×
19.01.2018
218.016.0148

Результат интеллектуальной деятельности: ДЕТАЛЬ, СОДЕРЖАЩАЯ ОХЛАЖДАЮЩИЕ КАНАЛЫ С ПОПЕРЕЧНЫМ СЕЧЕНИЕМ В ФОРМЕ ПЕСОЧНЫХ ЧАСОВ, И СООТВЕТСТВУЮЩАЯ ДЕТАЛЬ АЭРОДИНАМИЧЕСКОГО ПРОФИЛЯ ТУРБИНЫ

Вид РИД

Изобретение

№ охранного документа
0002629790
Дата охранного документа
04.09.2017
Аннотация: Деталь содержит внутренний охлаждающий канал. Охлаждающий канал дополнительно содержит: первую и вторую внутренние поверхности соответствующих первой и второй наружных стенок детали; и первую и вторую боковые поверхности, проходящие между упомянутыми внутренними поверхностями. Поперечное сечение канала имеет профиль в форме песочных часов, в котором боковые поверхности сближаются друг с другом до горловины, ширина которой меньше, чем ширина каждой из первой и второй внутренних поверхностей. Общее направление потока охладителя в канале перпендикулярно упомянутому профилю в форме песочных часов. Деталь дополнительно содержит множество турбулизаторов на каждой из боковых поверхностей, которые поджимают охладитель к внутренним поверхностям. Вершина в центральном участке каждого турбулизатора образует горловину охлаждающего канала. Изобретение повышает эффективность и результативность охлаждающих каналов. 3 н. и 12 з.п. ф-лы, 10 ил.

Данная заявка является частичным продолжением заявки на патент США 12/985,553, поданной 6 января 2011 г. (регистрация поверенного 2010P12609US), которая включена в данный документ посредством ссылки.

Уведомление относительно развития, финансированного из федерального бюджета

Развитие данного изобретения было поддержано частично в соответствии с контрактом № DE-FC26-05NT42644, выданным Министерством энергетики США. Таким образом, правительство США может обладать некоторыми правами на данное изобретение.

Уровень техники

Детали на пути перемещения горячего газа газотурбинных двигателей часто содержат охлаждающие каналы. Эффективность охлаждения важна для минимизации термической нагрузки на эти детали и эффективность охлаждения важна для минимизации объема воздуха, отводимого из компрессора для охлаждения. Пленочное охлаждение создает пленку охлаждающего воздуха на внешних поверхностях детали посредством отверстий из внутренних охлаждающих каналов. Пленочное охлаждение может быть неэффективным, поскольку требуется большой объем охлаждающего воздуха. Поэтому пленочное охлаждение используют селективно в сочетании с другими методами. Инжекционное охлаждение представляет собой метод, в котором перфорированные перегородки размещают на расстоянии от поверхности, чтобы создавать ударные струи охлаждающего воздуха, падающие на поверхность. Извилистые охлаждающие каналы создают в деталях турбины, включающих аэродинамические профили, такие как лопатки и лопасти. Настоящее изобретение повышает эффективность и результативность охлаждающих каналов.

Краткое описание чертежей

Изобретение изложено в приведенном ниже описании со ссылкой на чертежи, которые показывают:

Фиг. 1 представляет собой вид сбоку в разрезе лопатки турбины с охлаждающими каналами.

Фиг. 2 представляет собой разрез задней кромки аэродинамического профиля, выполненный по линии 2-2, показанной на фиг. 1, с охлаждающими каналами, показывающий аспекты настоящего изобретения.

Фиг. 3 представляет собой поперечное сечение охлаждающего канала в соответствии с аспектами изобретения.

Фиг. 4 представляет собой разрез односторонних пристеночных охлаждающих каналов.

Фиг. 5 представляет собой разрез охлаждающих каналов в суженной детали.

Фиг. 6 представляет собой поперечный разрез аэродинамического профиля турбины с охлаждающими каналами в форме песочных часов.

Фиг. 7 показывает процесс формования керамических стержней для формы для образования охлаждающих каналов в форме песочных часов.

Фиг. 8 показывает поперечный разрез охлаждающего канала в форме песочных часов со сближающимися боковыми поверхностями, образованными посредством заостренных турбулизаторов.

Фиг. 9 показывает вариант осуществления, показанный на фиг. 8, в сочетании с ребрами на пристеночных внутренних поверхностях.

Фиг. 10 представляет собой вид в разрезе, выполненном по линии 10-10 в соответствии с фиг. 8, показывающий заостренные турбулизаторы с выпуклыми передними по потоку сторонами.

Подробное описание изобретения

Фиг. 1 представляет собой разрез лопатки 20 турбины, содержащей переднюю кромку 21 и заднюю кромку 23. Охлаждающий воздух 22 из турбинного компрессора поступает на вход 24 в корне 26 лопатки и перемещается по каналам 28, 29, 30, 31 в лопатке. Часть охладителя может выходить из отверстий 32 пленочного охлаждения. Участок ТЕ задней кромки лопатки может содержать выступы 34 турбулизаторов и выпускные каналы 36. Каждая стрелка 22 показывает общее направление потока охладителя у стрелки, то есть преобладающее или среднее направление потока в данной точке.

Фиг. 2 представляет собой разрез участка ТЕ задней кромки аэродинамического профиля турбины, выполненный по линии 2-2, показанной на фиг. 1. Упомянутый участок задней кромки содержит первую и вторую внешние поверхности 40, 42 на засасывающей и нагнетающей боковых стенках 41, 43 аэродинамического профиля. Охлаждающие каналы 36 могут содержать ребра 44 на внутренних поверхностях 48, 50 наружных стенок 41, 43 в соответствии с аспектами изобретения. В данной области техники такие внутренние поверхности 48, 50 называются «пристеночными внутренними поверхностями», что означает внутреннюю поверхность охлаждающего канала, которая является ближайшей к охлаждаемой внешней поверхности. Промежутки G между каналами порождают разрывы в эффективности и равномерности охлаждения. Авторы изобретения обнаружили, что эффективность, результативность и равномерность охлаждения можно улучшить посредством увеличения интенсивности охлаждения в углах С охлаждающих каналов, поскольку данные углы являются ближайшими к зазорам G. Одним способом осуществления такого предпочтительного охлаждения является создание профиля канала в форме песочных часов, в котором боковые поверхности 52, 54 канала образуют горловину, ширина которой меньше ширины каждой из первой и второй внутренних поверхностей 48, 50. Данная горловина увеличивает сопротивление потоку в центре канала, тем самым поджимая охладитель к углам канала. Поскольку поток охладителя в центре канала не контактирует с теплопередающей поверхностью, в то время как поток в углах отводит тепло, настоящее изобретение является эффективным для повышения эффективности охлаждения.

Фиг. 3 представляет собой поперечное сечение 46 охлаждающего канала, который приспособлен для эффективного охлаждения двух противоположных внешних поверхностей. Упомянутый канал может представлять собой канал 36 в задней кромке или любой другой охлаждающий канал, такой как каналы 29 и 30 на фиг. 1. Он содержит две противоположные пристеночные внутренние поверхности 48, 50, которые могут быть параллельны соответствующим внешним поверхностям 40, 42, показанным на фиг. 2. При этом определение «параллельные» относится к участкам пристеночной внутренней поверхности, ближайшим к внешней поверхности, без учета ребер 44. Упомянутый канал имеет ширины W1, W3 в пристеночных внутренних поверхностях 48, 50. Две внутренние боковые поверхности 52, 54 сходятся друг к другу от сторон внутренних поверхностей 48, 50, образуя минимальную ширину W2 канала или горловину в боковых поверхностях. Ширины W1 и W3 внутренних поверхностей больше, чем ширина W2 горловины, поэтому профиль 46 канала имеет форму песочных часов, образованную посредством выпуклости боковых поверхностей 52, 54. Такая форма увеличивает поток 25 охладителя к углам С канала. Общее направление потока охладителя перпендикулярно плоскости данного чертежа. Стрелки 25 показывают аспект увеличения потока профиля 46 по сравнению с каналом, не имеющим форму песочных часов и/или не содержащим ребра, описанные ниже.

На внутренних поверхностях 48, 50 могут быть предусмотрены ребра 44. Ребра могут быть ориентированы параллельно общему направлению 22 потока (фиг.1), которое перпендикулярно плоскости фиг. 3. Если предусмотрены ребра, то они могут иметь высоты, которые образуют выпуклый профиль, такой как 56А или 56В, в котором максимальная высота Н ребра соответствует середине ширины пристеночной внутренней поверхности 48 и/или 50. Такие ребра 44 увеличивают площадь пристеночных внутренних поверхностей 48, 50, а также увеличивают поток 25 в углах С. Более длинные центральные ребра уменьшают поток в центре, а более короткие крайние ребра поддерживают поток 25 в углах С. Сочетание выпуклых сторон 52, 54 и выпуклого профиля 56А, 56В высоты ребер обеспечивает синергетический эффект, который концентрирует охлаждение на углах С канала.

Размеры профиля 46 канала можно выбирать с использованием известных инженерных методов. Показанные пропорции приведены только в качестве примера. Приведенные ниже единицы длины являются безразмерными и могут быть выражены пропорционально в любой единице измерения, поскольку пропорция является важным аспектом, показанным в качестве примера в данном чертеже. В одном варианте осуществления предусмотрены следующие относительные размеры: В=1,00, D=0,05, Н=0,20, W1=1,00, W2=0,60. В данном примере угол конусности сторон А= -30°. При этом отрицательный угол А конусности сторон 52, 54 в профиле 46 означает, что стороны сближаются друг с другом к промежуточному положению между внутренними поверхностями 48, 50, образуя горловину W2, как показано. В некоторых вариантах осуществления угол А конусности может находиться в пределах от -1° до -30°. Ширину W2 горловины можно определить через угол конусности. В качестве альтернативы, она может составлять 80% или меньше от одной или обеих пристеночных ширин W1, W3, или в некоторых вариантах осуществления 65% или меньше. Одна или более пропорций и/или размеров могут изменяться вдоль длины охлаждающего канала. Например, размер В может изменяться с изменением толщины аэродинамического профиля. В некоторых вариантах осуществления ширины W1, W3 двух внутренних поверхностей 48 и 50 могут отличаться друг от друга. В этом случае ширина W2 горловины может быть меньше, чем каждая из ширин W1, W3.

Фиг. 4 показывает охлаждающий канал 36В, приспособленный для охлаждения одной внешней поверхности 40 или 42. В нем использованы идеи ребер и угла конусности вышеописанного охлаждающего канала 36. Ширина W1 пристеночной внутренней поверхности больше, чем минимальная ширина W2 канала за счет конусообразных внутренних боковых поверхностей 52, 54. На пристеночной внутренней поверхности 48 могут быть предусмотрены ребра 44, которые могут иметь выпуклый профиль высот, центрированный по ширине W1 пристеночной внутренней поверхности. Такие охлаждающие каналы 36В могут быть использованы, например, в относительно более толстой части участка ТЕ задней кромки аэродинамического профиля по сравнению с относительно более тонкой частью участка ТЕ задней кромки, где может быть использован охлаждающий профиль 46, как на фиг. 3. Профиль поперечного сечения данного варианта осуществления может быть трапецеидальным, в котором пристеночная внутренняя поверхность 48 образует его самую длинную сторону.

Фиг. 5 показывает, что внешние поверхности 40 и 42 могут быть непараллельными в плоскости поперечного сечения канала 36. Пристеночные внутренние поверхности 48, 50 могут быть параллельны внешним поверхностям 40, 42.

Фиг. 6 показывает поперечное сечение аэродинамического профиля 60 турбины с расположенными по размаху охлаждающими каналами 63, 64, 65 и 66 в форме песочных часов. В данном документе «расположенный по размаху» означает, что канал ориентирован в направлении между радиально внутренним и внешним концами аэродинамического профиля. Определение «радиальный» используется относительно оси вращения турбины. Например, на фиг. 1 каналы 28, 29, 30 и 31 представляют собой расположенные по размаху каналы. Эти каналы дополнительно могут содержать ребра 44, которые описаны выше со ссылкой на фиг. 3.

Фиг. 7 показывает процесс формования керамических стержней 74, 75 для формы для аэродинамического профиля. Стержни могут быть химически удалены после отливки аэродинамического профиля 60. Гибкие пуансоны 84А, 84В, 85А, 85В или пуансоны с гибкими вкладышами могут быть использованы для формования стержней 74, 75 из сырой керамики, которая является достаточно жесткой для вытягивания 89 форм упруго за точки 91 задевания. Такая технология описана, например, в патентах США 7141812 и 7410616 и 7411204, выданных компании Mikro Systems Inc. Charlottesville, Virginia. Даже небольшие отрицательные углы конусности, например от -1° до -3°, являются существенными и используются для эффективности охлаждения по сравнению с положительными углами конусности, требующимися для удаления обычных жестких пуансонов.

Фиг. 8 показывает поперечный разрез охлаждающего канала 65 в форме песочных часов с сближающимися боковыми поверхностями 52, 54, образованными посредством турбулизаторов 92. Каждый турбулизатор содержит вершину 97 в его центральном участке, которая образует горловину охлаждающего канала. Боковые поверхности 52, 54 на турбулизаторах могут иметь вышеописанный диапазон конусности или, в частности, в пределах от -2° до -5° (показан угол конусности -5°). Турбулизаторы 92 могут чередоваться с поверхностями 95, 96, которые являются плоскими (показаны) или имеют положительную конусность (не показаны).

Фиг. 9 показывает вариант осуществления, как на фиг. 8, в сочетании с профильными ребрами 44 на пристеночных внутренних поверхностях 48, 50, которые описаны выше.

Фиг. 10 представляет собой вид в разрезе, выполненном по линии 10-10, показанной на фиг. 8, показывающий заостренные турбулизаторы 92 с выпуклыми передними по потоку сторонами 93 и прямолинейными задними по потоку сторонами 94. Выпуклые передние по потоку стороны 93 поджимают поток 22 к углам С. Прямолинейные задние по потоку стороны 94 облегчают вытягивание пуансонов 84А, 84В, 85А, 85В, показанных на фиг. 7, прямо перпендикулярно стержням 74, 75. В качестве альтернативы, задние по потоку стороны 94 турбулизаторов могут быть выпуклыми (не показаны), например параллельными передним по потоку сторонам 93.

Варианты осуществления, показанные на фиг. 8-10, могут быть выполнены с использованием эффективного по стоимости процесса, показанного на фиг. 7. Турбулизаторы 92 концентрируют поток охладителя на пристеночных внутренних поверхностях 48 и 50 и в углах С. Элементы комбинации, показанные на фиг. 9, особенно эффективны и результативны, поскольку турбулизаторы 92 замедляют поток 22 в центре, одновременно концентрируя его на внутренних поверхностях 48 и 50, где ребра 44 передают тепло от внешних поверхностей 40, 42 и увеличивают поток 22 к углам С.

Данные каналы в форме песочных часов используются в любом применении пристеночного охлаждения, например в лопастях, лопатках, ободьях и, возможно, в камерах сгорания и переходных трубах и газовых турбинах. Они увеличивают равномерность охлаждения, особенно в параллельных рядах каналов с либо параллельными потоками, либо чередующимися извивающимися потоками. Данные каналы могут быть образованы посредством известных технологий изготовления – например посредством отливки аэродинамического профиля над позитивным керамическим стержнем, который химически удаляют после литья.

Преимуществом настоящего изобретения является то, что пристеночные дистальные углы С каналов отводят больше тепла, чем известные охлаждающие каналы, при заданном объеме потока охладителя. Это повышает результативность, эффективность и равномерность охлаждения посредством преодоления тенденции более медленного перемещения охладителя в углах. Увеличение интенсивности охлаждения углов помогает компенсировать зазоры G между охлаждающими каналами. Изобретение также обеспечивает увеличенный отвод тепла от основных поверхностей 40, 42, которые должны охлаждаться посредством использования ребер 44.

Хотя в данном документе показаны и описаны различные варианты осуществления настоящего изобретения, будет очевидно, что такие варианты осуществления предусмотрены только в качестве примера. Множество модификаций, изменений и замен могут быть выполнены без отхода от изобретения, описанного в данном документе. Таким образом, предполагается, что изобретение ограничено только сущностью и объемом прилагаемой формулы изобретения.


ДЕТАЛЬ, СОДЕРЖАЩАЯ ОХЛАЖДАЮЩИЕ КАНАЛЫ С ПОПЕРЕЧНЫМ СЕЧЕНИЕМ В ФОРМЕ ПЕСОЧНЫХ ЧАСОВ, И СООТВЕТСТВУЮЩАЯ ДЕТАЛЬ АЭРОДИНАМИЧЕСКОГО ПРОФИЛЯ ТУРБИНЫ
ДЕТАЛЬ, СОДЕРЖАЩАЯ ОХЛАЖДАЮЩИЕ КАНАЛЫ С ПОПЕРЕЧНЫМ СЕЧЕНИЕМ В ФОРМЕ ПЕСОЧНЫХ ЧАСОВ, И СООТВЕТСТВУЮЩАЯ ДЕТАЛЬ АЭРОДИНАМИЧЕСКОГО ПРОФИЛЯ ТУРБИНЫ
ДЕТАЛЬ, СОДЕРЖАЩАЯ ОХЛАЖДАЮЩИЕ КАНАЛЫ С ПОПЕРЕЧНЫМ СЕЧЕНИЕМ В ФОРМЕ ПЕСОЧНЫХ ЧАСОВ, И СООТВЕТСТВУЮЩАЯ ДЕТАЛЬ АЭРОДИНАМИЧЕСКОГО ПРОФИЛЯ ТУРБИНЫ
ДЕТАЛЬ, СОДЕРЖАЩАЯ ОХЛАЖДАЮЩИЕ КАНАЛЫ С ПОПЕРЕЧНЫМ СЕЧЕНИЕМ В ФОРМЕ ПЕСОЧНЫХ ЧАСОВ, И СООТВЕТСТВУЮЩАЯ ДЕТАЛЬ АЭРОДИНАМИЧЕСКОГО ПРОФИЛЯ ТУРБИНЫ
ДЕТАЛЬ, СОДЕРЖАЩАЯ ОХЛАЖДАЮЩИЕ КАНАЛЫ С ПОПЕРЕЧНЫМ СЕЧЕНИЕМ В ФОРМЕ ПЕСОЧНЫХ ЧАСОВ, И СООТВЕТСТВУЮЩАЯ ДЕТАЛЬ АЭРОДИНАМИЧЕСКОГО ПРОФИЛЯ ТУРБИНЫ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 38.
25.08.2017
№217.015.cf80

Обработка материалов через оптически прозрачный шлак

Изобретение относится к способу обработки материала энергетическим лучом и способу образования изделия направленной кристаллизацией. Осуществляют выращивание подложки (24) по мере кристаллизации ванны (28) расплава под слоем (30) расплавленного шлака. Энергетический луч (36) используют для...
Тип: Изобретение
Номер охранного документа: 0002621095
Дата охранного документа: 31.05.2017
26.08.2017
№217.015.ddbc

Локализованный ремонт компонента из суперсплава

Изобретение относится к области соединения металлов и может быть использовано при ремонте изготовленного из суперсплава компонента газотурбинного двигателя. Способ включает изъятие компонента из эксплуатации, удаление поврежденной части компонента для открытия ремонтируемой поверхности,...
Тип: Изобретение
Номер охранного документа: 0002624884
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.e362

Способ эксплуатации газотурбинного двигателя, включающего в себя систему рециркуляции воздуха оболочки камер сгорания

Изобретение относится к энергетике. Способ эксплуатации газотурбинного двигателя, при котором во время работы газотурбинного двигателя при полной нагрузке клапанную систему поддерживают в закрытом положении для того, чтобы по существу предотвратить проход воздуха через систему трубопроводов...
Тип: Изобретение
Номер охранного документа: 0002626047
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e96c

Нанесение суперсплава с применением порошкового флюса и металла

Изобретение относится к способу ремонта поверхности материалов суперсплава. Слой порошка (14), расположенный на подложке (12) из суперсплава, содержащего материал флюса и материал металла, нагревают энергетическим лучом (16) для формирования плакирующего слоя (10) из суперсплава и слоя (18)...
Тип: Изобретение
Номер охранного документа: 0002627824
Дата охранного документа: 11.08.2017
26.08.2017
№217.015.e9ce

Газотурбинный двигатель

Изобретение относится к газотурбинному двигателю. Газотурбинный двигатель включает в себя множество лопаток, собранных в кольцеобразный ряд лопаток и частично образующих путь горячего газа и путь охлаждающей текучей среды, узел с ответвлениями, расположенный на стороне основания ряда лопаток, и...
Тип: Изобретение
Номер охранного документа: 0002628135
Дата охранного документа: 15.08.2017
29.12.2017
№217.015.fb24

Узел уплотнения для газотурбинного двигателя, включающий в себя канавки во внутреннем бандаже

Узел уплотнения между полостью диска и каналом горячего газа, проходящий через секцию турбины газотурбинного двигателя, содержит вращающийся узел рабочих лопаток и неподвижный узел направляющих лопаток. Вращающийся узел рабочих лопаток включает множество рабочих лопаток, которые вращаются...
Тип: Изобретение
Номер охранного документа: 0002640144
Дата охранного документа: 26.12.2017
29.12.2017
№217.015.fd19

Сборка турбины в турбинном двигателе

Изобретение относится к энергетике. Сборка турбины в турбинном двигателе, имеющая внешний корпус, внутренний корпус, кольцевой путь отработанного газа, определяемый между внешней и внутренней стенками пути потока, а также полость выхлопного кожуха турбины. Множество структурных раскосов...
Тип: Изобретение
Номер охранного документа: 0002638114
Дата охранного документа: 11.12.2017
19.01.2018
№218.016.0687

Газотурбинный двигатель с радиальным диффузором и укороченной средней частью

Промышленный газотурбинный двигатель (10) включает в себя: блок (80) трубчатых расположенных по кольцу камер сгорания, имеющий множество отдельных проточных каналов, выполненных с конфигурацией, обеспечивающей возможность приема газообразных продуктов сгорания из соответствующих камер (82)...
Тип: Изобретение
Номер охранного документа: 0002631181
Дата охранного документа: 19.09.2017
10.05.2018
№218.016.3d37

Фильтрация через различные стратифицированные материалы

Изобретение предназначено для обработки жидкостей. Система для обработки сырьевого потока, содержащего углеводороды и жидкость на водной основе, включает сосуд, содержащий впуск для подачи сырьевого потока, соединенный по текучей среде с сырьевым потоком, и выпуск обработанного потока,...
Тип: Изобретение
Номер охранного документа: 0002648055
Дата охранного документа: 22.03.2018
10.05.2018
№218.016.4aa2

Каталитические системы и способы обработки технологических потоков

Изобретение относится к двум вариантам способа получения метана. Один из вариантов включает в себя приведение в контакт водной текучей среды, содержащей по меньшей мере одно нежелательное составляющее, с гетерогенным катализатором при давлении от приблизительно 20 атм до приблизительно 240 атм...
Тип: Изобретение
Номер охранного документа: 0002651576
Дата охранного документа: 23.04.2018
Показаны записи 11-20 из 22.
25.08.2017
№217.015.cf80

Обработка материалов через оптически прозрачный шлак

Изобретение относится к способу обработки материала энергетическим лучом и способу образования изделия направленной кристаллизацией. Осуществляют выращивание подложки (24) по мере кристаллизации ванны (28) расплава под слоем (30) расплавленного шлака. Энергетический луч (36) используют для...
Тип: Изобретение
Номер охранного документа: 0002621095
Дата охранного документа: 31.05.2017
26.08.2017
№217.015.ddbc

Локализованный ремонт компонента из суперсплава

Изобретение относится к области соединения металлов и может быть использовано при ремонте изготовленного из суперсплава компонента газотурбинного двигателя. Способ включает изъятие компонента из эксплуатации, удаление поврежденной части компонента для открытия ремонтируемой поверхности,...
Тип: Изобретение
Номер охранного документа: 0002624884
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.e362

Способ эксплуатации газотурбинного двигателя, включающего в себя систему рециркуляции воздуха оболочки камер сгорания

Изобретение относится к энергетике. Способ эксплуатации газотурбинного двигателя, при котором во время работы газотурбинного двигателя при полной нагрузке клапанную систему поддерживают в закрытом положении для того, чтобы по существу предотвратить проход воздуха через систему трубопроводов...
Тип: Изобретение
Номер охранного документа: 0002626047
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e96c

Нанесение суперсплава с применением порошкового флюса и металла

Изобретение относится к способу ремонта поверхности материалов суперсплава. Слой порошка (14), расположенный на подложке (12) из суперсплава, содержащего материал флюса и материал металла, нагревают энергетическим лучом (16) для формирования плакирующего слоя (10) из суперсплава и слоя (18)...
Тип: Изобретение
Номер охранного документа: 0002627824
Дата охранного документа: 11.08.2017
26.08.2017
№217.015.e9ce

Газотурбинный двигатель

Изобретение относится к газотурбинному двигателю. Газотурбинный двигатель включает в себя множество лопаток, собранных в кольцеобразный ряд лопаток и частично образующих путь горячего газа и путь охлаждающей текучей среды, узел с ответвлениями, расположенный на стороне основания ряда лопаток, и...
Тип: Изобретение
Номер охранного документа: 0002628135
Дата охранного документа: 15.08.2017
29.12.2017
№217.015.fb24

Узел уплотнения для газотурбинного двигателя, включающий в себя канавки во внутреннем бандаже

Узел уплотнения между полостью диска и каналом горячего газа, проходящий через секцию турбины газотурбинного двигателя, содержит вращающийся узел рабочих лопаток и неподвижный узел направляющих лопаток. Вращающийся узел рабочих лопаток включает множество рабочих лопаток, которые вращаются...
Тип: Изобретение
Номер охранного документа: 0002640144
Дата охранного документа: 26.12.2017
29.12.2017
№217.015.fd19

Сборка турбины в турбинном двигателе

Изобретение относится к энергетике. Сборка турбины в турбинном двигателе, имеющая внешний корпус, внутренний корпус, кольцевой путь отработанного газа, определяемый между внешней и внутренней стенками пути потока, а также полость выхлопного кожуха турбины. Множество структурных раскосов...
Тип: Изобретение
Номер охранного документа: 0002638114
Дата охранного документа: 11.12.2017
19.01.2018
№218.016.0687

Газотурбинный двигатель с радиальным диффузором и укороченной средней частью

Промышленный газотурбинный двигатель (10) включает в себя: блок (80) трубчатых расположенных по кольцу камер сгорания, имеющий множество отдельных проточных каналов, выполненных с конфигурацией, обеспечивающей возможность приема газообразных продуктов сгорания из соответствующих камер (82)...
Тип: Изобретение
Номер охранного документа: 0002631181
Дата охранного документа: 19.09.2017
10.05.2018
№218.016.459a

Узел уплотнения для газотурбинного двигателя

Изобретение относится к узлу уплотнения для использования в газотурбинном двигателе. Узел уплотнения между полостью диска и путепроводом горячего газа секции турбины включает в себя неподвижный узел 12 направляющих лопаток 14 и вращающийся узел 18 рабочих лопаток 20, расположенный ниже по...
Тип: Изобретение
Номер охранного документа: 0002650228
Дата охранного документа: 11.04.2018
29.08.2018
№218.016.8110

Лопасть турбины

Лопасть турбины содержит вытянутый профиль с передней и задней кромками, кромку на первом конце профиля и хвостовик на втором конце профиля, расположенном напротив первого конца. На первом конце сформирована уплотнительная кромка из радиально тянущейся стенки кромки стороны повышенного давления...
Тип: Изобретение
Номер охранного документа: 0002665092
Дата охранного документа: 28.08.2018
+ добавить свой РИД