×
19.01.2018
218.016.00c0

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ КОРАБЛЁМ ПРИ СБЛИЖЕНИИ С КООПЕРИРУЕМЫМ КОСМИЧЕСКИМ АППАРАТОМ

Вид РИД

Изобретение

№ охранного документа
0002629644
Дата охранного документа
30.08.2017
Аннотация: Изобретение относится к операциям сближения и стыковки космических аппаратов (КА) на околокруговой орбите, например, грузового космического корабля в качестве КА и международной космической станции в качестве кооперируемого КА (ККА). После выведения КА на опорную орбиту определяют параметры импульсов сближения по параметрам орбиты ККА, измеренным до выведения КА. При отсутствии информации о фактической орбите ККА выполняют корректирующий импульс средствами ККА. Этот импульс направлен вдоль орбиты и рассчитан так, чтобы к моменту встречи скорректировать аргумент широты ККА до значения аргумента широты КА. Техническим результатом изобретения является возможность сближения КА с ККА при отсутствии информации на борту КА о фактической орбите ККА. 2 ил., 1 табл.

Предлагаемое изобретение может быть использовано в космической технике при сближении и последующей стыковке двух космических объектов, находящихся на околокруговой орбите небесного объекта, например грузового космического корабля, выводимого ракетоносителем (РН) в качестве космического корабля (КК) и международной космической станцией (МКС), в качестве кооперируемого космического аппарата (ККА).

Известен способ управления КК при сближении с ККА, выбранный в качестве аналога. После выведения КК на опорную орбиту по измерениям орбит КК и ККА, проводится определение параметров импульсов сближения, которые прикладываются к КК в определенные расчетом моменты времени. В результате проведенных импульсов сближения КК оказывается в расчетное время встречи в окрестности ККА, т.е. оба объекта располагаются на одном аргументе широты орбиты, отсчитываемом от восходящего узла орбиты [1. Р.Ф. Аппазов, О.Г. Сытин «Методы проектирования траекторий носителей и спутников Земли», Москва, Наука, 1987]. При этом ККА находится в пассивном полете, т.е. к ККА не прикладываются импульсы сближения. Продолжительность сближения по этому способу составляет около 50 часов [2. Wigbert Fehse (2003) "Automated Rendezvous and Docking of Spacecraft", Cambrige University press]. Недостатком этого способа является необходимость для определения параметров импульсов сближения иметь измерения параметров фактической орбиты КК и ККА.

Известен способ управления КК при сближении с ККА, выбранный в качестве прототипа, содержащий выведение КК на опорную орбиту, определение параметров импульсов сближения и последующее приложение импульсов сближения к КК. Этот способ разработан для проведения «быстрой» стыковки КК «Союз-ТМА» с МКС [3. Р.Ф. Муртазин, П.В. Виноградов, А.П. Александров, Н.К. Петров « «Быстрая» схема сближения: МКС становится ближе», ж. «Полет», №8, 2013]. Для ускорения стыковки в нем предлагается определять параметры импульсов сближения, используя только номинальные параметры орбиты выведения КК и измерения фактической орбиты ККА [4. Муртазин Р.Ф., Борисенко Ю.П. Патент на изобретение №2490181 от 20 августа 2013 г.]. Сразу после выведения КК на опорную орбиту выполняются первые два импульса сближения, а последующие импульсы сближения пересчитываются на борту КК с учетом уже фактических параметров орбиты КК. В результате проведенных импульсов сближения КК оказывается в расчетное время встречи в окрестности ККА, т.е. оба объекта располагаются на одном аргументе широты орбиты. В этом способе, как и в аналоге к ККА не прикладываются импульсы сближения. Раннее выполнение первых двух импульсов позволяет выполнить стыковку за 6 часов [3]. Основным недостатком такого способа управления является также то, что его реализация возможна лишь при наличии измерений фактической орбиты ККА для определения параметров импульсов сближения.

Техническим результатом изобретения является возможность сближения КК с ККА при отсутствии информации на борту КК о фактической орбите ККА.

Технический результат достигается благодаря тому, что в способе управления КК при сближении с ККА, включающем выведение КК на опорную орбиту, определение параметров импульсов сближения и последующее приложение импульсов сближения к КК, в отличие от известного, измеряют параметры орбиты ККА перед выведением КК, с учетом которых производят определение параметров импульсов сближения, а за заданное время t до момента завершения сближения, к ККА прикладывают импульс VKKA, направленный вдоль орбиты, который определяют по формуле:

где ϕ1 - аргумент широты ККА на момент сближения, соответствующий номинальным параметрам орбиты,

ϕ2 - аргумент широты ККА на момент сближения, соответствующий фактическим параметрам орбиты,

Rз - радиус Земли,

h - высота орбиты ККА.

Технический результат в предлагаемом способе управления достигается за счет того, что отсутствие информации о фактической орбите ККА на борту КК парируется выполнением корректирующего импульса средствами ККА. После выполнения импульсов сближения КК из-за неточного знания фактических параметров орбиты ККА в расчетное время встречи аргументы широты орбиты КК и ККА будут различаться. Для согласования аргументов широты за время t до момента сближения, к ККА прикладывается импульс, направленный вдоль орбиты, который позволит к моменту встречи скорректировать аргумент широты ККА до значения аргумента широты КК.

Сущность изобретения поясняется фиг. 1÷2 и табл. 1, где

на фиг.1 приведена циклограмма «быстрой» четырехвитковой схемы сближения КК с МКС,

на фиг. 2 приведена циклограмма выполнения импульса средствами ККА для реализации предлагаемого способа в «быстрой» четырехвитковой схеме сближения,

в табл. 1 представлены ошибки прогноза МКС по аргументу широты орбиты.

На фиг. 1 и 2 отмечены следующие позиции: 1 - выведение КК, 2 - наземно-измерительные пункты (НИП), 3 - первый двухимпульсный маневр, 4 - корректирующий двухимпульсный маневр, 5 - автономный участок сближения, 6 - совместная фаза полета после стыковки, 7 - корректирующий импульс VKKA.

На фиг. 1 в качестве примера представлена циклограмма проведения основных технологических операций при реализации четырехвитковой схемы сближения КК с МКС, рассматриваемой в качестве прототипа. После выведения (1) и окончания зоны НИПов на 1-м витке (2) выполняется первый двухимпульсный маневр сближения (3). Данные по времени проведения и характеристикам импульсов маневра рассчитываются по вектору состояния КО и номинальному вектору выведения КК и передаются в бортовой вычислительный контур (БВК) КК в зоне НИПов на 1-м витке. Последующие импульсы сближения (4) пересчитываются на борту КК с учетом уже фактических параметров орбиты КК, полученных с помощью измерений с НИПов на 1-м витке. После автономного участка сближения (5) выполняется стыковка и КК с ККА находятся в совместной фазе полета (6).

На фиг. 2 представлена циклограмма выполнения импульса средствами ККА для реализации предлагаемого способа в «быстрой» четырехвитковой схеме сближения КК с МКС. В этой схеме ККА выполняет корректирующий импульс VKKA в диапазоне (7) от одних суток до и одного витка после выведения КК.

В табл.1 представлены ошибки прогноза МКС по аргументу широты орбиты, зафиксированные при сравнении прогнозов орбиты МКС, проведенных с разницей в 7 дней в первой половине 2015 года. В таблице представлена дата сравнения прогнозов и зафиксированная в эту дату ошибка по аргументу широты орбиты Δϕ. Как видно из таблицы, предельная ошибка при семидневном прогнозе составила 3.4Ο.

Рассмотрим пример. На опорную орбиту выводится КК для последующей стыковки с МКС. За некоторое время до старта, определяемое технологическими ограничениями, в БКУ КК заносится первичная номинальная информация о векторе МКС на расчетный момент стыковки. Очевидно, что из-за ошибок в прогнозе фактический вектор состояния МКС на момент выведения будет отличаться от первичной информации. Сразу после выведения КК на опорную орбиту через НИПы в БКУ КК должна быть передана уточненная информация о фактической орбите МКС, которая используется для последующего расчета на борту КК импульсов сближения. В случае невозможности передачи обновленной информации о фактических параметрах, например при отказе приемного устройства БКУ КК, которое может быть обнаружено и до старта КК, расчет импульсов коррекции на борту КК будет выполнен по первичной информации с соответствующими ошибками по прогнозу в векторе состояния ККА. При этом КК сблизится не с ККА, а с некоторой фиктивной целью и в результате стыковка космических объектов не состоится.

Чтобы обеспечить приемлемые условия для перехода в автономный участок, предлагается с помощью импульса, прикладываемого к ККА, переместить ККА в окрестность фиктивной точки. Для этого можно воспользоваться имеющейся на МКС автоматической программой PDAM (Prompt Debris Avoidance Maneuver) - «быстрый маневр уклонения от космического мусора», позволяющей оперативно выполнить импульс в направлении вдоль орбиты.

Необходимую величину импульса для перевода ККА с фактического положения на фиктивный аргумент широты, соответствующий номинальным параметрам орбиты, первоначально заложенным в БКУ КК можно, используя уравнения относительного движения [1]:

Здесь x - фиктивное положение ККА вдоль орбиты, x0 - фактическое положение ККА вдоль орбиты, y0 - высотное рассогласование между фактическим и фиктивным положением ККА, ΔVx - составляющая импульса коррекции в направлении вдоль орбиты, ΔVy - составляющая импульса в направлении вдоль радиуса-вектора, ω - угловая скорость вращения ККА относительно Земли на высоте h и t - время отсчитываемое от момента приложения импульса коррекции до момента сближения.

Так как предлагается управлять рассогласованием вдоль орбиты только с помощью составляющей импульса ККА вдоль орбиты, т.е. ΔVx (далее в тексте VKKA), и при этом предполагая, что высотное рассогласование близко к нулю, т.е. y0=0, то уравнение можно упростить:

Первое слагаемое при VKKA имеет периодическую составляющую sin ωt с периодом в один виток и поэтому при оценке сдвига между двумя положениями ККА можно воспользоваться только вековой составляющей:

Относительное движение предлагается рассматривать в орбитальной цилиндрической системе координат (ЦСК) [1], в которой положение КК относительно ККА характеризуется смещением вдоль дуги опорной орбиты x-x0=Δϕ⋅R, где R=R3+h.

Допустим ϕ1 - аргумент широты ККА на момент сближения, соответствующий номинальным параметрам орбиты, а ϕ2 - аргумент широты ККА на момент сближения, соответствующий фактическим параметрам орбиты: x-x0=(ϕ12)⋅(RЗ+h) или, подставляя в (1): (ϕ12)⋅(RЗ+h)=-3t⋅VKKA,

и, как следствие:

В этой формуле время t приложения импульса до момента сближения определяет величину потребного импульса. Для минимизации расхода топлива желательно увеличить это время, но с другой стороны возможны различные ограничения технологического порядка. Как правило, для парирования ошибки в аргументах широты при семидневном прогнозе, согласно табл. 1, достаточно выбирать момент приложения импульса в диапазоне от одних суток до и одного витка после выведения КК, как представлено на фиг. 2.

Рассмотрим пример выбора величины импульса VKKA в зависимости от момент его приложения. Допустим величина импульса VKKA равна 1.6 м/с, ошибка в аргументах широты при семидневном прогнозе соответствует предельной из табл. 1, т.е. Δϕ=ϕ21=3.4Ο~0.06 радиан. Пусть высота орбиты ККА h=400 км, а RЗ=6378 км. Тогда, согласно формуле для t составит:

Как известно, в сутках 86.4 тыс. сек, поэтому время t приложения импульса VKKA составит около суток до момента сближения КК и ККА.

В случае если величина Δϕ=0.1Ο~0.002 радиан соответствует минимальному из табл.1, то время t для приложения импульса величиной 1.6 м/с составит 2.8 тыс. сек, равное длительности половины витка. Очевидно, в этом случае момент приложения импульса очень близок к моменту сближения, поэтому величину импульса можно существенно уменьшить, например до VKKA=0.3 м/с. Тогда время t приложения импульса VKKA составит около трех витков до момента сближения, что будет соответствовать одному витку после выведения КК.

Предлагаемый способ управления позволит выполнять сближение КК с ККА в случае физической невозможности передачи на борт космического корабля параметров фактической орбиты кооперируемого космического аппарата.


СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ КОРАБЛЁМ ПРИ СБЛИЖЕНИИ С КООПЕРИРУЕМЫМ КОСМИЧЕСКИМ АППАРАТОМ
СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ КОРАБЛЁМ ПРИ СБЛИЖЕНИИ С КООПЕРИРУЕМЫМ КОСМИЧЕСКИМ АППАРАТОМ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 370.
27.04.2014
№216.012.be57

Дублированный электронасосный агрегат

Заявленный дублированный электронасосный агрегат относится к машиностроению и может быть использован в системах терморегулирования изделий авиационной и ракетной техники. Дублированный электронасосный агрегат содержит сборный корпус, установленные в корпусе с его противоположных концов два...
Тип: Изобретение
Номер охранного документа: 0002514467
Дата охранного документа: 27.04.2014
20.05.2014
№216.012.c314

Устройство защиты пневмогидравлического соединения стыкуемых объектов и способ его контроля на герметичность

Изобретение относится к ракетно-космической технике, криогенной технике и касается пневмогидравлического соединения стыкуемых объектов. Устройство защиты пневмогидравлического соединения содержит кожух, который установлен на соединение и снабжен штуцером с заглушкой. Кожух герметично установлен...
Тип: Изобретение
Номер охранного документа: 0002515699
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c393

Терморегулирующий материал, способ его изготовления и способ его крепления к поверхности корпуса космического объекта

Изобретение относится к космической технике и касается создания терморегулирующего материала для нанесения на поверхность космического объекта (КО). Терморегулирующий материал содержит подложку в виде оптически прозрачного стекла, высокоотражающий слой из серебра, защитный слой....
Тип: Изобретение
Номер охранного документа: 0002515826
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c657

Регенеративная электрохимическая система энергоснабжения пилотируемого космического аппарата с замкнутым по воде рабочим циклом и способ ее эксплуатации

Изобретение относится к энергетике, к системе энергоснабжения космических аппаратов и напланетных станций. Электрохимическая система энергоснабжения космического аппарата с замкнутым по воде рабочим циклом включает электролизер воды и кислородо-водородный генератор, гидравлически связанные...
Тип: Изобретение
Номер охранного документа: 0002516534
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c81b

Рабочее колесо осевого вентилятора (варианты)

Заявленное рабочее колесо осевого вентилятора может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники. Рабочее колесо содержит ступицу с основаниями, снабженными пазами шириной S. В указанных пазах установлены хвостовики листовых лопаток толщиной s,...
Тип: Изобретение
Номер охранного документа: 0002516993
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c9f5

Шаровой клапан

Изобретение относится к области машиностроения, в частности к ракетно-космической технике, и предназначено в качестве запорного клапана с ручным приводом для обеспечения работоспособности в условиях биологически вредных сред, при криогенных температурах и при невесомости. Шаровой клапан состоит...
Тип: Изобретение
Номер охранного документа: 0002517467
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cd46

Разъемное соединение

Изобретение относится к устройствам разделения криогенных заправочных магистралей. Разъемное соединение состоит из стационарного и отделяемого штуцеров с двойным уплотнением между ними, поджатие которого осуществляется устройством для затяжки посредством тарельчатых пружин. Оба уплотнения между...
Тип: Изобретение
Номер охранного документа: 0002518321
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cdd8

Ионная двигательная установка космических аппаратов

Изобретение относится к двигательным системам космических аппаратов. Предлагаемая ионная двигательная установка (ДУ) включает в себя источник рабочего тела, выполненный в виде системы хранения и подачи изотопа алюминия 27 с источником паров (ИП) данного изотопа. ДУ также содержит связанные с...
Тип: Изобретение
Номер охранного документа: 0002518467
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d125

Способ имитации внешних тепловых потоков для наземной отработки теплового режима космического аппарата

Изобретение относится к тепловакуумным испытаниям космического аппарата (КА), а также может найти применение в тех областях техники, где предъявляются повышенные требования к излучательным и отражательным характеристикам изделий. Согласно изобретению до помещения КА в термовакуумную камеру...
Тип: Изобретение
Номер охранного документа: 0002519312
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d979

Посадочное устройство космического корабля

Изобретение относится к космической технике, а именно к посадочным устройствам космического корабля (КК). Посадочное устройство КК содержит опорную тарель, откидную раму, два подкоса, кронштейн, датчик угла поворота рамы, цилиндрические шарниры с замковыми элементами, четыре посадочные опоры,...
Тип: Изобретение
Номер охранного документа: 0002521451
Дата охранного документа: 27.06.2014
Показаны записи 61-70 из 297.
10.03.2014
№216.012.aa16

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль прокачки...
Тип: Изобретение
Номер охранного документа: 0002509257
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.abcc

Способ заправки рабочим телом гидравлической магистрали замкнутого жидкостного контура, снабженной гидропневматическим компенсатором объемного расширения рабочего тела, и устройство для его осуществления

Группа изобретений относится к системам терморегулирования (СТР), преимущественно, космических аппаратов, может быть использована при их подготовке к летной эксплуатации, а также в других областях. В предлагаемом способе перед заполнением отвакуумированной гидравлической магистрали рабочим...
Тип: Изобретение
Номер охранного документа: 0002509695
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b3f7

Дублированный электронасосный агрегат

Заявленный дублированный электронасосный агрегат относится к машиностроению и может быть использован в системах терморегулирования изделий авиационной и ракетной техники. Дублированный электронасосный агрегат содержит сборный корпус, установленные в корпусе с его противоположных концов два...
Тип: Изобретение
Номер охранного документа: 0002511788
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b44e

Жидкостно-газовый реактивный двигатель

Изобретение относится к ракетно-космической технике и может быть использовано в качестве корректирующей двигательной установки космического аппарата. Жидкостно-газовый реактивный двигатель (ЖГРД) содержит бак, заполненный жидким рабочим телом - водой, с выходным отверстием в крышке, камеру и...
Тип: Изобретение
Номер охранного документа: 0002511877
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.bce5

Способ измерения электрического сопротивления изоляции между группой объединенных контактов и отдельным контактом и устройство его реализации

Изобретение относится к области электроизмерительной техники, в частности к автоматизированным системам контроля электрического сопротивления и прочности изоляции, и может быть использовано при контроле сопротивления изоляции электрических цепей электро- и радиотехнических изделий. Способ...
Тип: Изобретение
Номер охранного документа: 0002514096
Дата охранного документа: 27.04.2014
27.04.2014
№216.012.bdd3

Термокомпрессионное устройство

Изобретение относится к холодильной технике, а точнее к области проектирования и эксплуатации компрессионных термических устройств. Термокомпрессионное устройство содержит источник газа высокого давления с подключенным к нему баллоном-компрессором, источник холода и магистраль подачи газа...
Тип: Изобретение
Номер охранного документа: 0002514335
Дата охранного документа: 27.04.2014
27.04.2014
№216.012.be57

Дублированный электронасосный агрегат

Заявленный дублированный электронасосный агрегат относится к машиностроению и может быть использован в системах терморегулирования изделий авиационной и ракетной техники. Дублированный электронасосный агрегат содержит сборный корпус, установленные в корпусе с его противоположных концов два...
Тип: Изобретение
Номер охранного документа: 0002514467
Дата охранного документа: 27.04.2014
20.05.2014
№216.012.c314

Устройство защиты пневмогидравлического соединения стыкуемых объектов и способ его контроля на герметичность

Изобретение относится к ракетно-космической технике, криогенной технике и касается пневмогидравлического соединения стыкуемых объектов. Устройство защиты пневмогидравлического соединения содержит кожух, который установлен на соединение и снабжен штуцером с заглушкой. Кожух герметично установлен...
Тип: Изобретение
Номер охранного документа: 0002515699
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c393

Терморегулирующий материал, способ его изготовления и способ его крепления к поверхности корпуса космического объекта

Изобретение относится к космической технике и касается создания терморегулирующего материала для нанесения на поверхность космического объекта (КО). Терморегулирующий материал содержит подложку в виде оптически прозрачного стекла, высокоотражающий слой из серебра, защитный слой....
Тип: Изобретение
Номер охранного документа: 0002515826
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c657

Регенеративная электрохимическая система энергоснабжения пилотируемого космического аппарата с замкнутым по воде рабочим циклом и способ ее эксплуатации

Изобретение относится к энергетике, к системе энергоснабжения космических аппаратов и напланетных станций. Электрохимическая система энергоснабжения космического аппарата с замкнутым по воде рабочим циклом включает электролизер воды и кислородо-водородный генератор, гидравлически связанные...
Тип: Изобретение
Номер охранного документа: 0002516534
Дата охранного документа: 20.05.2014
+ добавить свой РИД