×
29.12.2017
217.015.feb5

Результат интеллектуальной деятельности: ПРОМЫВОЧНЫЙ РАСТВОР ДЛЯ АБСОРБЦИИ ДИОКСИДА УГЛЕРОДА И СПОСОБ УСКОРЕНИЯ АБСОРБЦИИ ПОСРЕДСТВОМ ДИОКСИДА ГЕРМАНИЯ

Вид РИД

Изобретение

№ охранного документа
0002638663
Дата охранного документа
15.12.2017
Аннотация: Изобретение относится к промывочному раствору для абсорбции диоксида углерода. Раствор содержит абсорбент диоксида углерода на основе солей аминокислоты и добавку, активирующую скорость абсорбции, которая представляет собой диоксид германия. Также изобретение относится к способу ускорения абсорбции диоксида углерода, в котором содержащий диоксид углерода газ приводят в контакт с указанным промывочным раствором. Диоксид углерода физически растворяют в промывочном растворе и химически абсорбируют абсорбентом. При этом диоксид германия оказывает каталитическое действие по меньшей мере на одной стадии реакции химической абсорбции диоксида углерода. Технический результат заключается в создании экологически чистого промывочного раствора с высокой степенью абсорбции и низким потреблением энергии при регенерации. 2 н. и 6 з.п. ф-лы, 6 ил., 1 пр.

На энергетической установке на ископаемом топливе, служащей для генерации электрической энергии, при сжигании этого топлива образуется дымовой газ, содержащий, в частности, диоксид углерода. В целях снижения выбросов диоксида углерода (СО2) известно применение в качестве вторичной меры удаления диоксида углерода из дымового газа с помощью промывочного раствора. В частности, используется способ абсорбции-десорбции. В промышленном масштабе дымовой газ приводят в контакт внутри абсорбера с промывочным раствором, содержащим абсорбент, при этом диоксид углерода вымывается из дымового газа в промывочный раствор (процесс поглощения СО2). Сначала диоксид углерода физически растворяют в промывочном растворе, а затем химически абсорбируют абсорбентом. После этого насыщенный диоксидом углерода промывочный раствор поступает в десорбер, где при повышении температуры диоксид углерода десорбируют и направляют, например, в соответствующее хранилище. При этом абсорбент регенерируют, и он снова может быть подан в абсорбер для последующей абсорбции.

Распространенные абсорбенты основаны, в частности, на первичных, вторичных или третичных аминах или их смесях и показали хорошую избирательность и высокую емкость при абсорбции диоксида углерода. В химической промышленности используют главным образом первичный амин МЕА (моноэтаноламин), обладающий быстрой кинетикой абсорбции. Однако первичные амины в процессе абсорбции-десорбции характеризуются низким энергетическим кпд, так как при этом необходимы относительно большие затраты энергии на регенерацию. Поскольку энергетический кпд в химической промышленности не является первоочередной задачей, то до настоящего времени энергетическими недостатками пренебрегали. Напротив, на электростанциях, вырабатывающих электроэнергию, именно расход энергии при процессе поглощения СО2 имеет большое значение, поскольку ввиду своей величины он оказывает существенное влияние на общий кпд электростанции.

Поэтому для устранения такого энергетического недостатка при обработке дымового газа на электростанции в качестве абсорбентов используют стерически затрудненные амины (при образовании бикарбонатов), вторичные и третичные амины, соли аминокислот и/или растворы поташа. Эти абсорбенты характеризуются заметно меньшей энергией при регенерации, что проявляется в меньшем падении кпд электростанции. Кроме того, вторичные и третичные амины обладают по сравнению с первичными аминами большей способностью насыщения диоксидом углерода.

Преимуществом же первичных аминосоединений является заметно более быстрая кинетика абсорбции. В результате этого по сравнению с вторичными аминами или солями аминокислот колонны или реакторы абсорбера, в которых проходит абсорбция диоксида углерода, могут выполняться меньших размеров, что обеспечивает снижение капитальных затрат. Стерически затрудненные, вторичные или третичные амины или соли аминокислот обладают более медленной кинетикой реакции, поскольку они образуют нестабильные карбаматные продукты или даже вовсе не образуют их.

Преимущество солей аминокислот против гетероциклических аминов или алканоламинов состоит в том, что они не обдают заметным давлением пара и, следовательно, не могут испаряться и отводиться в процессе выделения в окружающую среду. Гетероциклические амины и алканоламины летучи и выбрасываются в окружающую среду вместе с очищенным дымовым газом, что ведет к нежелательному загрязнению окружающей среды.

Задачей изобретения является создание по возможности экологически чистого промывочного раствора для абсорбции диоксида углерода, характеризующегося высокой скоростью абсорбции и одновременно с этим низким потреблением энергии при регенерации. Другая задача изобретения состоит в создании способа ускорения абсорбции диоксида углерода, в котором содержащий диоксид углерода газ приводят в контакт с промывочным раствором, содержащим абсорбент, при абсорбции диоксида углерода.

Задача изобретения, касающегося промывочного раствора, решается посредством промывочного раствора, содержащего абсорбент на основе аминов, или этаноламинов, или солей аминокислот, или поташа, или их комбинации и активирующую добавку, которая представляет собой диоксид германия.

При этом в основе изобретения на первом этапе лежит идея о том, что химическая абсорбция диоксида углерода происходит уже в граничном слое между промывочным раствором и газом, в котором сначала физически растворяется диоксид углерода. При этом реакция, сопровождающаяся абсорбцией диоксида углерода, влияет на профиль концентрации в граничном слое. В соответствии с этим, в частности, скорость реакции при химической абсорбции влияет в целом на кинетику абсорбции, в т.ч. и на стадию физического растворения, которая предшествует собственно абсорбции. Увеличение скорости реакции, следовательно, ведет к увеличению скорости улавливания диоксида углерода из очищаемого газа.

Добавка активатора или катализатора гидратации в относительно медленно реагирующий абсорбент, например в упомянутые вторичные или третичные амины, соли аминокислот или поташ, ускорила бы абсорбцию газообразного диоксида углерода промывочным раствором, при этом одновременно сохранились бы энергетические преимущества в отношении регенерации.

В результате собственных исследований стали известными в качестве таких активаторов, например, оксиды металлов с переходными металлами, как, например, ванадий, молибден, вольфрам или титан, или с полуметаллами, как, например, мышьяк или селен. Также в качестве таких активаторов могут использоваться кислоты мышьяка, селена, брома или фосфора. Такие активаторы или катализаторы хотя и ускоряют реакцию абсорбции с растворенным диоксидом углерода, однако из-за того, что они в некоторых случаях являются токсичными добавками, они не используются в составе промывочного раствора на электростанциях.

На втором этапе изобретения было установлено, что реакция абсорбции абсорбента с диоксидом углерода также ускоряется при добавке диоксида германия, причем диоксид германия обладает большим преимуществом, заключающимся в том, что он не является токсичным соединением. В результате использования диоксида германия при щелочной промывке дымового газа с целью абсорбции диоксида углерода становится возможным использование вместе с нетоксичной добавкой медленно действующих в отношении кинетики абсорбции абсорбентов, таких как вторичные или третичные амины, соли аминокислот или поташ, и одновременно использование их энергетического преимущества, заключающегося в низкой энергии регенерации. Благодаря добавке диоксида германия ускоряется реакция абсорбции, в результате чего в целом повышается скорость поглощения диоксида углерода из очищаемого отходящего газа.

Благодаря достигнутому общему повышению скорости поглощения диоксида углерода абсорбционная колонна может быть выполнена с меньшими размерами, за счет чего могут быть уменьшены капитальные затраты на установку для поглощения СО2.

В основе изобретения лежит при этом, в частности, идея о том, что уже незначительного количества неорганического активатора достаточно для существенного ускорения абсорбции диоксида углерода.

Ввиду того, что активатор «диоксид германия» добавляют лишь в очень малом количестве, то в этом случае не происходит увеличения требования энергии на регенерацию. Более того, она может даже дополнительно снизиться после введения активирующей добавки, поскольку достигается соответственно более высокое насыщение в абсорбере и увеличивается действующая сила вследствие увеличения разницы парциального давления в десорбере. Следовательно, возможны как сокращение размеров абсорбера, так и снижение необходимой энергии регенерации.

Как оказалось, оптимальным является содержание диоксида германия в промывочном растворе от 0,01 до 10 вес. %. Однако количество диоксида германия необходимо поддерживать по возможности низким для исключения возможных неблагоприятных воздействий неорганического катализатора на промывочный раствор. Поэтому особо оптимальным оказалось содержание диоксида германия от 0,05 до 2 вес. %. В принципе, при этом следует иметь в виду, что неорганические катализаторы не участвуют в абсорбции диоксида углерода. Они катализируют, в частности, реакцию «карбамат - вода» (гидратацию), образуя при этом бикарбонат. Долю катализатора в промывочном растворе необходимо поэтому выбирать так, чтобы в промывочном растворе достигалось по возможности оптимальное соотношение между содержанием диоксида германия и абсорбента.

В качестве абсорбента пригодны, в частности, стерически затрудненные, вторичные или третичные амины и соли аминокислот или их смесь. В результате максимально используется их энергетическое преимущество регенерации вместе с ускоренной кинетикой абсорбции (за счет добавки диоксида германия). Снижение кпд электростанции вследствие подключения установки для выделения диоксида углерода сводится к минимуму.

Предпочтительно промывочный раствор является водным.

Для солей аминокислот пригодны аминокислоты, происходящие, в частности, от саркозина, N,N-диметилаланина, таурина, альфа-аланина, бета-аланина, N-метилаланина, пролина, гомотаурина или глицина.

Задача, касающаяся способа, решается согласно изобретению посредством способа ускорения абсорбции диоксида углерода, в котором содержащий диоксид углерода газ приводят в контакт с промывочным раствором, содержащим абсорбент на основе аминов, или этаноламинов, или солей аминокислот, или поташа, или их комбинации и диоксид германия, для абсорбции диоксида углерода, при этом диоксид углерода физически растворяется в промывочном растворе и химически абсорбируется абсорбентом, причем диоксид германия оказывает каталитическое действие по меньшей мере на одной стадии реакции химической абсорбции диоксида углерода.

Предпочтительно содержание диоксида германия в промывочном растворе задается от 0,01 до 10 вес. %. Особо предпочтительное содержание диоксида германия составляет от 0,05 до 2 вес. %.

В качестве абсорбентов предпочтительно используют стерически затрудненные, вторичные или третичные амины и/или соли аминокислот.

Согласно предпочтительной альтернативе в качестве содержащего диоксид углерода газа обрабатывается дымовой газ паротурбинной электростанции на ископаемом топливе, газотурбинной установки или комбинированной парогазотурбинной установки.

Ниже примеры осуществления изобретения подробнее поясняются с помощью чертежей, на которых изображено:

фиг. 1 - диаграмма сравнения разных промывочных растворов;

фиг. 2 - диаграмма с двумя кривыми результатов измерения падения давления диоксида углерода при использовании разных промывочных растворов;

фиг. 3 - график реакции СО2 с солью вторичной аминокислоты;

фиг. 4 - график реакции СО2 с солью вторичной аминокислоты при катализе посредством диоксида германия;

фиг. 5 - химическая структура поташа как пример абсорбента;

фиг. 6 - химическая структура соли аминокислоты как пример абсорбента.

На представленной на фиг. 1 диаграмме можно видеть удельную энергию в кДж на кг удаленного СО2, необходимую для удаления диоксида углерода из дымового газа энергетической установки. Ось не масштабирована, потому что необходимая энергия, по существу, зависит также от других параметров процесса, таких как давление, температура, объем перекачивания, массовый поток дымового газа и пр., на которых здесь нет необходимости останавливаться более подробно.

Полосы означают разные промывочные растворы 13 и 14. Левая полоса означает промывочную жидкость 13 с солью вторичной аминокислоты в качестве абсорбента. Правая полоса означает промывочный раствор 14, содержащий соль вторичной аминокислоты и некоторое количество диоксида германия в качестве активирующей добавки. В промывочном растворе 14 соотношение между солью вторичной аминокислоты и диоксидом германия составляет в данном примере, в вес. %: 99,5:0,5. Также представлена удельная мощность, необходимая для выделения СО2 из дымового газа. При этом предполагается, что кроме используемого промывочного раствора никакой параметр процесса не изменяется.

Здесь можно видеть, что промывочный раствор 14 по сравнению с промывочным раствором 13 требует значительно меньшей удельной энергии. Это означает, что при одинаковом размере колонны промывочный раствор 14, активированный диоксидом германия, требует существенно меньшую удельную энергию.

На фиг. 2 показано падение давления в замкнутой ячейке перемешивания при температуре 45°С в зависимости от времени и исследуемого промывочного раствора после добавки диоксида углерода при 2,5 бара. Верхняя кривая а) соответствует использованному водному промывочному раствору с содержанием 30 вес. % соли аминокислоты. Нижняя кривая b) соответствует характеристике после дополнительного введения в тот же промывочный раствор диоксида германия в количестве 0,3 вес. %.

Отчетливо можно видеть более быстрое поглощение газообразного диоксида углерода в случае использования диоксида германия. Следовательно, при одинаковой способности к поглощению абсорберы абсорбционной установки для диоксида углерода могут быть выполнены меньших размеров в том случае, когда в промывочный раствор добавлен диоксид германия в качестве активирующей добавки.

На фиг. 3 показан график реакции с переходом СО2 из газовой фазы 10 в граничный слой 21 жидкой фазы 11. Переход из газовой фазы 10 в граничный слой 21 происходит через граничную поверхность 24. В граничном слое 21 СО2 реагирует с солью 4 вторичной аминокислоты в качестве абсорбента 18 в виде быстротекущей реакции 9 с образованием продуктов реакции: карбамат 5 и протонированная соль 12 аминокислоты.

Последующая реакция, при которой продукт реакции дополнительно реагирует с водой с образованием бикарбоната и других продуктов реакции, является медленной реакцией 8, так как она протекает уже в жидкой массе 20 промывочного раствора 19, где она стерически затруднена, и протекает заметно медленнее, чем при образовании карбамата в граничном слое 21.

Как и на фиг. 3, на фиг. 4 показан график реакции, при этом в промывочном растворе 19 наряду с солью 7 вторичной аминокислоты в качестве абсорбента 18 содержится диоксид германия 17 в качестве активирующей добавки 6. Показаны газовая фаза 10 и жидкая фаза 11. Жидкая фаза 11 разделена при этом на граничный слой 21, примыкающий к газовой фазе 10, и жидкую массу 20, примыкающую к граничному слою 21.

Диоксид германия способствует тому, что образование бикарбоната происходит в виде быстротекущей реакции 9. При этом бикарбонат образуется в граничном слое 21 жидкой фазы 11, а не в жидкой массе 20, почему образование бикарбоната протекает быстро. При более быстром образовании бикарбоната СО2 быстрее поступает из газовой фазы 10 в жидкую фазу 11.

Если обратиться к изобретению, то требуется лишь незначительная добавка диоксида германия для достижения существенного ускорения процесса поглощения СО2. Предпочтительным оказалось содержание менее 10 вес. %.

На фиг. 5 показан пример, касающийся абсорбента 18. Приведена химическая структурная формула для карбоната калия, в разговорной речи поташа, 16.

На фиг. 6 дополнительно приведен пример, касающийся абсорбента 18. Показана химическая структурная формула общего вида для соли 7 аминокислоты, при этом означают: О - кислород, N - азот, М - щелочные или щелочно-земельные металлы и R - радикал-заместитель. Радикалы-заместители R1, R2 и R3 могут здесь означать водород Н, алкильный радикал, арильный радикал, алкиларильный радикал, гетероарильный радикал, галоген, CN или R-COO-.

Соли 7 аминокислоты особо оптимальны, в частности, в качестве абсорбентов, так как они не обладают заметным давлением пара и, следовательно, во время процесса поглощения СО2 при абсорбции не могут выбрасываться вместе с дымовым газом в атмосферу.


ПРОМЫВОЧНЫЙ РАСТВОР ДЛЯ АБСОРБЦИИ ДИОКСИДА УГЛЕРОДА И СПОСОБ УСКОРЕНИЯ АБСОРБЦИИ ПОСРЕДСТВОМ ДИОКСИДА ГЕРМАНИЯ
ПРОМЫВОЧНЫЙ РАСТВОР ДЛЯ АБСОРБЦИИ ДИОКСИДА УГЛЕРОДА И СПОСОБ УСКОРЕНИЯ АБСОРБЦИИ ПОСРЕДСТВОМ ДИОКСИДА ГЕРМАНИЯ
ПРОМЫВОЧНЫЙ РАСТВОР ДЛЯ АБСОРБЦИИ ДИОКСИДА УГЛЕРОДА И СПОСОБ УСКОРЕНИЯ АБСОРБЦИИ ПОСРЕДСТВОМ ДИОКСИДА ГЕРМАНИЯ
ПРОМЫВОЧНЫЙ РАСТВОР ДЛЯ АБСОРБЦИИ ДИОКСИДА УГЛЕРОДА И СПОСОБ УСКОРЕНИЯ АБСОРБЦИИ ПОСРЕДСТВОМ ДИОКСИДА ГЕРМАНИЯ
Источник поступления информации: Роспатент

Показаны записи 121-130 из 1 427.
20.12.2013
№216.012.8ca2

Рельсовое транспортное средство с переключением между зимним и летним режимом

Изобретение относится к рельсовому транспортному средству (1), содержащему охлаждающую систему для расположенных в зоне (2) под полом компонентов, таких как блок электроснабжения, выпрямитель переменного тока, трансформатор или тяговый электродвигатель (4), которые охлаждаются либо...
Тип: Изобретение
Номер охранного документа: 0002501685
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8ca6

Рельсовое транспортное средство с контролированием уровня заполнения бака для сточных вод

Изобретение относится к рельсовому транспорту. Рельсовое транспортное средство содержит санитарную систему, которая имеет бак (1) для сточных вод и бак (2) для свежей воды, которые снабжены каждый соответствующими датчиками уровня заполнения. Предусмотрено управляющее устройство (4) для...
Тип: Изобретение
Номер охранного документа: 0002501689
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8df1

Завихритель для смешивания топлива и воздуха

Завихритель для смешивания топлива и воздуха, содержащий множество лопаток, расположенных на делительной окружности, которые, вместе с первой стенкой, расположенной на первой продольной торцевой поверхности лопаток, и второй стенкой, расположенной на противоположной второй продольной торцевой...
Тип: Изобретение
Номер охранного документа: 0002502020
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e90

Электрическая машина с двойным осевым вентилятором

Изобретение относится к области электротехники, в частности к электрическим машинам, и касается особенностей конструктивного выполнения их системы охлаждения. Технический результат, достигаемый при использовании настоящего изобретения, состоит в повышении эффективности охлаждения электрических...
Тип: Изобретение
Номер охранного документа: 0002502179
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.9145

Поршневая машина с магнитной опорой поршня

Изобретение относится к поршневой машине. Она содержит поршень (3) и корпус (2). Поршень (3) установлен с магнитной опорой подвижно в корпусе (2). Устройство (7) для магнитной опоры поршня (3) расположено неподвижно относительно корпуса (2). Линейный двигатель (15) в соединении с магнитной...
Тип: Изобретение
Номер охранного документа: 0002502882
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9232

Колейное транспортное средство, в частности рельсовое транспортное средство, с фильтром паразитного тока

Изобретение относится к колейному транспортному средству (F), в частности рельсовому транспортному средству, содержащему простой относительно своей конструкции и одновременно особенно эффективный фильтр паразитного тока. Для этого фильтр паразитного тока имеет опирающийся через опорный изолятор...
Тип: Изобретение
Номер охранного документа: 0002503119
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.93b0

Устройство, оборудованная им флотационная машина и способ ее эксплуатации

Изобретение относится к устройству для диспергирования суспензии, а также к флотационной машине с таким устройством и к способу эксплуатации устройства и флотационной машины. Устройство для диспергирования суспензии (2), по меньшей мере, одним газом (7, 7a, 7b), в частности для флотационной...
Тип: Изобретение
Номер охранного документа: 0002503502
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.93ef

Способ, система и устройство для предотвращения столкновений

Группа изобретений относится к технологии для предотвращения столкновения поездов. Способ предотвращения столкновений поездов содержит этапы, на которых передают информацию на поезда о стрелочном переводе, следующем по ходу движения каждого поезда; генерируют список путей, пересекаемых...
Тип: Изобретение
Номер охранного документа: 0002503565
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.948f

Способ динамического регулирования по меньшей мере одного блока, содержащего по меньшей мере одну горелку, а также устройство для выполнения способа

Изобретение относится к области металлургии, в частности к способу и устройству динамического регулирования процесса плавления в электродуговой печи. Способ включает измерение по меньшей мере одной первой температуры по меньшей мере одной горелки, при этом указанная температура основывается на...
Тип: Изобретение
Номер охранного документа: 0002503725
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.95dc

Высоковольтное соединение и электрическое рельсовое транспортное средство с высоковольтным соединением

Изобретение относится к высоковольтному соединению между двумя подвижными относительно друг друга опорными изоляторами. Высоковольтное соединение имеет окруженную изолирующим телом (15) токопроводную штангу (9), которая установлена на одном своем конце (10) на одном опорном изоляторе (11) с...
Тип: Изобретение
Номер охранного документа: 0002504058
Дата охранного документа: 10.01.2014
Показаны записи 121-130 из 943.
20.11.2013
№216.012.839f

Способ определения меры излучения для теплового излучения, электродуговая печь, устройство для обработки сигналов, а также программный код и носитель информации для выполнения способа

Изобретение относится к электродуговой печи, устройству для обработки сигналов и носителю информации для выполнения способа определения меры излучения для исходящего от горящей между электродом и расплавляемым материалом электрической дуги, попадающего на ограничение электродуговой печи...
Тип: Изобретение
Номер охранного документа: 0002499371
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.84ad

Способ и устройство для утилизации энергии из рулона горячей полосы

Изобретение относится к металлургии. Металлический рулон (В) горячей полосы, имеющий температуру более 200°С, перемещают внутри корпуса (4) устройства (2) утилизации энергии в первом направлении поступательного движения и обтекают газообразной средой (G). Обтекание рулона (В) газообразной...
Тип: Изобретение
Номер охранного документа: 0002499643
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.84ae

Способ охлаждения горячей полосы, наматываемой в рулон горячей полосы, устройство для охлаждения рулона горячей полосы, устройство управления и/или регулирования и полоса металла

Изобретение относится к области металлургии. Для обеспечения контролируемого равномерного охлаждения рулона горячей полосы и получения однородных свойств рулон (1) горячей полосы (2) размещают в устройстве промежуточного хранения, при этом рулон опирают и вращают (100) посредством контакта его...
Тип: Изобретение
Номер охранного документа: 0002499644
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.84bb

Способ автоматизированного ремонта детали машин

Изобретение относится к автоматизированному ремонту детали машин, в частности турбинные лопатка или лопасти. Способ включает оцифровку первой геометрии детали машин, включая поврежденную часть детали машин, механическую обработку впадины над поврежденной частью детали машин, при этом обработку...
Тип: Изобретение
Номер охранного документа: 0002499657
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.85a0

Установка для добычи на месте содержащего углеводороды вещества

Изобретение относится к установке для добычи на месте содержащего углеводороды вещества из подземного месторождения с понижением его вязкости. Обеспечивает повышение надежности индукционного нагревания и упрощение ввода энергии в подземное месторождение. Сущность изобретения: установка содержит...
Тип: Изобретение
Номер охранного документа: 0002499886
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.85a4

Газовая турбина, снабженная предохранительной пластиной между ножкой лопатки и диском

Ротор газовой турбины включает расположенные на диске турбины охлаждаемые рабочие лопатки, каждая из которых имеет ножку лопатки, расположенную в осевом пазу для ее фиксации. Между ножкой лопатки и дном паза расположена предохранительная пластина для защиты рабочих лопаток от смещения вдоль...
Тип: Изобретение
Номер охранного документа: 0002499890
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.8601

Способ и устройство для бесконтактного определения температуры т металлического расплава

Изобретение относится к способу и устройству для точного бесконтактного определения температуры Т металлического расплава (2) в печи (1), которая содержит по меньшей мере один блок (3) горелки-копья, который направляется над металлическим расплавом (2) через стенку (1b) печи в печное...
Тип: Изобретение
Номер охранного документа: 0002499983
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.8650

Быстродействующее переключающее устройство для аккумуляторной батареи высокой мощности в изолированной сети постоянного тока

Использование: в области электротехники. Технический результат - повышение быстродействия коммутации токов разряда. Предложено быстродействующее переключающее устройство (1) для аккумуляторной батареи (2) высокой мощности в изолированной сети (3) постоянного тока, особенно сети постоянного тока...
Тип: Изобретение
Номер охранного документа: 0002500062
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.8651

Регулятор трехфазного тока

Изобретение относится к области электротехники и может быть использовано в регуляторе трехфазного тока. Технический результат - улучшение массогабаритных показателей. Регулятор трехфазного тока содержит три ветви с соответствующим входом (U1, V1, W1) и выходом (U2, V2, W2), с пятью парами (1,...
Тип: Изобретение
Номер охранного документа: 0002500063
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.87fc

Способ функционирования прокатного стана холодной прокатки с улучшенной динамикой

Способ предназначен для повышения мобильности управления многоклетьевым прокатным станом холодной прокатки. Устройством определения усилия прокатки определяют действительное усилие прокатки последней прокатной клети и подают его на устройство регулирования, где определяют и выдают по меньшей...
Тип: Изобретение
Номер охранного документа: 0002500494
Дата охранного документа: 10.12.2013
+ добавить свой РИД