×
19.01.2018
218.016.00b2

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ ТЕКУЩЕГО СОСТОЯНИЯ ПАНЕЛИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

№ охранного документа
0002629647
Дата охранного документа
30.08.2017
Аннотация: Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает поворот панели СБ в положения, при которых рабочая поверхность СБ освещена Солнцем, измерение значений тока от СБ, сравнение определяемого параметра, характеризующего текущее состояние панели СБ, с задаваемыми значениями и контроль текущего состояния панели СБ по результатам сравнения. Дополнительно измеряют вектор направления на Солнце в связанной с КА системе координат, определяют угол выставки СБ в ее текущее дискретное положение, определяют текущие значения угла падения солнечного излучения на поверхность защитного покрытия СБ, выполняют поворот СБ в не менее чем два выбранных дискретных положения СБ, измеряют значение тока от СБ. Состояние панели СБ оценивают по состоянию ее оптического защитного покрытия, характеризуемому текущим значением его абсолютного показателя преломления, определяемым по значениям угла падения солнечного излучения на поверхность защитного покрытия СБ и значениям тока. Техническим результатом изобретения является обеспечение оценки текущего значения абсолютного показателя преломления защитного покрытия СБ. 1 ил.

Изобретение относится к области космической техники, а именно к системам электроснабжения (СЭС) космических аппаратов (КА) и может быть использовано при эксплуатации солнечных батарей (СБ) СЭС КА.

Одной из составляющей контроля текущего состояния СБ КА является контроль основных электрических характеристик СБ - выходного тока, напряжения и мощности СБ. На стадии проектирования и изготовления СБ осуществляется теоретический расчет выходных параметров СБ, который может быть основан на методе перемещений вольт-амперной характеристики, учитывающем различные влияния окружающей среды и параметров нагрузки на характеристики СБ (Система электроснабжения КА. Техническое описание. 300ГК.20Ю.0000-АТО. РКК «Энергия», 1998; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва. Энергоатомиздат.1983. Стр. 49, 54).

Недостаток указанного способа контроля текущего состояния СБ заключается в том, что используемые в расчетах модели факторов космического полета имеют ограниченную точность, что не позволяет получить достоверные данные о реальных характеристиках СБ в полете, учитывающих процесс «деградации» СБ.

Для контроля фактических характеристик СБ в полете используются измерения фактического выходного тока СБ под воздействием солнечного излучения, поступающего перпендикулярно рабочей поверхности СБ (Елисеев А.С. Техника космических полетов. Москва, «Машиностроение», 1983. стр. 190-194; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983. стр. 57; патент РФ №2353555 по заявке №2006131395/11, приоритет от 31.08.2006 - прототип), для чего разворачивают панели СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с направлением на Солнце и контроль текущего состояния панели СБ осуществляют по результатам сравнения измеренных значений тока с задаваемыми значениями - текущая эффективность СБ оценивается по отношению измеренных фактических выходных параметров СБ к их номинальным значениям - проектным или некоторым исходным значениям, например, на момент начала функционирования КА.

Выбор силы тока в качестве контролируемой выходной характеристики СБ вызван тем, что его сила является переменной величиной, напрямую зависит от состояния СБ в целом, а напряжение на СБ является достаточно стабильной величиной и определяется в основном физическими свойствами используемых для изготовления СБ фотоэлектрических преобразователей (ФЭП), при этом режим работы ФЭП еще на стадии проектирования СБ задается таким образом, чтобы генерируемая мощность (как произведение силы тока и напряжения) была максимально возможной.

Данный способ обеспечивает контроль суммарной эффективности панели СБ в ходе полета КА. Меньшие значения фактических выходных токов от СБ по отношению к заданным проектным или исходным значениям означают «деградацию» СБ.

Способ-прототип имеет существенный недостаток - он не позволяет осуществлять контроль за текущим состоянием оптического защитного покрытия панели СБ, характеризуемого, в частности, текущим значением его абсолютного показателя преломления.

Контроль текущих значений параметров оптического защитного покрытия панели СБ, с одной стороны, позволяет оценить степень его изменения в ходе полета, с другой стороны, более точное знание текущих значений параметров состояния СБ (в частности, абсолютного показателя преломления оптического защитного покрытия панели СБ) необходимо для более точного моделирования функционирования СЭС КА в полете, например, для прогнозирования генерации тока СБ (данная задача является одной из важнейших на всех этапах планирования полета КА).

Задачей, на решение которой направлено настоящее изобретение, является повышение эффективности контроля состояния СЭС КА.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в выполнении оценки текущего состояния оптического защитного покрытия фотопреобразователей панели СБ по определяемому текущему значению его абсолютного показателя преломления.

Технический результат достигается тем, что в способе контроля текущего состояния панели солнечной батареи космического аппарата, включающем поворот панели солнечной батареи в положения, при которых рабочая поверхность солнечной батареи освещена Солнцем, измерение значений тока от солнечной батареи, сравнение определяемого параметра, характеризующего текущее состояние панели солнечной батареи, с задаваемыми значениями и контроль текущего состояния панели солнечной батареи по результатам сравнения, дополнительно измеряют вектор направления на Солнце в связанной с космическим аппаратом системе координат и определяют угол выставки солнечной батареи в ее текущее дискретное положение, по которым определяют текущие значения угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи, выполняют поворот солнечной батареи в не менее чем два выбранных дискретных положения солнечной батареи, в каждом из выбранных дискретных положений солнечной батареи измеряют значение тока от солнечной батареи, и текущее состояние панели солнечной батареи оценивают по текущему состоянию ее оптического защитного покрытия, характеризуемому текущим значением его абсолютного показателя преломления, определяемым по значениям угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи и значениям тока от солнечной батареи, полученным при каждом из выбранных дискретных положений солнечной батареи, при этом упомянутые дискретные положения солнечной батареи выбирают так, что в данных дискретных положениях значения угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи отстоят от 0° и 90° не менее чем на задаваемые значения, определяемые требованиям к точности определения показателя преломления оптического защитного покрытия панели солнечной батареи как контролируемого параметра, и значение угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи в одном из дискретных положений солнечной батареи отличается от значения угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи в другом дискретном положении солнечной батареи не менее чем на задаваемое значение, определяемое требованием к точности определения показателя преломления оптического защитного покрытия солнечной батареи как контролируемого параметра.

Суть предлагаемого изобретения поясняется на представленном рисунке, на котором отображена схема освещения СБ солнечным светом с учетом и введены обозначения:

N - нормаль к рабочей поверхности СБ;

Si, i=1, 2 - вектора солнечного излучения в первом и втором дискретных положениях СБ соответственно;

A - внешняя (лицевая) поверхность (она же поверхность оптического защитного покрытия фотоэлектрических преобразователей) СБ;

αi, i=1, 2 - углы падения солнечного излучения на поверхность защитного покрытия фотоэлектрических преобразователей СБ в первом и втором дискретных положениях СБ соответственно;

B - внешняя (лицевая) поверхность фотоэлектрических преобразователей СБ;

Ci, i=1, 2 - вектора преломленного луча в первом и втором дискретных положениях СБ соответственно;

θi, i=1, 2 - углы преломления солнечного излучения оптическим защитным покрытием фотоэлектрических преобразователей панели СБ в первом и втором дискретных положениях СБ соответственно;

αMax, αMin - максимальное и минимальное значения угла падения солнечного излучения на поверхность защитного покрытия фотоэлектрических преобразователей панели СБ соответственно;

Δα - угол между векторами солнечного излучения в первом и втором дискретных положениях СБ.

Поясним предложенные в способе действия.

На многих КА, например на международной космической станции (МКС), система управления положением СБ предусматривает выставку СБ в заданные дискретные положения, фиксированные в связанной с КА системе координат, а поворот СБ между данными положениями выполняется с заданной угловой скоростью вращения СБ. При этом для выполнения различных полетных операций предусмотрены различные режимы управления ориентаций СБ, в том числе режим автоматического наведения (отслеживания) СБ на Солнце и режим выставки СБ в заданное положение (такие положения выбираются из перечня упомянутых заданных дискретных положений СБ, фиксированных в связанной с КА системе координат). При этом в режиме автоматического наведения (отслеживания) СБ на Солнце система управления автоматически выбирает момент начала поворота СБ для перевода СБ из текущего фиксированного положения СБ в последующее.

Таким образом, в произвольный текущий момент времени СБ находится или в одном из фиксированных положений (в этом случае оно является текущим дискретным фиксированным положением СБ) или в процессе перехода между двумя дискретными фиксированными положениями. При этом в режиме автоматического наведения (отслеживания) СБ на Солнце моменты нахождения панели СБ в одном из дискретных положений определяются по измерениям текущей ориентации КА и измерениям положения Солнца путем определения моментов начала и окончания поворотов СБ с учетом логики автоматического управления СБ в данном режиме.

В предложенном техническом решении для решения поставленной задачи измеряют вектор направления на Солнце в связанной с КА системе координат и определяют угол выставки СБ в ее текущее дискретное положение. По данным параметром определяют текущие значения угла падения солнечного излучения на поверхность защитного покрытия СБ.

Угол а падения солнечного излучения на поверхность защитного покрытия СБ определяют как угол между линиями нормали к рабочей поверхности СБ и вектора солнечного излучения.

Выполняют поворот СБ в не менее чем два выбранных дискретных положения СБ.

Данные дискретные положения СБ выбирают таким образом, что в данных положениях выполнены следующие условия:

- значения угла падения солнечного излучения на поверхность защитного покрытия СБ отстоят от 0° и 90° не менее чем на задаваемые значения, определяемые требованиям к точности определения показателя преломления оптического защитного покрытия панели СБ как контролируемого параметра;

- значение угла падения солнечного излучения на поверхность защитного покрытия СБ в одном дискретном положении СБ отличается от значения угла падения солнечного излучения на поверхность защитного покрытия СБ в другом дискретном положении СБ не менее чем на задаваемое значение, определяемое требованием к точности определения показателя преломления оптического защитного покрытия СБ как контролируемого параметра.

Перечисленные условия реализуется тем, что:

- значения угла падения солнечного излучения на поверхность защитного покрытия СБ отстоят от 0° не менее чем на задаваемое значение αMin определяемое требованиям к точности определения показателя преломления оптического защитного покрытия панели СБ как контролируемого параметра;

- значения угла падения солнечного излучения на поверхность защитного покрытия СБ отстоят от 90° не менее чем на задаваемое значение 90°-αMax, определяемое требованиям к точности определения показателя преломления оптического защитного покрытия панели СБ как контролируемого параметра;

- значение угла падения солнечного излучения на поверхность защитного покрытия СБ в одном дискретном положении СБ отличается от значения угла падения солнечного излучения на поверхность защитного покрытия СБ в другом дискретном положении СБ не менее чем на задаваемое значение Δα, определяемое требованием к точности определения показателя преломления оптического защитного покрытия СБ как контролируемого параметра.

В каждом из выбранных дискретных положений солнечной батареи измеряют значение тока от СБ.

Текущее состояние СБ оценивают по текущему состоянию ее оптического защитного покрытия, которое характеризуется текущим значением его абсолютного показателя преломления. При этом абсолютный показатель преломления определяется по значениям угла падения солнечного излучения на поверхность защитного покрытия СБ и значениям тока от СБ, полученным при вышеописанных дискретных положениях СБ.

Ниже приведем примеры соотношений для определения значения абсолютного показателя преломления защитного покрытия по получаемым значениям угла падения солнечного излучения на поверхность защитного покрытия СБ и значениям тока от СБ.

Влияние оптического защитного покрытия фотоэлектрических преобразователей (фотоэлементов) панели СБ на генерацию тока заключается в том, что оно преломляет и частично отражает солнечное излучение, поступающее на фотоэлементы панели СБ.

Рассмотрим свет, падающий на границу раздела двух сред: космического вакуума и защитного покрытия СБ (обозначаем k - абсолютный показатель преломления оптического защитного покрытия).

Часть света отражается от границы раздела сред, а часть света проходит через границу, испытывая преломление. Суммарная энергия отраженного и преломленного луча в точности равна энергии падающего луча, но соотношение интенсивностей этих лучей зависит от разницы показателей преломления сред, угла падения и поляризации падающего луча. Поляризация является параллельной, если вектор электрического поля E лежит в плоскости падающего луча и нормали к границе раздела сред, в противном случае поляризация является перпендикулярной.

Угол θ преломления солнечного излучения оптическим защитным покрытием фотоэлектрических преобразователей СБ определяют как угол между линиями нормали к рабочей поверхности СБ и вектора преломленного луча.

Согласно формуле Френеля угол падения луча α и угол преломления θ связаны уравнениями

Отражательная способность границы раздела сред для лучей с параллельной и перпендикулярной поляризацией и и пропускательная способность границы раздела сред для лучей с параллельной и перпендикулярной поляризацией и описывается выражениями (Бусурин В.И., Носов Ю.Р. Волоконно-оптические датчики: физические основы, вопросы расчета и применения, Энергоатомиздат, 1990; Сивухин Д.В. Общий курс физики. Оптика. Наука, 1980, Годжаев Н.М. Оптика, Высшая школа, 1977)

Для луча, падающего нормально к границе раздела, перпендикулярная и параллельная компоненты совпадают и определяются выражениями

Считаем, что СБ освещается естественным солнечным светом, который представляет собой суммарное электромагнитное излучение множества атомов, которые излучают световые волны независимо друг от друга. Поэтому световая волна, излучаемая Солнцем, характеризуется всевозможными равновероятными колебаниями светового вектора. В данном случае равномерное распределение векторов Е объясняется большим числом атомарных излучателей, а равенство амплитудных значений векторов E - одинаковой (в среднем) интенсивностью излучения каждого из атомов. Тогда средняя отражательная и пропускательная способность границы сред описываются выражениями

Ток IN от СБ под воздействием солнечного излучения N перпендикулярно ее рабочей поверхности и текущий ток I от СБ под воздействием солнечного излучения, поступающего в общем случае под произвольным углом к ее рабочей поверхности, с учетом угла падения Солнечного излучения на рабочую поверхность СБ (см. Грилихес В.А., Орлов П.П., Попов Л.Б. Солнечная энергия и космические полеты. Москва. Наука, 1984, стр. 109; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 57) и с учетом вышеописанной пропускательной способности оптического защитного покрытия фотоэлектрических преобразователей СБ связаны соотношениями

Соотношения (6) эквивалентны, поскольку T=1-R.

Подставляя (3)÷(5) в (6) получим соотношения для определения R, Т и IN:

Соотношения (7) и (8) эквиваленты.

Используя соотношения (7) и (8) для каждого i-го дискретного положения СБ можно записать:

где αi - угол падения солнечного излучения на поверхность защитного покрытия фотоэлектрических преобразователей СБ в i-м дискретном положении СБ;

θi - угол преломления солнечного излучения оптическим защитным покрытием фотоэлектрических преобразователей панели СБ в i-м дискретном положении СБ,

;

Ii - значение тока от СБ в i-м дискретном положении СБ.

- расчетное значение тока от СБ, соответствующее воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, получаемое по формулам (7), (8) в i-м дискретном положении СБ.

В случае двух дискретных положений СБ приравниваем правые части (9) или (10), получаемые для разных дискретных положений СБ, и формулируем соотношения для определения k:

или

Решение уравнений (11), (12) относительно k выполняем методом последовательных приближений, при этом за начальное значение k можно принять номинальное (проектное) значение абсолютного показателя преломления оптического защитного покрытия СБ.

В общем случае - при выполнении описанных операций в более чем двух дискретных положениях СБ - определение k осуществляем путем определения искомого значения k и определяемой константы , доставляющих минимум функционалу, составленному из разностей левых и правых частей (9) или (10):

минимизируем

где Определяемая константа является средним значением тока от СБ, соответствующим воздействию солнечного излучения перпендикулярно рабочей поверхности СБ, получаемым по результатам измерений, выполненных во всех дискретных положениях СБ.

Выбор дискретных положений СБ для выполнения описанных измерений осуществляется вышеописанным образом, при этом выбор значений задаваемых параметров , и осуществляется исходя из требования к точности определения показателя преломления оптического защитного покрытия панели СБ как контролируемого параметра. Данные ограничения определяются тем, что при значениях α=0°, α=90° и в случае Δα=0° (что соответствует равенству углов α12) уравнения (11), (12), (13) вырождаются и определить текущие значения показателя преломления оптического защитного покрытия панели СБ по предлагаемой методике не представляется возможным.

Опишем технический эффект предлагаемого изобретения.

При эксплуатации в открытом космосе СБ подвергаются воздействию факторов открытого космического пространства - ударам частиц, движущихся в открытом космосе, и воздействию всевозможных типов излучения. Одним из результатов такого воздействия является изменение состояния оптического защитного покрытия панели СБ. При этом основным параметром, характеризующим текущее состояние оптического защитного покрытия, является текущее значение его абсолютного показателя преломления.

Предлагаемое техническое решение позволяет обеспечить выполнение оперативной оценки состояния оптического защитного покрытия фотоэлектрических преобразователей панели СБ по определяемому текущему значению его абсолютного показателя преломления.

Предлагаемый способ, с одной стороны, позволяет оперативно оценивать степень изменения абсолютного показателя преломления оптического защитного покрытия панели СБ в ходе полета КА, с другой стороны, знание текущих значений параметров состояния СБ (в том числе абсолютного показателя преломления оптического защитного покрытия панели СБ) необходимо для более точного моделирования функционирования СЭС КА в полете, например, для прогнозирования генерации тока СБ при решении различных задач управления полета КА.

Таким образом, получаемый технический эффект повышает эффективность контроля состояния СЭС КА.

Данный технический результат достигается путем измерения вектора направления на Солнце в связанной с КА системе координат, определения углов выставки СБ в текущие дискретные положения, определения текущих значений угла падения солнечного излучения на поверхность защитного покрытия СБ, выполнения поворота СБ в не менее чем два выбранных дискретных положения СБ, измерения значений тока от СБ в выбранных дискретных положениях СБ, применения предложенных условий и ограничений, предъявляемых к упомянутым дискретным положениям СБ, выполнения оценки текущего состояния панели СБ по текущему состоянию ее оптического защитного покрытия, характеризуемому текущим значением его абсолютного показателя преломления, и определения текущего значения абсолютного показателя преломления оптического защитного покрытия СБ по значениям угла падения солнечного излучения на поверхность защитного покрытия и значениям тока от СБ, полученным в выбранных дискретных положениях СБ, по предлагаемым соотношениям.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.

Способ контроля текущего состояния панели солнечной батареи космического аппарата, включающий поворот панели солнечной батареи в положения, при которых рабочая поверхность солнечной батареи освещена Солнцем, измерение значений тока от солнечной батареи, сравнение определяемого параметра, характеризующего текущее состояние панели солнечной батареи, с задаваемыми значениями и контроль текущего состояния панели солнечной батареи по результатам сравнения, отличающийся тем, что дополнительно измеряют вектор направления на Солнце в связанной с космическим аппаратом системе координат и определяют угол выставки солнечной батареи в ее текущее дискретное положение, по которым определяют текущие значения угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи, выполняют поворот солнечной батареи в не менее чем два выбранных дискретных положения солнечной батареи, в каждом из выбранных дискретных положений солнечной батареи измеряют значение тока от солнечной батареи и текущее состояние панели солнечной батареи оценивают по текущему состоянию ее оптического защитного покрытия, характеризуемому текущим значением его абсолютного показателя преломления, определяемым по значениям угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи и значениям тока от солнечной батареи, полученным при каждом из выбранных дискретных положений солнечной батареи, при этом упомянутые дискретные положения солнечной батареи выбирают так, что в данных дискретных положениях значения угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи отстоят от 0° и 90° не менее чем на задаваемые значения, определяемые требованиям к точности определения показателя преломления оптического защитного покрытия панели солнечной батареи как контролируемого параметра, и значение угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи в одном из дискретных положений солнечной батареи отличается от значения угла падения солнечного излучения на поверхность защитного покрытия солнечной батареи в другом дискретном положении солнечной батареи не менее чем на задаваемое значение, определяемое требованием к точности определения показателя преломления оптического защитного покрытия солнечной батареи как контролируемого параметра.
СПОСОБ КОНТРОЛЯ ТЕКУЩЕГО СОСТОЯНИЯ ПАНЕЛИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ ТЕКУЩЕГО СОСТОЯНИЯ ПАНЕЛИ СОЛНЕЧНОЙ БАТАРЕИ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 171-180 из 379.
10.11.2015
№216.013.8e49

Способ электролиза воды под давлением в электролизной системе

Изобретение относится к способу электролиза воды под давлением в электролизной системе, входящей в состав накопителей электроэнергии, работающих с замкнутым по воде рабочим циклом. Способ включает подачу постоянного напряжения от источника питания и воды, частичное разложение воды током в...
Тип: Изобретение
Номер охранного документа: 0002568034
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ebf

Способ определения скорости движения фронтальной части ледника с космического аппарата

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для определения скорости движения фронтальной части ледника. Сущность: определяют неподвижные характерные точки на склонах ледника. Осуществляют с космического аппарата съемку...
Тип: Изобретение
Номер охранного документа: 0002568152
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8f12

Способ управления движением космического объекта после отделения от другого космического объекта

Изобретение относится к управлению движением космического объекта (КО), например пилотируемого КО, после его отделения от другого КО, например ракеты-носителя (РН). Разворот КО в требуемую ориентацию начинают в момент Δt, отсчитываемый от момента его отделения от другого КО (далее - РН)....
Тип: Изобретение
Номер охранного документа: 0002568235
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8f53

Коммутатор напряжения с защитой от перегрузки по току

Использование: в области электротехники. Технический результат - повышение точности коммутации в условиях изменения температуры при снижении массы и габаритов коммутатора. Коммутатор напряжения с защитой от перегрузки по току содержит элемент И, последовательно соединенные электронный...
Тип: Изобретение
Номер охранного документа: 0002568307
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f6f

Способ измерения дальности до объектов по их изображениям преимущественно в космосе

Изобретение относится к способам измерения дальности и линейных размеров объектов по их изображениям. Согласно способу измеряют размеры и координаты центра изображения объекта до и после перемещения средства наблюдения под углом к оптической оси. Определение дальности производят в зависимости...
Тип: Изобретение
Номер охранного документа: 0002568335
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f86

Центробежное рабочее колесо

Изобретение может быть использовано в малорасходных насосах изделий ракетно-космической техники. Центробежное рабочее колесо содержит выполненный заодно со ступицей (1) ведущий диск (2) с лопатками (3) и покрывной диск (4) с центральным входным отверстием (5). Диск (4) контактирует с торцовыми...
Тип: Изобретение
Номер охранного документа: 0002568358
Дата охранного документа: 20.11.2015
20.01.2016
№216.013.a3cd

Способ эксплуатации электролизной системы, работающей при высоком давлении

Изобретение относится к «водородной» энергетике и может быть использовано на станциях заправки перспективного автотранспорта на топливных элементах. Способ эксплуатации электролизной системы, работающей при высоком давлении, включает процесс разложения воды электрическим током с раздельным...
Тип: Изобретение
Номер охранного документа: 0002573575
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bdc2

Многослойная трансформируемая герметичная оболочка

Изобретение относится к трансформируемым космическим структурам. Многослойная трансформируемая герметичная оболочка (МТГО) включает ЭВТИ с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями, армирующий слой,...
Тип: Изобретение
Номер охранного документа: 0002573684
Дата охранного документа: 27.01.2016
20.06.2016
№217.015.042a

Устройство для определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а именно к измерению электрических параметров двухполюсников. Устройство содержит первый блок задания схемы замещения, преобразователь ток-напряжение, масштабный усилитель, аналогово-цифровой преобразователь, блок управления измерением,...
Тип: Изобретение
Номер охранного документа: 0002587647
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.0500

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает измерение острого угла между направлением на Солнце и плоскостью орбиты КА. При достижении этим углом максимального значения выставляют строительную ось КА, отвечающую максимальному...
Тип: Изобретение
Номер охранного документа: 0002587663
Дата охранного документа: 20.06.2016
Показаны записи 171-180 из 353.
20.10.2015
№216.013.84d4

Коммутатор цепи питания (варианты)

Изобретение относится к области автоматики и может быть использовано в устройствах коммутации нагрузки с импульсным потреблением тока от источника постоянного напряжения. Технический результат - увеличение надежности аппаратуры управления, ресурса его работы, снижение уровня помех по цепям...
Тип: Изобретение
Номер охранного документа: 0002565607
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.84fb

Ионный двигатель

Изобретение относится к области электроракетных двигателей. В крупногабаритном ионном двигателе, содержащем заключенную в корпус газоразрядную камеру, включающую узел подачи рабочего тела, ионно-оптическую систему, состоящую из плазменного и ускоряющего электродов, закрепленных на наружной...
Тип: Изобретение
Номер охранного документа: 0002565646
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87cf

Космический приемник-преобразователь лазерного излучения

Изобретение относится к области создания приемников-преобразователей на основе полупроводниковых фотоэлектрических преобразователей для преобразования электромагнитной энергии лазерного излучения высокой плотности. Заявлена конструкция космического приемника-преобразователя лазерного излучения...
Тип: Изобретение
Номер охранного документа: 0002566370
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87d8

Способ определения величины атмосферной рефракции в условиях космического полета

Заявляемое изобретение относится к навигационной технике, а именно к способу навигации космического аппарата (КА). Способ основан на измерении отклонения истинного и измеренного положения звезды, наблюдаемой сквозь земную атмосферу. Отклонение связано с атмосферной рефракцией. Для этого с...
Тип: Изобретение
Номер охранного документа: 0002566379
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8e25

Способ зондирования верхней атмосферы

Изобретение относится к космической технике и может быть использовано для зондирования верхней атмосферы. Способ зондирования верхней атмосферы основан на измерении и прогнозировании орбиты космического аппарата (КА) и измерении физических параметров атмосферы. Прогнозируется время...
Тип: Изобретение
Номер охранного документа: 0002567998
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e49

Способ электролиза воды под давлением в электролизной системе

Изобретение относится к способу электролиза воды под давлением в электролизной системе, входящей в состав накопителей электроэнергии, работающих с замкнутым по воде рабочим циклом. Способ включает подачу постоянного напряжения от источника питания и воды, частичное разложение воды током в...
Тип: Изобретение
Номер охранного документа: 0002568034
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ebf

Способ определения скорости движения фронтальной части ледника с космического аппарата

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для определения скорости движения фронтальной части ледника. Сущность: определяют неподвижные характерные точки на склонах ледника. Осуществляют с космического аппарата съемку...
Тип: Изобретение
Номер охранного документа: 0002568152
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8f12

Способ управления движением космического объекта после отделения от другого космического объекта

Изобретение относится к управлению движением космического объекта (КО), например пилотируемого КО, после его отделения от другого КО, например ракеты-носителя (РН). Разворот КО в требуемую ориентацию начинают в момент Δt, отсчитываемый от момента его отделения от другого КО (далее - РН)....
Тип: Изобретение
Номер охранного документа: 0002568235
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8f53

Коммутатор напряжения с защитой от перегрузки по току

Использование: в области электротехники. Технический результат - повышение точности коммутации в условиях изменения температуры при снижении массы и габаритов коммутатора. Коммутатор напряжения с защитой от перегрузки по току содержит элемент И, последовательно соединенные электронный...
Тип: Изобретение
Номер охранного документа: 0002568307
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f6f

Способ измерения дальности до объектов по их изображениям преимущественно в космосе

Изобретение относится к способам измерения дальности и линейных размеров объектов по их изображениям. Согласно способу измеряют размеры и координаты центра изображения объекта до и после перемещения средства наблюдения под углом к оптической оси. Определение дальности производят в зависимости...
Тип: Изобретение
Номер охранного документа: 0002568335
Дата охранного документа: 20.11.2015
+ добавить свой РИД