приводить к значительным вариациям этих условий и, как следствие этого, - к большой погрешности определения L.

Известно устройство для измерения длины распространения монохроматических ПЭВ ИК-диапазона, содержащее источник монохроматического излучения, твердотельный образец с плоской поверхностью, направляющей ПЭВ, фиксированный относительно поверхности элемент преобразования излучения в ПЭВ, перемещаемый вдоль трека элемент преобразования ПЭВ в объемную волну, приемник излучения, выходящего из второго элемента преобразования, и измерительный прибор, регистрирующий сигналы с выхода фотоприемника [2].

Основными недостатками такого устройства являются низкая точность измерений, не превышающая 10%, что обусловлено наличием паразитных приповерхностных объемных волн, порождаемых на первом элементе преобразования вследствие дифракции падающего излучения, и вариациями оптической связи между ПЭВ и вторым элементом преобразования в процессе его перемещения.

Известно устройство для зондирования поля монохроматической ИК ПЭВ над ее треком, содержащее источник лазерного излучения, твердотельный образец с направляющей ПЭВ плоской поверхностью и ребром, перпендикулярным треку, размещенный в окружающей среде над поверхностью элемент преобразования излучения в ПЭВ, способный перемещаться вдоль трека, приемник излучения, зафиксированный относительно образца и размещенный в плоскости падения на уровне волноведущей поверхности, и измерительный прибор, регистрирующий сигналы с выхода приемника [3].

Основными недостатками известного устройства являются низкая точность измерений, обусловленная наличием паразитных приповерхностных объемных волн, порождаемых при дифракции падающего излучения на элементе преобразования и вариациями оптической связи между ПЭВ и элементом преобразования в процессе его перемещения.

Известно устройство для измерения длины распространения монохроматических ПЭВ ИК-диапазона, содержащее источник излучения, направляющий ПЭВ составной твердотельный образец, состоящий из примыкающих друг к другу двух частей, первая из которых является плоскогранной, а вторая - полуцилиндром с радиусом образующей меньше длины распространения, основание которого сопряжено с торцом первой части и ориентировано перпендикулярно треку, размещенный в окружающей среде над поверхностью неподвижный элемент преобразования излучения в ПЭВ, приемник излучения, размещенный в плоскости падения излучения у края второй части, а также измерительный прибор, подключенный к приемнику; причем приемник и обе части образца размещены на подвижной платформе, способной перемещаться параллельно направляющей поверхности первой части [4].

Основным недостатком такого устройства является низкая точность измерений, обусловленная изменением величины зазора между элементом преобразования и поверхностью первой части, а также смещением пучка излучения источника относительно этого элемента в процессе перемещения платформы.

Известно устройство для определения распределения поля ИК ПЭВ над ее треком, содержащее источник лазерного излучения, твердотельный образец, волноведущая поверхность которого образована двумя плоскими гранями, сопряженными скругленным ребром, фиксированный над первой по ходу излучения гранью элемент преобразования излучения в ПЭВ, укрепленные на перемещаемой вдоль трека платформе элемент преобразования ПЭВ в объемное излучение, выполненный в виде плоского зеркала, отражающая грань которого примыкает ко второй грани образца, наклонена к ней под углом 45° и ориентирована перпендикулярно к треку, фокусирующий объектив и фотодетектор, подключенный к измерительному прибору [5].

Основным недостатком известного устройства также является низкая точность измерений, обусловленная изменением величины зазора между элементом преобразования и поверхностью второй грани образца в процессе перемещения платформы.

Известно устройство для получения спектров поглощения тонких слоев в терагерцовой области спектра, позволяющее промерять распределение интенсивности ИК ПЭВ вдоль ее трека и содержащее плавно перестраиваемый по частоте источник монохроматического излучения, твердотельный образец с плоской поверхностью и исследуемым слоем на ней, объединенный элемент преобразования объемного излучения в ПЭВ и обратно, выполненный в виде внедренной в поле ПЭВ прозрачной плоскопараллельной пластины, размером не менее длины распространения ПЭВ, и размещенную на верхней грани пластины линейку фотоприемников [6].

Основными недостатками известного устройства являются: 1) возмущение поля ПЭВ размещаемой в нем пластиной, что обусловливает отличие результатов измерений от истинного значения L; 2) перекрытие пластиной доступа к исследуемой поверхности, что во многих случаях контроля поверхности и воздействий на нее является неприемлемым.

Наиболее близким по технической сущности к заявляемому устройству является устройство для измерения длины распространения ИК поверхностных плазмонов (разновидности ПЭВ) по реальной поверхности, содержащее источник монохроматического излучения, фокусирующий цилиндрический объектив, ось которого перпендикулярна плоскости падения излучения, элемент преобразования излучения в ПЭВ, твердотельный образец с направляющей волну плоской поверхностью, размещенные в окружающей среде над треком ПЭВ, но вне ее поля, два комплекта для регистрации объемного излучения с трека, каждый из которых состоит из регулируемой щелевой диафрагмы, фокусирующей линзы, детектора излучения и гальванометра, а также устройство для обработки информации [7].

Основными недостатками такого устройства являются низкая точность измерений вследствие регистрации излучения всего только с двух точек трека (в то время как точность определения длины распространения ПЭВ пропорциональна числу N≥2 измерений интенсивности в различных точках трека) и низкое соотношение сигнал/шум, что обусловлено засветкой фотодетекторов объемным излучением, порождаемым ПЭВ при дифракции на ребре образца, поскольку для детектирования излучения (максимум диаграммы направленности которого отклонен от поверхности образца на 2-3 градуса [8]) с трека фотодетекторы приходится размещать за этим ребром в дальней волновой зоне.

Техническим результатом, на достижение которого направлено изобретение, является повышение точности и соотношения сигнал/шум измерений, выполняемых с применением известного способа [7].

Технический результат достигается тем, что устройство для определения распределения интенсивности поля ИК ПЭВ вдоль ее трека, содержащее источник монохроматического излучения, фокусирующий цилиндрический объектив, ось которого перпендикулярна плоскости падения излучения, элемент преобразования излучения в ПЭВ, твердотельный образец с направляющей волну плоской поверхностью, фотодетекторы, размещенные в окружающей среде над треком ПЭВ вне ее поля, сопряженные с детекторами измерительные приборы и устройство обработки информации, согласно изобретению дополнительно содержит пересекающее трек ПЭВ плоское зеркало, отражающая грань которого образует с поверхностью образца тупой угол, причем обращенное к этой поверхности ребро зеркала параллельно ей и удалено от нее на расстояние, превышающее глубину проникновения поля ПЭВ в окружающую среду, а верхняя точка отражающей грани в плоскости падения удалена от образца на расстояние h, определяемое соотношением: h≥х⋅tg(α), где х - расстояние от элемента преобразования до проекции верхней точки отражающей грани на трек, α - угол наклона максимума диаграммы направленности объемного излучения с трека, возникающего в результате рассеяния ПЭВ на неоднородностях поверхности образца, дополнительный фокусирующий цилиндрический объектив, размещенный над треком вне поля ПЭВ таким образом, что его ось лежит в плоскости падения и отклонена от нормали к поверхности образца, а фотодетекторы объединены в фиксированную на главной фокальной линии дополнительного фокусирующего цилиндрического объектива линейку.

Повышение точности измерений (пропорциональной числу N контролируемых точек трека) достигается в результате измерения интенсивности объемного излучения не из двух, а из большего числа точек трека. Для этого в главном фокусе дополнительного фокусирующего цилиндрического объектива размещают линейку из примыкающих друг к другу N>2 фотодетекторов. Повышение соотношения сигнал/шум измерений распределения интенсивности поля ПЭВ, выполняемых путем регистрации объемного излучения с трека ПЭВ, достигается в результате размещения линейки фотодетекторов вне области, охватываемой объемными волнами, порождаемыми ПЭВ при их дифракции на ребре образца.

На Рис. 1 приведена схема заявляемого устройства, где цифрами обозначены: 1 - источник монохроматического ИК-излучения; 2 - цилиндрический фокусирующий объектив, ось которого перпендикулярна плоскости падения излучения; 3 - элемент преобразования объемного излучения источника 1 в ПЭВ; 4 - твердотельный образец с направляющей ПЭВ плоской поверхностью; 5 - пересекающее трек плоское зеркало, отражающая грань которого отклонена от нормали к поверхности образца 4 в сторону направления распространения излучения, а обращенное к образцу 4 ребро параллельно этой поверхности; 6 - дополнительный фокусирующий цилиндрический объектив, ось которого лежит в плоскости падения излучения и отклонена от нормали к поверхности образца 4; 7 - линейка фотодетекторов, установленная на главной фокальной линии дополнительного фокусирующего цилиндрического объектива 6; 8 - сопряженный с линейкой 7 набор электроизмерительных приборов; 9 - устройство обработки информации.

Заявляемое устройство работает следующим образом. Излучение источника 1, имеющее отличную от нуля компоненту электрического поля в плоскости падения, падает на объектив 2 и концентрируется им на элемент 3. Излучение источника 1, преобразованное элементом 3 в ПЭВ, переходит с него на плоскую поверхность образца 4. По мере распространения ПЭВ по образцу 4 ее интенсивность уменьшается по экспоненциальному закону вследствие как джоулевых потерь в металле, так и радиационных потерь, обусловленных испусканием объемных волн (ОВ) с трека ПЭВ в результате рассеяния ПЭВ на статистически равномерно распределенных неоднородностях (шероховатостях, зернах и инородных включениях материала образца 4) направляющей их поверхности [8]. Интенсивность этих ОВ пропорциональна интенсивности ПЭВ в данной точке трека; поэтому регистрируя ее, например, в максимуме диаграммы направленности ОВ, можно определить распределение интенсивности ПЭВ вдоль трека и, таким образом, определить длину распространения ПЭВ. Объемное излучение с трека имеет узкую диаграмму направленности (не больше 1° на уровне 0.5), максимум которой отклонен от поверхности образца 4 на угол α=(1°÷3°). ОВ, достигнув зеркала 5, отражаются им на объектив 6, который концентрирует их все на свою главную фокальную линию, где размещена линейка 7 (ввиду узости диаграммы, ОВ, распространяющиеся под углами, не совпадающими с углом наклона максимума диаграммы, создают только незначительный экспоненциально спадающий фон). Фотодетекторы линейки 7 вырабатывают электрические сигналы, пропорциональные интенсивностям ОВ, излученных с соответствующих точек трека ПЭВ сигналы регистрируются набором приборов 8 и обрабатываются устройством 9, рассчитывающим по совокупности сигналов искомую длину распространения ПЭВ.

Отметим, что: 1) с целью повышение соотношения сигнал/шум ребро зеркала 5, обращенное к образцу 4, удалено от него на расстояние d, не меньшее глубины проникновения поля ПЭВ в окружающую среду; это позволяет устранить паразитные (в данном случае) ОВ, порождаемые в результате дифракции ПЭВ на ребре зеркала 5; 2) размер контролируемого участка трека определяется выражением:

где h≥х⋅tg(α) - расстояние от верхней точки отражающей грани зеркала 5 до образца 4, х - расстояние от элемента преобразования 3 до проекции верхней точки зеркала 5 на трек ПЭВ, β - угол отклонения зеркала 5 от плоскости грани образца 4.

Пример применения заявляемого устройства для определения распределения интенсивности поля ИК ПЭВ вдоль ее трека. Для этого обратимся к результатам измерений характеристик ПЭВ, генерируемых излучением с λ=130 мкм в планарной структуре «напыленное золото (образец) - слой сульфида цинка толщиной 0.4 мкм - воздух» [8]. Длина распространения таких ПЭВ составляет 160 мм, глубина проникновения их поля в воздух d≈0.5 мм, а угол α наклона максимума диаграммы направленности ОВ, излучаемых с трека, равен 2°36'. Положим угол β=450+α/2=46°18' (тогда лучи, отраженные зеркалом 5, перпендикулярны поверхности образца 4, что облегчает расчеты), расстояние х=120 мм, тогда верхняя точка отражающей грани зеркала 5 должна быть удалена от поверхности образца 4 на расстояние h≥7 мм. Подставив эти значения величин d, α, β и h в формулу (1), получим, что размер контролируемого участка трека b≈100 мм. Согласно данным, представленным на рис. 8 работы [8], интенсивность ПЭВ на участке такого размера экспоненциально уменьшается примерно на 45%. Если ось дополнительного фокусирующего цилиндрического объектива 6 направить параллельно отражающей грани зеркала 5, то линейку 7 следует выбрать длиной l≥(h-d)/sin(β+α/2)≈9.0 мм. Отметим, что размер линейки 7 не должен быть меньше изображения освещенной части отражающей грани зеркала 5 и что размер этого изображения можно регулировать (подстраиваясь под размер имеющейся линейки) наклоном оси зеркала дополнительного фокусирующего цилиндрического объектива 6. Выбрав в качестве линейки 7 матрицу болометрических приемников с характерным размером 50 мкм каждый и имеющей общую протяженность больше l, получим, что изображение наблюдаемого участка трека ПЭВ проецируется на N=180 пикселей. Такое большое количество контролируемых точек трека позволяет определить длину распространения ПЭВ со значительно более высокой точностью по сравнению с устройством-прототипом, в котором N=2. Размещение же линейки 7 вне области, охватываемой объемными волнами, порождаемыми ПЭВ при их дифракции на ребре образца, и концентрация объемного излучения дополнительным фокусирующим цилиндрическим объективом 6 со всего поперечного сечения трека пучка ПЭВ обеспечивают повышение отношения сигнал/шум в процессе измерений по сравнению с устройством-прототипом.

Таким образом, приведенный пример наглядно демонстрирует возможность определения распределения интенсивности поля ИК ПЭВ по реальной (содержащей статистически равномерно распределенные неоднородности) поверхности металла заявляемым устройством без перемещения приемника вдоль трека ПЭВ с более высокой точностью и большим соотношением сигнал/шум по сравнению с устройством-прототипом.

Источники информации

1. Климов В.В. Наноплазмоника (Гл. 4) // М.: Физматлит, 2009. - 480 с.

2. Жижин Г.Н., Москалева М.А., Шомина Е.В., Яковлев В.А. Селективное поглощение ПЭВ, распространяющейся по металлу в присутствии тонкой диэлектрической пленки // Письма в ЖЭТФ, 1976, т. 24, вып. 4, с. 221-225.

3. Gerasimov V.V., Knyazev В.A., Nikitin А.К., Zhizhin G.N. A way to determine the permittivity of metallized surfaces at terahertz frequencies // Applied Physics Letters, 2011, v. 98, No. 17, 171912.

4. Никитин A.K., Жижин Г.Н., Князев Б.А., Никитин В.В. Устройство для измерения длины распространения монохроматических поверхностных электромагнитных волн инфракрасного диапазона // Патент РФ на изобретение №2470269, бюл. №35 от 20.12.2012 г.

5. Gerasimov V.V., Knyazev В.А., Kotelnikov I.A., Nikitin A.K., Cherkassky V.S., Kulipanov G.N., Zhizhin G.N. Surface plasmon-polaritons launched using a terahertz free electron laser: propagating along a gold-ZnS-air interface and decoupling to free waves at the surface tail end // Journal of the Optical Society of America (B), 2013, v. 30, Is. 8, p. 2182-2190.

6. Никитин A.K., Жижин Г.Н., Богомолов Г.Д., Никитин В.В., Чудинова Г.К. Устройство для получения спектров поглощения тонких слоев в терагерцовой области спектра // Патент РФ на изобретение №2345351, бюл. №3, 27.01.2009 г.

7. Князев Б.А., Никитин А.К., Жижин Г.Н. Способ измерения длины распространения инфракрасных поверхностных плазмонов по реальной поверхности // Патент РФ на изобретение №2512659, бюл. №1 от 10.01.2014 г. (прототип)

8. Gerasimov V.V., Knyazev В.А., Lemzyakov A.G., Nikitin A.K., Zhizhin G.N. Growth of terahertz surface plasmon propagation length due to thin-layer dielectric coating // Journal of Optical Society of America (B), 2016, v. 33, Is. 11, p. 2196-2203.

9. Демьяненко M.A., Есаев Д.Г., Овсюк B.H., Фомин Б.И., Асеев А.Л., Князев Б.А., Кулипанов Г.Н., Винокуров Н.А. Матричные микроболометрические приемники для инфракрасного и терагерцового диапазонов // Оптический журнал, 2009, т. 76, вып. 12, с. 5-11.

Статическое устройство для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны (ПЭВ) вдоль ее трека, содержащее источник монохроматического излучения, фокусирующий цилиндрический объектив, ось которого перпендикулярна плоскости падения излучения, элемент преобразования излучения в ПЭВ, твердотельный образец с направляющей волну плоской поверхностью, фотодетекторы, размещенные в окружающей среде над треком ПЭВ вне ее поля, сопряженные с детекторами измерительные приборы и устройство обработки информации, отличающееся тем, что оно дополнительно содержит пересекающее трек ПЭВ плоское зеркало, отражающая грань которого образует с поверхностью образца тупой угол, причем обращенное к этой поверхности ребро плоского зеркала параллельно ей и удалено от нее на расстояние, превышающее глубину проникновения поля ПЭВ в окружающую среду, а верхняя точка отражающей грани в плоскости падения удалена от образца на расстояние h, определяемое соотношением: h≥x⋅tg(α), где x - расстояние от элемента преобразования до проекции верхней точки отражающей грани на трек, α - угол наклона максимума диаграммы направленности объемного излучения с трека ПЭВ, возникающего в результате рассеяния ПЭВ на неоднородностях поверхности образца, дополнительный фокусирующий цилиндрический объектив, размещенный над треком вне поля ПЭВ таким образом, что его ось лежит в плоскости падения и отклонена от нормали к поверхности образца, а фотодетекторы объединены в фиксированную на главной фокальной линии дополнительного фокусирующего цилиндрического объектива линейку.
Статическое устройство для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны вдоль её трека
Статическое устройство для определения распределения интенсивности поля инфракрасной поверхностной электромагнитной волны вдоль её трека
Источник поступления информации: Роспатент

Показаны записи 21-30 из 78.
25.08.2017
№217.015.d03a

Способ управления обтеканием сверхзвукового летательного аппарата

Изобретение относится к маневрирующим в атмосфере сверхзвуковым летательным аппаратам (ЛА). Управление обтеканием основывается на изменении направления набегающего воздушного потока со встречного на радиальное истечение относительно ЛА с использованием нагреваемой по команде газопроницаемой...
Тип: Изобретение
Номер охранного документа: 0002621195
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.e196

Способ управления спектром пучка широкополосного терагерцевого излучения

Изобретение относится к области оптического приборостроения и касается способа управления спектром пучка широкополосного терагерцевого излучения. Способ включает в себя размещение на пути пучка излучения селективно поглощающего фильтра в виде поверхности проводящей пластины, придание излучению...
Тип: Изобретение
Номер охранного документа: 0002625635
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e199

Стенд для испытаний на ударные воздействия

Изобретение относится к испытательной технике, в частности к устройствам для испытаний на ударные воздействия различных приборов и оборудования. Стенд состоит из силового каркаса в виде прямоугольной рамы на ножках с продольными направляющими для установки через амортизаторы подпружиненной...
Тип: Изобретение
Номер охранного документа: 0002625639
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e19a

Устройство для промера распределения поля инфракрасной поверхностной электромагнитной волны над её треком

Изобретение относится к области исследования поверхности металлов и полупроводников и касается устройства для промера распределения поля инфракрасной поверхностной электромагнитной волны (ПЭВ) над ее треком. Устройство содержит источник монохроматического излучения, элемент преобразования...
Тип: Изобретение
Номер охранного документа: 0002625641
Дата охранного документа: 17.07.2017
29.12.2017
№217.015.f388

Способ приготовления металл-нанесенного катализатора для процесса фотокаталитического окисления монооксида углерода

Изобретение относится к области разработки способа получения катализатора на основе высокодисперсного диоксида титана с нанесенными наночастицами благородного металла, проявляющего активность под действием ультрафиолетового излучения в реакции фотокаталитического окисления монооксида углерода...
Тип: Изобретение
Номер охранного документа: 0002637120
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.f5f2

Способ приготовления катализатора гидродеоксигенации алифатических кислородсодержащих соединений

Изобретение относится к способу получения катализатора для гидродеоксигенации органических кислородсодержащих соединений, а именно растительных масел, животных жиров, сложных эфиров жирных кислот, свободных жирных кислот, с образованием н-алканов - компонентов дизельного топлива. Способ...
Тип: Изобретение
Номер охранного документа: 0002637117
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.fc8c

Способ регистрации малых количеств органических нано- и микрочастиц в биологических тканях

Изобретение относится к области аналитической химии, в частности к масс-спектрометрическим способам измерения концентрации частиц в биологических тканях, и раскрывает способ регистрации органических нано- или микрочастиц в биологических тканях методом ускорительной масс-спектрометрии (УМС)....
Тип: Изобретение
Номер охранного документа: 0002638820
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.01d2

Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона

Изобретение относится к области оптических измерений и касается способа определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона. Способ включает в себя генерацию волны на плоской поверхности образца, размещение на пути волны плоского...
Тип: Изобретение
Номер охранного документа: 0002629928
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.0e6f

Способ приготовления микроволокнистого катализатора

Изобретение относится к области химической промышленности, к новым способам синтеза катализаторов, которые могут использоваться, в частности, для глубокого окисления (дожигания) СО, органических и галогенорганических соединений, окисления сероводорода и диоксида серы, восстановления оксидов...
Тип: Изобретение
Номер охранного документа: 0002633369
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0eb3

Способ определения размеров газовых кластеров в сверхзвуковом газовом потоке

Использование: для обработки материалов и осаждения покрытий. Сущность изобретения заключается в том, что способ определения размеров газовых кластеров в сверхзвуковом газовом потоке включает истечение газа из звукового или сверхзвукового сопла, формирование кластерного пучка с помощью конусной...
Тип: Изобретение
Номер охранного документа: 0002633290
Дата охранного документа: 11.10.2017
Показаны записи 21-30 из 52.
25.08.2017
№217.015.d03a

Способ управления обтеканием сверхзвукового летательного аппарата

Изобретение относится к маневрирующим в атмосфере сверхзвуковым летательным аппаратам (ЛА). Управление обтеканием основывается на изменении направления набегающего воздушного потока со встречного на радиальное истечение относительно ЛА с использованием нагреваемой по команде газопроницаемой...
Тип: Изобретение
Номер охранного документа: 0002621195
Дата охранного документа: 01.06.2017
26.08.2017
№217.015.e196

Способ управления спектром пучка широкополосного терагерцевого излучения

Изобретение относится к области оптического приборостроения и касается способа управления спектром пучка широкополосного терагерцевого излучения. Способ включает в себя размещение на пути пучка излучения селективно поглощающего фильтра в виде поверхности проводящей пластины, придание излучению...
Тип: Изобретение
Номер охранного документа: 0002625635
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e199

Стенд для испытаний на ударные воздействия

Изобретение относится к испытательной технике, в частности к устройствам для испытаний на ударные воздействия различных приборов и оборудования. Стенд состоит из силового каркаса в виде прямоугольной рамы на ножках с продольными направляющими для установки через амортизаторы подпружиненной...
Тип: Изобретение
Номер охранного документа: 0002625639
Дата охранного документа: 17.07.2017
26.08.2017
№217.015.e19a

Устройство для промера распределения поля инфракрасной поверхностной электромагнитной волны над её треком

Изобретение относится к области исследования поверхности металлов и полупроводников и касается устройства для промера распределения поля инфракрасной поверхностной электромагнитной волны (ПЭВ) над ее треком. Устройство содержит источник монохроматического излучения, элемент преобразования...
Тип: Изобретение
Номер охранного документа: 0002625641
Дата охранного документа: 17.07.2017
29.12.2017
№217.015.f388

Способ приготовления металл-нанесенного катализатора для процесса фотокаталитического окисления монооксида углерода

Изобретение относится к области разработки способа получения катализатора на основе высокодисперсного диоксида титана с нанесенными наночастицами благородного металла, проявляющего активность под действием ультрафиолетового излучения в реакции фотокаталитического окисления монооксида углерода...
Тип: Изобретение
Номер охранного документа: 0002637120
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.f5f2

Способ приготовления катализатора гидродеоксигенации алифатических кислородсодержащих соединений

Изобретение относится к способу получения катализатора для гидродеоксигенации органических кислородсодержащих соединений, а именно растительных масел, животных жиров, сложных эфиров жирных кислот, свободных жирных кислот, с образованием н-алканов - компонентов дизельного топлива. Способ...
Тип: Изобретение
Номер охранного документа: 0002637117
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.fc8c

Способ регистрации малых количеств органических нано- и микрочастиц в биологических тканях

Изобретение относится к области аналитической химии, в частности к масс-спектрометрическим способам измерения концентрации частиц в биологических тканях, и раскрывает способ регистрации органических нано- или микрочастиц в биологических тканях методом ускорительной масс-спектрометрии (УМС)....
Тип: Изобретение
Номер охранного документа: 0002638820
Дата охранного документа: 15.12.2017
19.01.2018
№218.016.01d2

Способ определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона

Изобретение относится к области оптических измерений и касается способа определения показателя преломления монохроматической поверхностной электромагнитной волны инфракрасного диапазона. Способ включает в себя генерацию волны на плоской поверхности образца, размещение на пути волны плоского...
Тип: Изобретение
Номер охранного документа: 0002629928
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.0e6f

Способ приготовления микроволокнистого катализатора

Изобретение относится к области химической промышленности, к новым способам синтеза катализаторов, которые могут использоваться, в частности, для глубокого окисления (дожигания) СО, органических и галогенорганических соединений, окисления сероводорода и диоксида серы, восстановления оксидов...
Тип: Изобретение
Номер охранного документа: 0002633369
Дата охранного документа: 12.10.2017
19.01.2018
№218.016.0eb3

Способ определения размеров газовых кластеров в сверхзвуковом газовом потоке

Использование: для обработки материалов и осаждения покрытий. Сущность изобретения заключается в том, что способ определения размеров газовых кластеров в сверхзвуковом газовом потоке включает истечение газа из звукового или сверхзвукового сопла, формирование кластерного пучка с помощью конусной...
Тип: Изобретение
Номер охранного документа: 0002633290
Дата охранного документа: 11.10.2017
+ добавить свой РИД