×
19.01.2018
218.016.010c

Результат интеллектуальной деятельности: ФАЗОМЕТР КОГЕРЕНТНЫХ НЕЭКВИДИСТАНТНЫХ ИМПУЛЬСОВ

Вид РИД

Изобретение

№ охранного документа
0002629710
Дата охранного документа
31.08.2017
Аннотация: Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) когерентных неэквидистантных импульсов на фоне шума и может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской скорости летательных аппаратов. Фазометр когерентных неэквидистантных импульсов содержит блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения, блок вычисления фазы, ключ, блок вычисления модуля, пороговый блок, блок памяти, синхрогенератор, первый и второй двухканальные ключи, дополнительный блок усреднения, блок управления, дополнительный блок задержки, дополнительный блок комплексного сопряжения, дополнительный блок комплексного умножения, дополнительный умножитель и дополнительный блок памяти, осуществляющие межпериодную обработку исходных отсчетов с целью однозначного измерения доплеровской (радиальной) скорости движущегося объекта. Технический результат - применение фазометра когерентных неэквидистантных импульсов позволяет получить требуемый диапазон однозначно измеряемых доплеровских скоростей при сохранении однозначного измерения дальности, что и является достигаемым техническим результатом. 10 ил.

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) когерентных неэквидистантных импульсов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской скорости летательных аппаратов.

Известен фазометр среднего значения сдвига фазы [1], содержащий фазометр мгновенного значения, блок памяти, блок вычитания, блок свертки, тригонометрический преобразователь и два канала, состоящие из перемножителя и блока усреднения. Однако это устройство из-за двойного тригонометрического преобразования обладает большой аппаратурной погрешностью, имеет малые пределы измерения фазы [-π/2, π/2].

Известен также фазометр [2], содержащий два сумматора, два детектора огибающих, два усилителя, источник опорных напряжений, два смесителя, два фильтра нижних частот, два избирательных усилителя, фазоиндикатор и систему фазовой автоматической подстройки частоты (ФАПЧ). Однако данное устройство имеет низкую точность измерения, а из-за наличия в нем ФАПЧ обладает повышенной инерционностью.

Наиболее близким к изобретению является фазометр доплеровского набега фазы радиоимпульсных сигналов [3], выбранный в качестве прототипа, содержащий блок задержки, выходы которого соединены с входами блока комплексного сопряжения (на основе инвертора), выходы блока комплексного сопряжения соединены с первыми входами блока комплексного умножения, вторые входы которого объединены с входами блока задержки, а также блок усреднения, блок вычисления модуля, блок вычисления фазы и блок коррекции пределов измерения, выход блока коррекции пределов измерения соединен с входом ключа, управляющий вход которого через пороговый блок подключен к выходу блока памяти. Однако данное устройство обладает ограниченным диапазоном измерения доплеровской (радиальной) скорости.

Задачей, решаемой в изобретении, является расширение диапазона однозначно измеряемых радиальных скоростей за счет применения дополнительной обработки когерентных неэквидистантных импульсов.

Для решения поставленной задачи в фазометр когерентных неэквидистантных импульсов, содержащий блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения, блок вычисления фазы, ключ, блок вычисления модуля, пороговый блок, блок памяти и синхрогенератор, введены первый и второй двухканальные ключи, дополнительный блок усреднения, блок управления, дополнительный блок задержки, дополнительный блок комплексного сопряжения, дополнительный блок комплексного умножения, дополнительный умножитель и дополнительный блок памяти.

Дополнительные блоки, введенные в предлагаемое устройство, являются известными. Так, соединенные вместе блок задержки, блок комплексного сопряжения и блок комплексного умножения позволяют выделить доплеровский набег фазы за интервал между соседними импульсами. Однако неизвестно совместное применение блока задержки, блока комплексного сопряжения, блока комплексного умножения, первого и второго двухканальных ключей, блока управления, дополнительного блока задержки, дополнительного блока комплексного сопряжения и дополнительного блока комплексного умножения. Новыми являются связи первого и второго двухканальных ключей с блоком комплексного умножения и блоком управления, блока усреднения с первым двухканальным ключом и дополнительным блоком задержки, дополнительного блока усреднения со вторым двухканальным ключом и дополнительным блоком комплексного сопряжения, дополнительного блока комплексного умножения с дополнительным блоком задержки и дополнительным блоком комплексного сопряжения, дополнительного блока комплексного умножения с блоком вычисления фазы и блоком вычисления модуля, блоком вычисления модуля и пороговым блоком, дополнительного умножителя с блоком вычисления фазы и ключом. Связи между синхрогенератором и всеми блоками фазометра когерентных неэквидистантных импульсов обеспечивают согласованную обработку когерентной неэквидистантной последовательности импульсов.

Сравнение с техническими характеристиками, известными из опубликованных источников информации, показывает, что заявляемое решение обладает новизной и имеет изобретательский уровень.

Заявляемое решение носит технический характер, осуществимо, воспроизводимо и, следовательно, является промышленно применимым.

На фиг. 1 представлена структурная электрическая схема фазометра когерентных неэквидистантных импульсов; на фиг. 2 - блока задержки; на фиг. 3 - блока комплексного сопряжения; на фиг. 4 - блока комплексного умножения; на фиг. 5 - блока усреднения; на фиг. 6 - блока вычисления фазы; на фиг. 7 - блока присвоения знака; на фиг. 8 - блока вычисления модуля; на фиг 9 - двухканального ключа; на фиг. 10 - блока управления.

Фазометр когерентных неэквидистантных импульсов (фиг. 1) содержит блок 1 задержки, блок 2 комплексного сопряжения, блок 3 комплексного умножения, блок 4 усреднения, блок 5 вычисления фазы, ключ 6, блок 7 вычисления модуля, пороговый блок 8, блок 9 памяти, синхрогенератор 10, первый двухканальный ключ 11, второй двухканальный ключ 12, дополнительный блок 13 усреднения, блок 14 управления, дополнительный блок 15 задержки, дополнительный блок 16 комплексного сопряжения, дополнительный блок 17 комплексного умножения, дополнительный умножитель 18 и дополнительный блок 19 памяти.

Блок 1 задержки и дополнительный блок 15 задержки (фиг. 2) содержат две цифровые линии задержки 20. Блок 2 комплексного сопряжения и дополнительный блок 16 комплексного сопряжения (фиг. 3) содержат инвертор 21. Блок 3 комплексного умножения и дополнительный блок 17 комплексного умножения (фиг. 4) содержат два канала (I, II), каждый из которых включает первый перемножитель 22, второй перемножитель 23 и сумматор 24. Блок 4 усреднения (фиг. 5) содержит два канала (I, II), каждый из которых состоит из (N-3)/2 цифровых линий задержки 25 и (N-3)/2 сумматоров 26. Блок 5 вычисления фазы (фиг. 6) состоит из делителя 27, функционального преобразователя 28, модульного блока 29, сумматора 30, блока 31 присвоения знака, первого ключа 32, второго ключа 33, сумматора 34 и блока 35 памяти. Блок 31 присвоения знака (фиг. 7) содержит блоки 36, 39 умножения, блок 37 памяти и ограничитель 38. Блок 7 вычисления модуля (фиг. 8) содержит два блока 40 умножения, сумматор 41 и блок 42 извлечения квадратного корня. Первый 11 и второй 12 двухканальные ключи (фиг. 9) содержат два ключа 43. Блок 14 управления (фиг. 10) содержит триггер 44 и элемент НЕ 45.

Фазометр когерентных неэквидистантных импульсов работает следующим образом.

В заявляемом фазометре обрабатывается когерентная неэквидистантная последовательность N радиоимпульсов с чередующимися периодами повторения T1 и Т2, причем T12=ΔT. При отражении радиоимпульсов от движущейся цели их несущие частоты в соответствующих периодах приобретают доплеровские сдвиги фазы

ϕ1=2πƒдТ1, ϕ2=2πƒдТ2, Δϕ=ϕ12=2πƒдΔТ,

где ƒд=2νrƒн/c - доплеровская частота, νr - радиальная скорость цели, ƒн - несущая частота радиоимпульсов, с - скорость распространения радиоволн.

Отраженные от цели радиоимпульсы поступают на вход приемника, в котором усиливаются, в квадратурных фазовых детекторах переносятся на видеочастоту, а затем подвергаются аналого-цифровому преобразованию (соответствующие блоки на фиг. 1 не показаны). На вход фазометра в одном элементе разрешения по дальности поступают цифровые отсчеты комплексной огибающей

Uk=u1k+iu2k, k=1…N,

где u1k, u2k - цифровые коды действительной и мнимой частей отсчетов Uk.

Входные отсчеты Uk фазометра (фиг. 1) в блоке 1 задержки (фиг. 2) под управлением синхронизирующих импульсов, вырабатываемых синхрогенератором 10, поочередно задерживаются на интервалы T1 и Т2, что обеспечивает синхронность последующего комплексного умножения отсчетов по дальности. Синхрогенератор 10 управляется импульсами синхронизатора радиолокатора (на фиг. 1 не показан), следующими поочередно с интервалами T1 и Т2. В блоке 2 комплексного сопряжения (фиг. 3) осуществляется комплексное сопряжение задержанного отсчета Далее в блоке 3 комплексного умножения (фиг. 4) реализуется попарное умножение отсчетов в соответствии с алгоритмом

Попарные произведения раздельно для каждого интервала T1 и Т2 соответственно через первый 11 и второй 12 двухканальные ключи раздельно поступают в блок 4 усреднения и в дополнительный блок 13 усреднения (фиг. 5). Поочередная коммутация первого 11 и второго 12 двухканального ключей осуществляется импульсами соответственно первого и второго выходов блока 14 управления, синхронизируемого также импульсами синхронизатора радиолокатора.

В блоке 4 усреднения (фиг. 5) с помощью линий задержки 25 на интервал T12 и сумматоров 26 в каждом элементе разрешения по дальности осуществляется скользящее вдоль азимута когерентное суммирование (накопление) соответствующих интервалу T1 попарных произведений, что приводит к образованию на выходе блока 4 усреднения при нечетном N величины

В дополнительном блоке 14 усреднения (фиг. 5) осуществляется аналогичное суммирование соответствующих интервалу Т2 попарных произведений, что приводит к образованию на его выходе величины

Величина Y1 на выходе блока 4 усреднения (фиг. 5) по времени предшествует величине Y2 на интервал Т2, что компенсируется соответствующей данному интервалу задержкой Y1 в дополнительном блоке 15 задержки (фиг. 2). В дополнительном блоке 16 комплексного сопряжения (фиг. 3) инвертируется знак мнимой части величины Y2.

Величины Y1 и одновременно поступают соответственно на первые и вторые входы дополнительного блока 17 комплексного умножения (фиг. 4), на выходе которого вычисляется величина

Величины ν1 и ν2 поступают на соответствующие входы блока 5 вычисления фазы (фиг. 6), где на основе блока 27 деления и функционального преобразователя 28 вычисляется оценка

Последующие преобразования оценки зависят от знака величины ν1. При ν1>0 открыт второй ключ 33, и оценка через сумматор 34 поступает на выход блока 5 вычисления фазы. При ν1<0 открыт первый ключ 32, а второй ключ 33 закрыт. При этом в модульном блоке 29 образуется ⎜argV⎜, вычитаемый в блоке 30 из величины π, поступающей от блока 35 памяти. Полученной разности в блоке 31 присваивается знак величины ν2.

Блок 31 присвоения знака (фиг. 7) работает следующим образом. На второй вход блока присвоения знака поступает величина ν2, где в блоке 36 умножения производится ее умножение на постоянный множитель из блока 37 памяти с целью масштабирования и дальнейшего ограничения в ограничителе 38 по уровню ±1. Таким образом, после ограничения величина на выходе ограничителя 38 имеет смысл знака величины ν2, который, поступая на первый вход блока 39 умножения, присваивается разности π-|argV|, поступающей с выхода блока 30 на первый вход блока 31 присвоения знака, т.е. на второй вход блока 39 умножения.

Рассмотренные операции позволяют в блоке 5 вычисления фазы сначала найти оценку доплеровского сдвига фазы, находящуюся в интервале [-π/2, π/2], а затем при помощи последующих логических преобразований расширить пределы ее однозначного измерения до интервала [-π, π] в соответствии с алгоритмом

Дополнительный блок 18 умножения (фиг. 1) осуществляет умножение найденной оценки сдвига фазы на весовой коэффициент а, хранящийся в дополнительном блоке 19 памяти, что позволяет найти однозначную оценку радиальной скорости в соответствии с алгоритмом

где а=с/4πƒнΔТ - весовой коэффициент.

Для уменьшения вероятности работы устройства по шумам в нем исключается выдача полученной оценки на выход в отсутствие отраженного от цели сигнала. В блоке 7 вычисления модуля (фиг. 8) вычисляется величина

которая поступает на второй вход порогового блока 8, в котором сравнивается с пороговым уровнем z0, записанным в блоке 9 памяти. Если происходит превышение порогового уровня z0, то с выхода порогового блока 8 поступает сигнал разрешения на прохождение результата вычисления с выхода дополнительного блока 18 умножения через ключ 6 на первый выход фазометра когерентных неэквидистантных импульсов. В противном случае ключ 6 разомкнут. Кроме того, сигнал с выхода порогового блока 8, являющегося вторым выходом фазометра, может быть использован для отсчета других координат цели, например дальности.

Синхронизация фазометра когерентных неэквидистантных импульсов осуществляется подачей на все блоки заявляемого устройства последовательности синхронизирующих импульсов, вырабатываемых синхронизатором 10 (фиг. 1) с периодом повторения tк, определяемым из условия требуемой разрешающей способности по дальности.

Выигрыш в диапазоне однозначного измерения вытекает из сравнения интервалов однозначности доплеровских частот предложенного фазометра [-1/2ΔТ, 1/2ΔТ] и известного (прототипа) [-1/2Т, 1/2Т]. При этом интервал однозначного измерения радиальной скорости расширяется в Т/ΔT раз, что соответствует решению поставленной задачи изобретения. Если в соответствии с условием ƒд≤1/2ΔТ и с учетом ƒд=2νrƒн/c для максимально возможной скорости цели νrmax выбрать интервал ΔТ≤c/4νrmaxƒн, то во всем диапазоне реальных скоростей цели может быть осуществлено их однозначное измерение. При этом сохраняется однозначность измерения дальности, которая обеспечивается соответствующим выбором периода Т2.

Таким образом, фазометр когерентных неэквидистантных импульсов позволяет получить требуемый диапазон однозначно измеряемых доплеровских скоростей при сохранении однозначного измерения дальности.

1. А.С. 737860 (СССР), МПК G01R 25/00. Фазометр среднего значения набега фазы. / Э.В. Арбенин, А.В. Касаткин и В.А. Острожинский. Опубл. 30.05.1980. - Изобретения. - 1980. - №20. - С. 226.

2. А.С. 1195279 (СССР), МПК G01R 25/00. Радиоимпульсный фазометр. / В.Я. Суньян и Э.Е. Пашковский. Опубл. 30.11.1985. - Изобретения. - 1985. - №44. - С. 204.

3. А.С. 1748086 (СССР), МПК G01R 25/00. Фазометр доплеровского набега фазы радиоимпульсных сигналов. / Д.И. Попов, С.В. Герасимов и Е.Н. Матаев. Опубл. 15.07.1992. - Изобретения. - 1992. - №26. - 6 с.

Фазометр когерентных неэквидистантных импульсов, содержащий блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения, блок вычисления фазы, ключ, блок вычисления модуля, пороговый блок, блок памяти и синхрогенератор, при этом выходы блока задержки соединены с входами блока комплексного сопряжения, выходы которого соединены с первыми входами блока комплексного умножения, вторые входы которого объединены с входами блока задержки, выход порогового блока соединен с управляющим входом ключа, первый вход порогового блока соединен с выходом блока памяти, выход синхрогенератора соединен с синхровходами блока задержки, блока комплексного сопряжения, блока комплексного умножения, блока усреднения, блока вычисления фазы, блока вычисления модуля, порогового блока и блока памяти, отличающийся тем, что введены первый и второй двухканальные ключи, дополнительный блок усреднения, блок управления, дополнительный блок задержки, дополнительный блок комплексного сопряжения, дополнительный блок комплексного умножения, дополнительный умножитель и дополнительный блок памяти, при этом выходы блока комплексного умножения соединены с объединенными входами первого и второго двухканальных ключей, управляющие входы которых соединены соответственно с первым и вторым выходами блока управления, выходы первого двухканального ключа соединены с входами блока усреднения, выходы которого соединены с входами дополнительного блока задержки, выходы второго двухканального ключа соединены с входами дополнительного блока усреднения, выходы которого соединены с входами дополнительного блока комплексного сопряжения, выходы дополнительного блока задержки соединены с первыми входами дополнительного блока комплексного умножения, вторые входы которого соединены с выходами дополнительного блока комплексного сопряжения, выходы дополнительного блока комплексного умножения соединены с объединенными входами блока вычисления фазы и блока вычисления модуля, выход которого соединен со вторым входом порогового блока, выход блока вычисления фазы соединен с первым входом дополнительного умножителя, второй вход которого соединен с выходом дополнительного блока памяти, выход дополнительного умножителя соединен с основным входом ключа, выход синхрогенератора соединен с синхровходами первого и второго двухканальных ключей, дополнительного блока усреднения, дополнительного блока задержки, дополнительного блока комплексного сопряжения, дополнительного блока комплексного умножения, сумматора, дополнительного умножителя и дополнительного блока памяти, причем входами фазометра когерентных неэквидистантных импульсов являются входы блока задержки, а первым и вторым выходами - соответственно выходы ключа и порогового блока.
ФАЗОМЕТР КОГЕРЕНТНЫХ НЕЭКВИДИСТАНТНЫХ ИМПУЛЬСОВ
ФАЗОМЕТР КОГЕРЕНТНЫХ НЕЭКВИДИСТАНТНЫХ ИМПУЛЬСОВ
ФАЗОМЕТР КОГЕРЕНТНЫХ НЕЭКВИДИСТАНТНЫХ ИМПУЛЬСОВ
ФАЗОМЕТР КОГЕРЕНТНЫХ НЕЭКВИДИСТАНТНЫХ ИМПУЛЬСОВ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 105.
06.07.2018
№218.016.6cce

Матричная ракетная двигательная система с индивидуальным цифровым управлением величиной тяги каждой двигательной ячейки для малоразмерных космических аппаратов

Изобретение относится к двигательным системам для малоразмерных космических аппаратов (МКА). Монолитная термостойкая диэлектрическая подложка содержит упорядоченно размещенные на поверхности конусообразные микропоры, заполненные твердым топливом. На центры оснований конусообразных микропор...
Тип: Изобретение
Номер охранного документа: 0002660210
Дата охранного документа: 05.07.2018
08.07.2018
№218.016.6d6a

Адаптивный режекторный фильтр

Изобретение относится к технологиям сетевой связи. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей на фоне пассивных помех с априорно неизвестными корреляционными свойствами. Адаптивный режекторный фильтр содержит измеритель доплеровской фазы...
Тип: Изобретение
Номер охранного документа: 0002660645
Дата охранного документа: 06.07.2018
12.07.2018
№218.016.706a

Фильтр режекции помех

Изобретение относится к радиолокационной технике и может быть использовано для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат - повышение эффективности выделения сигналов движущихся целей на...
Тип: Изобретение
Номер охранного документа: 0002660803
Дата охранного документа: 10.07.2018
19.07.2018
№218.016.72a0

Пирофосфатно-аммонийный электролит контактного серебрения

Изобретение относится к области нанесения серебряных покрытий на медь и ее сплавы и может быть использовано в технологии электронных приборов, радиотехнической промышленности для нанесения декоративных покрытий, для серебрения волноводов и изделий сложной конфигурации, в качестве электролита...
Тип: Изобретение
Номер охранного документа: 0002661644
Дата охранного документа: 18.07.2018
24.07.2018
№218.016.73da

Фильтр режекции пассивных помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002661914
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.73f5

Способ выделения спектральных отсчетов в многоканальной доплеровской рлс

Изобретение относится к радиолокации, а именно к бортовым импульсно-доплеровским радиолокационным станциям (РЛС), работающим в режиме узкополосной доплеровской фильтрации и предназначенным для наблюдения за наземными или воздушными объектами. Достигаемый технический результат - выделение...
Тип: Изобретение
Номер охранного документа: 0002661913
Дата охранного документа: 23.07.2018
19.08.2018
№218.016.7d26

Способ обработки последовательности изображений для распознавания воздушных объектов

Изобретение относится к области цифровой обработки изображений. Технический результат заключается в повышении точности определения класса наблюдаемого воздушного объекта. Способ заключается: в генерации на основе 3D-моделей эталонных бинарных изображений воздушных объектов, в формировании...
Тип: Изобретение
Номер охранного документа: 0002664411
Дата охранного документа: 17.08.2018
13.12.2018
№218.016.a5fc

Фильтр компенсации пассивных помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей на...
Тип: Изобретение
Номер охранного документа: 0002674467
Дата охранного документа: 11.12.2018
13.12.2018
№218.016.a620

Фильтр режектирования помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей на...
Тип: Изобретение
Номер охранного документа: 0002674468
Дата охранного документа: 11.12.2018
19.12.2018
№218.016.a8c2

Сканирующий зонд атомно-силового микроскопа с отделяемым телеуправляемым нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в атомно-силовой микроскопии для диагностирования наноразмерных структур. Сущность изобретения заключается в том, что магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина...
Тип: Изобретение
Номер охранного документа: 0002675202
Дата охранного документа: 17.12.2018
Показаны записи 61-70 из 70.
01.05.2019
№219.017.4831

Вычислитель для компенсации помех

Изобретение относится к области компьютерной техники и может быть использовано в автоматизированных системах для выполнения комплексных математических операций. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей на фоне пассивных помех с априорно...
Тип: Изобретение
Номер охранного документа: 0002686631
Дата охранного документа: 29.04.2019
12.04.2023
№223.018.42c3

Вычислитель для подавления помех

Изобретение относится к области компьютерной техники и может быть использовано в автоматизированных системах для выполнения комплексных математических операций с целью выделения сигналов на фоне пассивных помех с неизвестными корреляционными свойствами. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002755978
Дата охранного документа: 23.09.2021
12.04.2023
№223.018.4897

Вычислитель для режекции помех

Изобретение относится к области компьютерной техники и может быть использовано в автоматизированных системах для выполнения комплексных математических операций с целью выделения сигналов на фоне пассивных помех с неизвестными корреляционными свойствами. Достигаемый технический результат -...
Тип: Изобретение
Номер охранного документа: 0002764874
Дата охранного документа: 21.01.2022
20.04.2023
№223.018.4c25

Фильтр режекции пассивных помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех с неизвестными корреляционными свойствами. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей на фоне пассивных помех с...
Тип: Изобретение
Номер охранного документа: 0002765852
Дата охранного документа: 03.02.2022
22.04.2023
№223.018.5121

Фильтр компенсации помех

Изобретение относится к радиолокационной технике и может быть использовано в когерентно-импульсных радиолокационных системах для выделения сигналов движущихся целей на фоне пассивных помех с неизвестной доплеровской фазой. Техническим результатом изобретения является повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002794214
Дата охранного документа: 12.04.2023
15.05.2023
№223.018.58de

Вычислитель-компенсатор пассивных помех

Изобретение относится к области компенсации пассивных помех. Технический результат изобретения состоит в повышении эффективности компенсации пассивной помехи с априорно неизвестными корреляционными свойствами и выделения сигналов движущихся целей. Раскрыт вычислитель-компенсатор пассивных...
Тип: Изобретение
Номер охранного документа: 0002760961
Дата охранного документа: 01.12.2021
31.05.2023
№223.018.7451

Фильтр режектирования помех

Изобретение относится к радиолокационной технике и может быть использовано в когерентно-импульсных радиолокационных системах для выделения сигналов движущихся целей на фоне пассивных помех с неизвестной доплеровской фазой. Техническим результатом изобретения является повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002796445
Дата охранного документа: 23.05.2023
31.05.2023
№223.018.745d

Фильтр подавления помех

Изобретение относится к радиолокационной технике и может быть использовано в когерентно-импульсных радиолокационных системах для выделения сигналов движущихся целей на фоне пассивных помех с неизвестной доплеровской фазой. Техническим результатом изобретения является повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002796444
Дата охранного документа: 23.05.2023
03.06.2023
№223.018.765f

Фильтр для подавления помех

Изобретение относится к радиолокационной технике и может быть использовано в когерентно-импульсных радиолокационных системах для выделения сигналов движущихся целей на фоне пассивных помех с неизвестной доплеровской фазой. Техническим результатом изобретения является повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002796547
Дата охранного документа: 25.05.2023
03.06.2023
№223.018.7682

Фильтр режекции помех

Изобретение относится к радиолокационной технике и может быть использовано в когерентно-импульсных радиолокационных системах для выделения сигналов движущихся целей на фоне пассивных помех с неизвестной доплеровской фазой. Техническим результатом изобретения является повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002796546
Дата охранного документа: 25.05.2023
+ добавить свой РИД