×
19.01.2018
218.016.00c0

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ КОРАБЛЁМ ПРИ СБЛИЖЕНИИ С КООПЕРИРУЕМЫМ КОСМИЧЕСКИМ АППАРАТОМ

Вид РИД

Изобретение

№ охранного документа
0002629644
Дата охранного документа
30.08.2017
Аннотация: Изобретение относится к операциям сближения и стыковки космических аппаратов (КА) на околокруговой орбите, например, грузового космического корабля в качестве КА и международной космической станции в качестве кооперируемого КА (ККА). После выведения КА на опорную орбиту определяют параметры импульсов сближения по параметрам орбиты ККА, измеренным до выведения КА. При отсутствии информации о фактической орбите ККА выполняют корректирующий импульс средствами ККА. Этот импульс направлен вдоль орбиты и рассчитан так, чтобы к моменту встречи скорректировать аргумент широты ККА до значения аргумента широты КА. Техническим результатом изобретения является возможность сближения КА с ККА при отсутствии информации на борту КА о фактической орбите ККА. 2 ил., 1 табл.

Предлагаемое изобретение может быть использовано в космической технике при сближении и последующей стыковке двух космических объектов, находящихся на околокруговой орбите небесного объекта, например грузового космического корабля, выводимого ракетоносителем (РН) в качестве космического корабля (КК) и международной космической станцией (МКС), в качестве кооперируемого космического аппарата (ККА).

Известен способ управления КК при сближении с ККА, выбранный в качестве аналога. После выведения КК на опорную орбиту по измерениям орбит КК и ККА, проводится определение параметров импульсов сближения, которые прикладываются к КК в определенные расчетом моменты времени. В результате проведенных импульсов сближения КК оказывается в расчетное время встречи в окрестности ККА, т.е. оба объекта располагаются на одном аргументе широты орбиты, отсчитываемом от восходящего узла орбиты [1. Р.Ф. Аппазов, О.Г. Сытин «Методы проектирования траекторий носителей и спутников Земли», Москва, Наука, 1987]. При этом ККА находится в пассивном полете, т.е. к ККА не прикладываются импульсы сближения. Продолжительность сближения по этому способу составляет около 50 часов [2. Wigbert Fehse (2003) "Automated Rendezvous and Docking of Spacecraft", Cambrige University press]. Недостатком этого способа является необходимость для определения параметров импульсов сближения иметь измерения параметров фактической орбиты КК и ККА.

Известен способ управления КК при сближении с ККА, выбранный в качестве прототипа, содержащий выведение КК на опорную орбиту, определение параметров импульсов сближения и последующее приложение импульсов сближения к КК. Этот способ разработан для проведения «быстрой» стыковки КК «Союз-ТМА» с МКС [3. Р.Ф. Муртазин, П.В. Виноградов, А.П. Александров, Н.К. Петров « «Быстрая» схема сближения: МКС становится ближе», ж. «Полет», №8, 2013]. Для ускорения стыковки в нем предлагается определять параметры импульсов сближения, используя только номинальные параметры орбиты выведения КК и измерения фактической орбиты ККА [4. Муртазин Р.Ф., Борисенко Ю.П. Патент на изобретение №2490181 от 20 августа 2013 г.]. Сразу после выведения КК на опорную орбиту выполняются первые два импульса сближения, а последующие импульсы сближения пересчитываются на борту КК с учетом уже фактических параметров орбиты КК. В результате проведенных импульсов сближения КК оказывается в расчетное время встречи в окрестности ККА, т.е. оба объекта располагаются на одном аргументе широты орбиты. В этом способе, как и в аналоге к ККА не прикладываются импульсы сближения. Раннее выполнение первых двух импульсов позволяет выполнить стыковку за 6 часов [3]. Основным недостатком такого способа управления является также то, что его реализация возможна лишь при наличии измерений фактической орбиты ККА для определения параметров импульсов сближения.

Техническим результатом изобретения является возможность сближения КК с ККА при отсутствии информации на борту КК о фактической орбите ККА.

Технический результат достигается благодаря тому, что в способе управления КК при сближении с ККА, включающем выведение КК на опорную орбиту, определение параметров импульсов сближения и последующее приложение импульсов сближения к КК, в отличие от известного, измеряют параметры орбиты ККА перед выведением КК, с учетом которых производят определение параметров импульсов сближения, а за заданное время t до момента завершения сближения, к ККА прикладывают импульс VKKA, направленный вдоль орбиты, который определяют по формуле:

где ϕ1 - аргумент широты ККА на момент сближения, соответствующий номинальным параметрам орбиты,

ϕ2 - аргумент широты ККА на момент сближения, соответствующий фактическим параметрам орбиты,

Rз - радиус Земли,

h - высота орбиты ККА.

Технический результат в предлагаемом способе управления достигается за счет того, что отсутствие информации о фактической орбите ККА на борту КК парируется выполнением корректирующего импульса средствами ККА. После выполнения импульсов сближения КК из-за неточного знания фактических параметров орбиты ККА в расчетное время встречи аргументы широты орбиты КК и ККА будут различаться. Для согласования аргументов широты за время t до момента сближения, к ККА прикладывается импульс, направленный вдоль орбиты, который позволит к моменту встречи скорректировать аргумент широты ККА до значения аргумента широты КК.

Сущность изобретения поясняется фиг. 1÷2 и табл. 1, где

на фиг.1 приведена циклограмма «быстрой» четырехвитковой схемы сближения КК с МКС,

на фиг. 2 приведена циклограмма выполнения импульса средствами ККА для реализации предлагаемого способа в «быстрой» четырехвитковой схеме сближения,

в табл. 1 представлены ошибки прогноза МКС по аргументу широты орбиты.

На фиг. 1 и 2 отмечены следующие позиции: 1 - выведение КК, 2 - наземно-измерительные пункты (НИП), 3 - первый двухимпульсный маневр, 4 - корректирующий двухимпульсный маневр, 5 - автономный участок сближения, 6 - совместная фаза полета после стыковки, 7 - корректирующий импульс VKKA.

На фиг. 1 в качестве примера представлена циклограмма проведения основных технологических операций при реализации четырехвитковой схемы сближения КК с МКС, рассматриваемой в качестве прототипа. После выведения (1) и окончания зоны НИПов на 1-м витке (2) выполняется первый двухимпульсный маневр сближения (3). Данные по времени проведения и характеристикам импульсов маневра рассчитываются по вектору состояния КО и номинальному вектору выведения КК и передаются в бортовой вычислительный контур (БВК) КК в зоне НИПов на 1-м витке. Последующие импульсы сближения (4) пересчитываются на борту КК с учетом уже фактических параметров орбиты КК, полученных с помощью измерений с НИПов на 1-м витке. После автономного участка сближения (5) выполняется стыковка и КК с ККА находятся в совместной фазе полета (6).

На фиг. 2 представлена циклограмма выполнения импульса средствами ККА для реализации предлагаемого способа в «быстрой» четырехвитковой схеме сближения КК с МКС. В этой схеме ККА выполняет корректирующий импульс VKKA в диапазоне (7) от одних суток до и одного витка после выведения КК.

В табл.1 представлены ошибки прогноза МКС по аргументу широты орбиты, зафиксированные при сравнении прогнозов орбиты МКС, проведенных с разницей в 7 дней в первой половине 2015 года. В таблице представлена дата сравнения прогнозов и зафиксированная в эту дату ошибка по аргументу широты орбиты Δϕ. Как видно из таблицы, предельная ошибка при семидневном прогнозе составила 3.4Ο.

Рассмотрим пример. На опорную орбиту выводится КК для последующей стыковки с МКС. За некоторое время до старта, определяемое технологическими ограничениями, в БКУ КК заносится первичная номинальная информация о векторе МКС на расчетный момент стыковки. Очевидно, что из-за ошибок в прогнозе фактический вектор состояния МКС на момент выведения будет отличаться от первичной информации. Сразу после выведения КК на опорную орбиту через НИПы в БКУ КК должна быть передана уточненная информация о фактической орбите МКС, которая используется для последующего расчета на борту КК импульсов сближения. В случае невозможности передачи обновленной информации о фактических параметрах, например при отказе приемного устройства БКУ КК, которое может быть обнаружено и до старта КК, расчет импульсов коррекции на борту КК будет выполнен по первичной информации с соответствующими ошибками по прогнозу в векторе состояния ККА. При этом КК сблизится не с ККА, а с некоторой фиктивной целью и в результате стыковка космических объектов не состоится.

Чтобы обеспечить приемлемые условия для перехода в автономный участок, предлагается с помощью импульса, прикладываемого к ККА, переместить ККА в окрестность фиктивной точки. Для этого можно воспользоваться имеющейся на МКС автоматической программой PDAM (Prompt Debris Avoidance Maneuver) - «быстрый маневр уклонения от космического мусора», позволяющей оперативно выполнить импульс в направлении вдоль орбиты.

Необходимую величину импульса для перевода ККА с фактического положения на фиктивный аргумент широты, соответствующий номинальным параметрам орбиты, первоначально заложенным в БКУ КК можно, используя уравнения относительного движения [1]:

Здесь x - фиктивное положение ККА вдоль орбиты, x0 - фактическое положение ККА вдоль орбиты, y0 - высотное рассогласование между фактическим и фиктивным положением ККА, ΔVx - составляющая импульса коррекции в направлении вдоль орбиты, ΔVy - составляющая импульса в направлении вдоль радиуса-вектора, ω - угловая скорость вращения ККА относительно Земли на высоте h и t - время отсчитываемое от момента приложения импульса коррекции до момента сближения.

Так как предлагается управлять рассогласованием вдоль орбиты только с помощью составляющей импульса ККА вдоль орбиты, т.е. ΔVx (далее в тексте VKKA), и при этом предполагая, что высотное рассогласование близко к нулю, т.е. y0=0, то уравнение можно упростить:

Первое слагаемое при VKKA имеет периодическую составляющую sin ωt с периодом в один виток и поэтому при оценке сдвига между двумя положениями ККА можно воспользоваться только вековой составляющей:

Относительное движение предлагается рассматривать в орбитальной цилиндрической системе координат (ЦСК) [1], в которой положение КК относительно ККА характеризуется смещением вдоль дуги опорной орбиты x-x0=Δϕ⋅R, где R=R3+h.

Допустим ϕ1 - аргумент широты ККА на момент сближения, соответствующий номинальным параметрам орбиты, а ϕ2 - аргумент широты ККА на момент сближения, соответствующий фактическим параметрам орбиты: x-x0=(ϕ12)⋅(RЗ+h) или, подставляя в (1): (ϕ12)⋅(RЗ+h)=-3t⋅VKKA,

и, как следствие:

В этой формуле время t приложения импульса до момента сближения определяет величину потребного импульса. Для минимизации расхода топлива желательно увеличить это время, но с другой стороны возможны различные ограничения технологического порядка. Как правило, для парирования ошибки в аргументах широты при семидневном прогнозе, согласно табл. 1, достаточно выбирать момент приложения импульса в диапазоне от одних суток до и одного витка после выведения КК, как представлено на фиг. 2.

Рассмотрим пример выбора величины импульса VKKA в зависимости от момент его приложения. Допустим величина импульса VKKA равна 1.6 м/с, ошибка в аргументах широты при семидневном прогнозе соответствует предельной из табл. 1, т.е. Δϕ=ϕ21=3.4Ο~0.06 радиан. Пусть высота орбиты ККА h=400 км, а RЗ=6378 км. Тогда, согласно формуле для t составит:

Как известно, в сутках 86.4 тыс. сек, поэтому время t приложения импульса VKKA составит около суток до момента сближения КК и ККА.

В случае если величина Δϕ=0.1Ο~0.002 радиан соответствует минимальному из табл.1, то время t для приложения импульса величиной 1.6 м/с составит 2.8 тыс. сек, равное длительности половины витка. Очевидно, в этом случае момент приложения импульса очень близок к моменту сближения, поэтому величину импульса можно существенно уменьшить, например до VKKA=0.3 м/с. Тогда время t приложения импульса VKKA составит около трех витков до момента сближения, что будет соответствовать одному витку после выведения КК.

Предлагаемый способ управления позволит выполнять сближение КК с ККА в случае физической невозможности передачи на борт космического корабля параметров фактической орбиты кооперируемого космического аппарата.


СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ КОРАБЛЁМ ПРИ СБЛИЖЕНИИ С КООПЕРИРУЕМЫМ КОСМИЧЕСКИМ АППАРАТОМ
СПОСОБ УПРАВЛЕНИЯ КОСМИЧЕСКИМ КОРАБЛЁМ ПРИ СБЛИЖЕНИИ С КООПЕРИРУЕМЫМ КОСМИЧЕСКИМ АППАРАТОМ
Источник поступления информации: Роспатент

Показаны записи 201-210 из 370.
20.06.2016
№216.015.48a2

Способ определения тензора инерции космического аппарата в полете

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает ориентацию КА и стабилизацию в инерциальной системе координат (ИСК) его строительной оси, ближайшей к оси максимального момента инерции. Далее выполняют закрутку КА вокруг этой оси...
Тип: Изобретение
Номер охранного документа: 0002587764
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ab

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Согласно способу при совпадении направления на Солнце с плоскостью орбиты КА совмещают строительную ось КА, отвечающую его максимальному моменту инерции, с этим направлением. Выставляют неподвижные...
Тип: Изобретение
Номер охранного документа: 0002587762
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ae

Способ управления спуском космического аппарата при проведении наблюдений

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными...
Тип: Изобретение
Номер охранного документа: 0002587763
Дата охранного документа: 20.06.2016
20.08.2016
№216.015.4b3e

Приемник-преобразователь лазерного излучения

Приемник-преобразователь лазерного излучения включает приемную плоскость, выполненную в виде круговой панели. На внешней стороне панели установлены фотоэлектрические преобразователи на основе полупроводниковых фотоэлементов (ФЭ) с внутренним фотоэффектом для непосредственного преобразования...
Тип: Изобретение
Номер охранного документа: 0002594953
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.4d45

Электрогенерирующая сборка термоэмиссионного реактора-преобразователя (варианты)

Изобретение может быть использовано в космической технике и атомной энергетике при создании высокоэффективных космических ядерных энергетических установок на основе термоэмиссионного реактора-преобразователя. В электрогенерирующей сборке (ЭГС) термоэмиссионного реактора-преобразователя,...
Тип: Изобретение
Номер охранного документа: 0002595261
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4ec1

Система спутников наблюдения планеты

Изобретение относится к космическим спутниковым системам локального обзора. Система состоит из спутников с оптико-электронной аппаратурой дистанционного зондирования, размещенных на круговых орбитах с одинаковыми высотами и наклонениями. Восходящие узлы орбит перемещаются относительно проекции...
Тип: Изобретение
Номер охранного документа: 0002595240
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.5234

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594056
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.526e

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594054
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.52e2

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594057
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.535a

Фотоэлемент приёмника-преобразователя лазерного излучения

Изобретение относится к области создания приемников-преобразователей на основе полупроводниковых фотоэлементов (ФЭ). Фотоэлемент приемника-преобразователя лазерного излучения содержит полупроводниковые легированный и базовый слои р-типа и n-типа, фронтальный полосковый омический контакт на...
Тип: Изобретение
Номер охранного документа: 0002593821
Дата охранного документа: 10.08.2016
Показаны записи 201-210 из 297.
10.05.2016
№216.015.3d40

Способ определения высоты облачности (варианты)

Изобретение относится к измерительной технике и может найти применение при измерении высоты облачности. Технический результат - повышение оперативности. Для этого по варианту 1 выполняют навигационные измерения орбиты космического аппарата. Производят съемку с космического аппарата (КА)...
Тип: Изобретение
Номер охранного документа: 0002583954
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dee

Пассивное устройство фиксации полезного груза преимущественно к корпусу находящегося на орбите космического корабля

Изобретение относится к стыковочным средствам и инструментам внекорабельной деятельности. Устройство содержит корпус (1), закрепленный на внешней поверхности космического корабля, с кольцом (2), имеющим направляющие выступы (3) и датчики касания (4) с взаимодействующим активным устройством...
Тип: Изобретение
Номер охранного документа: 0002583992
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3eb5

Устройство фиксации разделяемых элементов конструкции

Изобретение относится к машиностроению и может быть использовано в агрегатах, например, в ракетно-космической технике. Техническим результатом является повышение надежности и долговечности. Устройство фиксации разделяемых элементов конструкции содержит корпус с двумя пневмоцилиндрами и...
Тип: Изобретение
Номер охранного документа: 0002584122
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3f62

Ракетный разгонный блок и способ его сборки

Изобретение относится к ракетно-космической технике, а именно, к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит криогенный бак окислителя и бак горючего в виде сегментов полого тора, двухконтурную ферму, корпусной отсек и маршевый двигатель. К нижнему шпангоуту...
Тип: Изобретение
Номер охранного документа: 0002584045
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3fcb

Воздуховод

Изобретение относится к гибким трубопроводам, предназначенным для обеспечения подачи воздуха в обитаемые и межмодульные отсеки космических объектов. Техническим результатом является повышение скорости стыковки-расстыковки и герметичности узла стыковки. Технический результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002584052
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.40a8

Капиллярная система хранения и отбора жидкости в ракетный двигатель космического объекта (варианты)

Изобретение относится к космической технике и может быть использовано в двигателях космических объектов (КО). Капиллярная система хранения и отбора жидкости в ракетный двигатель КО содержит топливный бак с крышкой и нижним днищем, радиальные перфорированные перегородки, кронштейны, трубопровод...
Тип: Изобретение
Номер охранного документа: 0002584211
Дата охранного документа: 20.05.2016
20.06.2016
№216.015.48a2

Способ определения тензора инерции космического аппарата в полете

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает ориентацию КА и стабилизацию в инерциальной системе координат (ИСК) его строительной оси, ближайшей к оси максимального момента инерции. Далее выполняют закрутку КА вокруг этой оси...
Тип: Изобретение
Номер охранного документа: 0002587764
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ab

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Согласно способу при совпадении направления на Солнце с плоскостью орбиты КА совмещают строительную ось КА, отвечающую его максимальному моменту инерции, с этим направлением. Выставляют неподвижные...
Тип: Изобретение
Номер охранного документа: 0002587762
Дата охранного документа: 20.06.2016
20.06.2016
№216.015.48ae

Способ управления спуском космического аппарата при проведении наблюдений

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными...
Тип: Изобретение
Номер охранного документа: 0002587763
Дата охранного документа: 20.06.2016
20.08.2016
№216.015.4b3e

Приемник-преобразователь лазерного излучения

Приемник-преобразователь лазерного излучения включает приемную плоскость, выполненную в виде круговой панели. На внешней стороне панели установлены фотоэлектрические преобразователи на основе полупроводниковых фотоэлементов (ФЭ) с внутренним фотоэффектом для непосредственного преобразования...
Тип: Изобретение
Номер охранного документа: 0002594953
Дата охранного документа: 20.08.2016
+ добавить свой РИД