×
29.12.2017
217.015.fdea

Результат интеллектуальной деятельности: СИСТЕМА И СПОСОБ ОЦЕНКИ СТРУКТУР ТРЕЩИН

Вид РИД

Изобретение

№ охранного документа
0002638056
Дата охранного документа
11.12.2017
Аннотация: Изобретение относится к моделированию сложных структур трещин в подземном пласте. Техническим результатом является упрощение исследования потоков флюида для многих типов сложных структур трещин. В частности, предложена система для исследования сложных структур трещин, содержащая коллектор слотов. Коллектор содержит множество секций слотов, соединенных между собой под углом относительно друг друга, при этом каждая секция слота образована параллельными пластинами, образующими зазор для потока между ними. Кроме того, коллектор содержит устройство распределения потока, задействующее множество секций слотов. Причем устройство распределения потока является избирательно регулируемым для разрешения или блокирования потока флюида вдоль зазора для потока заданных секций слотов из множества секций слотов. Также коллектор содержит множество входов и выходов потока флюида для обеспечения притока и оттока флюида по отношению к множеству секций слотов для моделирования потока между трещинами в структуре трещин, расположенных под различными углами относительно друг друга. 2 н. и 18 з.п. ф-лы, 10 ил.

УРОВЕНЬ ТЕХНИКИ

[0001] В различных подземных месторождениях добычу углеводородов можно оптимизировать путем внедрения технологий нефтегазодобычи, например такой как технология гидравлического разрыва пласта. Технологии нефтегазодобычи могут быть полезны при разработке месторождений с низкой проницаемостью, как в случае газовых сланцев. Технология гидравлического разрыва может быть использована для улучшения естественной сети трещин, создавая и поддерживая сложную структуру трещин, обеспечивая таким образом более высокую производительность скважины. Однако для множества типов структур месторождений моделирование сложных структур трещин таким образом, чтобы обеспечивать эффективное моделирование потока флюида для определенного месторождения, представляет проблему.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0002] В целом, система и способ предназначены для исследования сложных структур трещин. Устройство представляет собой коллектор слотов, выполненный с системой разветвленных тонких каналов, т.е. слотов, которые соединяются в точках пересечения. Флюид течет через систему разветвленных тонких каналов и через точку или точки пересечения каналов таким образом, чтобы обеспечивать оценку потока флюида. Устройство распределения потока используется для разрешения или блокирования потока флюида вдоль определенных ветвей системы разветвленных тонких каналов для удобства оценки потока флюида, поскольку на различных каналах углы движения флюида меняются.

[0003] При этом возможны многочисленные модификации устройства, без существенного отклонения от идей настоящего изобретения. Соответственно такие модификации предназначены для включения в объем данного изобретения, определенный формулой изобретения.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

[0004] Определенные варианты реализации изобретения будут описаны ниже со ссылкой на прилагаемые графические материалы, в которых одинаковые цифры обозначают одинаковые элементы. Однако следует понимать, что приложенные фигуры только иллюстрируют различные варианты реализации, описанные в данном документе, и не означают ограничения объема различных технологий, описанных в данном документе, и:

[0005] На фигуре 1 проиллюстрировано поперечное сечение примера системы для исследования сложных структур трещин в соответствии с вариантом реализации настоящего изобретения;

[0006] На фигуре 2 схематически проиллюстрирован пример коллектора слотов, который имеет множество соединенных секций слотов, в соответствии с вариантом реализации изобретения;

[0007] На фигуре 3 проиллюстрировано схематическое изображение, аналогичное приведенному на фигуре 2, с указанием входных и выходных отверстий для потока флюида, в соответствии с вариантом реализации изобретения;

[0008] На фигуре 4 проиллюстрировано схематическое изображение, аналогичное приведенному на фигуре 3, с указанием примеров промежуточных входных отверстий флюида, расположенных между концами секций слотов, в соответствии с вариантом реализации изобретения;

[0009] На фигуре 5 проиллюстрировано схематическое изображение, аналогичное приведенному на фигуре 4, с указанием примера устройства распределения потока, в соответствии с вариантом реализации изобретения;

[0010] На фигуре 6 проиллюстрировано схематическое изображение, аналогичное приведенному на фигуре 4, с указанием ширины слотов для различных секций слотов коллектора слотов, в соответствии с вариантом реализации изобретения;

[0011] На фигуре 7 проиллюстрировано поперечное сечение примера входного/выходного отверстия потока флюида для коллектора слотов в соответствии с вариантом реализации настоящего изобретения;

[0012] На фигуре 8 проиллюстрирован ортогональный вид примера входного/выходного отверстия потока флюида коллектора слотов в соответствии с вариантом реализации настоящего изобретения;

[0013] На фигуре 9 проиллюстрирован ортогональный вид другого примера входа/выхода потока флюида для коллектора слотов в соответствии с вариантом реализации изобретения; и

[0014] На фигуре 10 проиллюстрирован ортогональный вид другого примера входа/выхода потока флюида для коллектора слотов в соответствии с вариантом реализации изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0015] В представленном ниже описании приведены многие детали, чтобы обеспечить понимание некоторых вариантов реализации настоящего изобретения. Однако рядовым специалистам в данной области будет понятно, что систему и/или способ можно осуществить на практике без этих деталей и что возможны многочисленные вариации или модификации описанных вариантов реализации изобретения.

[0016] Изобретение, раскрытое в данном документе, относится, главным образом, к системе и способу упрощения исследования многокомпонентных потоков в различных флюидах. Например, система и способ могут быть использованы при исследовании многокомпонентных потоков флюидов и структур трещин в месторождениях с естественной трещиноватостью или месторождениях с трещинами других типов.

[0017] В приведенном варианте реализации изобретения коллектор слотов выполнен с системой разветвленных тонких каналов, т.е. слотов, которые соединяются в точках пересечения, образуя сеть. Флюид течет через систему разветвленных тонких каналов и через точку или точки пересечения каналов таким образом, чтобы обеспечивать оценку потока флюида. Дополнительные флюиды могут быть пропущены через систему таким образом, чтобы обеспечивать оценку потока флюидов различных типов. Кроме того, может быть использовано устройство распределения потока для разрешения или блокирования потока флюида через определенные ветви системы, для удобства оценки различного характера течения флюида, поскольку флюид течет от первой ветви ко второй ветви, расположенной под установленным углом относительно первой. Возможность изменения характера течения через коллектор слотов упрощает оценку потока флюида, поскольку на различных каналах углы движения флюида и/или ширина каналов меняются.

[0018] Фактическая структура месторождений с естественной трещиноватостью может быть достаточно сложной и описывается систематически. Однако описанный в данном документе коллектор слотов позволяет моделировать сложные трещины. В качестве примера моделируемые сложные структуры трещин могут использовать каналы течения, например слоты потока, средняя гидравлическая ширина первичных трещин которых находится в диапазоне 6-9 мм. Фактически в месторождении первичными трещинами называются трещины, соединенные со стволом скважины и идущие вдоль линий максимального горизонтального напряжения. В этом примере средняя гидравлическая ширина трещин может быть в диапазоне 1,5-4 мм. Фактически в месторождении вторичными трещинами называют трещины, соединенные с первичными трещинами, но не связанные со стволом скважины, и идущие по линиям минимального горизонтального напряжения. В данном примере средняя гидравлическая ширина третичных трещин может быть в диапазоне 4-7 мм. Фактически в месторождении третичными трещинами называются трещины, соединенные с вторичными трещинами, но не соединенные с первичными трещинами или стволом скважины, и идущие вдоль линий максимального горизонтального напряжения. Однако фактическая ширина первичных, вторичных и третичных трещин при моделировании может быть отрегулирована в рамках соответствующих диапазонов или за их пределами в зависимости от параметров моделируемого месторождения.

[0019] Коллектор слотов, описанный в данном документе, может иметь множество размеров, вариантов ширины слотов, длины слотов и взаимного расположения слотов для потока флюида. В соответствии с вариантом реализации изобретения коллектор слотов может быть выполнен с системой разветвленных тонких каналов, образованных секциями слотов, которые расположены таким образом, чтобы создавать сеть слотов или каналов. Флюид может протекать через структуру слотов для удобства оценки многофазного и многокомпонентного потока, разделяющегося на пересечениях между слотами. Коллектор слотов спроектирован для обеспечения удобства контроля направления потока и оценки потока флюида на поворотах с изменением угловой скорости между слотами потока, например изменения характера потока на углах 45 градусов, 90 градусов, 135 градусов или других угловых изменениях на пути потока.

[0020] В приведенном варианте реализации изобретения коллектор слотов выполнен с системой пересекающихся тонких каналов, т.е. слотов, каждая из которых имеет прямоугольное поперечное сечение. Такая конструкция позволяет отделять входы и/или выходы для удобства отделения входящих и/или выходящих потоков относительно каждой ветви сети. Система может быть выполнена как регулируемая система, позволяя приток и/или отток флюида через различные отдельные впускные и выпускные отверстия. Однако в некоторых моделях флюид может подаваться через множество отверстий притока одновременно. Аналогичным образом в некоторых моделях флюид может выпускаться через множество отверстий оттока одновременно. В зависимости от применения в качестве флюида может быть использован скважинный флюид. Множество типов смоделированных скважинных флюидов или других типов флюидов может быть последовательно пропущено через коллектор слотов, обеспечивая сравнение характеристик потока флюида между флюидами различных типов.

[0021] Ссылаясь, главным образом, на фигуру 1, проиллюстрирован вариант реализации системы 20 для исследования сложной структуры трещин. В данном примере варианта реализации изобретения система 20 содержит коллектор слотов 22, установленный на остове 24. Коллектор слотов 22 содержит множество секций слотов 26, которые расположены как система разветвленных тонких каналов, например слотов 28, по которым движется флюид. Разветвленные тонкие каналы 28 соединяются в точках пересечения 30, соединяющих две и более секции слотов 26 под выбранным углом относительно друг друга.

[0022] В некоторых вариантах реализации изобретения каждая секция слота 26 может быть образована параллельными пластинами 32. Параллельные пластины 32 каждой секции слота 26 находятся на расстоянии друг от друга для создания зазора для потока между ними, который служит каналом или слотом 28, по которому движется флюид, обеспечивая возможность оценки характеристик потока флюида. В проиллюстрированном примере пластины 32 каждой секции слота 26 удерживаются на месте остовом 24 при помощи креплений 34. Крепления 34 могут содержать скользящие или иным образом регулируемые шпильки, которые обеспечивают возможность настройки ширины зазора для потока, образующего канал или слот 28 между параллельными пластинами32. Возможность регулирования зазора для потока позволяет выборочно менять поток флюида через отдельные секции слота 26. В некоторых приложениях ширина зазора для потока регулируется для каждой секции слота 26. Другие варианты реализации коллектора слотов 22 могут быть выполнены таким образом, чтобы определенные секции слотов 26 были регулируемыми, а другие имели фиксированную ширину зазора для потока. Однако следует обратить внимание, что секции слотов 26 могут быть образованы структурами, отличными от пластин 32, а крепления 34 могут содержать множество статичных или регулируемых креплений, включая скользящие крепления, крепления отверстие-шпилька, односторонние крепления, резьбовые регуляторы и другие соответствующие крепления.

[0023] В зависимости от необходимой оценки, для которой используется система 20, секции слотов 26 могут иметь эквивалентную длину и высоту. Однако в других приложениях длина и высота для различных секций слотов 26 одного коллектора слотов 22 могут меняться. Кроме того, канал потока 28 каждой секции со слотами 26 может быть определен внутренней поверхностью 36, а внутренняя поверхность 36 может быть спроектирована таким образом, чтобы обеспечивать необходимый эффект потока. Например, внутренняя поверхность 36 каждой секции слота 26 может быть гладкой. В других приложениях внутренняя поверхность 36 каждой секции слота может иметь шероховатую текстуру. Однако в других приложениях некоторые из внутренних поверхностей 36 могут быть гладкими, а другие внутренние поверхности 36 могут иметь различные шероховатые структуры для создания необходимых условий моделирования потока флюида.

[0024] Количество и расположение секций слотов 26 может в значительной степени отличаться для разных конструкций коллекторов слотов для обеспечения возможности различного моделирования и оценки потока флюида в сложных структурах трещин. Проиллюстрированные варианты реализации изобретения приведены в качестве примера одного типа коллектора слотов 22, в котором реализованы секции слотов 26, соединенные друг с другом множеством различных углов. Как схематически проиллюстрировано на фигуре 2, пример коллектора слотов 22 содержит восемь секций со слотами 26, маркированных А-Н. Однако для образования коллектора слотов 22 может быть использовано другое количество и другие компоновки секций слотов 26.

[0025] В примере, проиллюстрированном на фигуре 2, секции слотов 26 соединены в точках пересечения 30 для образования необходимых углов относительно друг друга. Например, отдельные секции слотов 26 могут быть соединены перпендикулярно в общей точке пересечения 30 для образования угла 90 градусов относительно друг друга. В проиллюстрированном варианте реализации изобретения секции D и Е, так же как и другие секции слотов 26, показанные на фигуре 2, соединяются под углом 90 градусов относительно друг друга. Однако отдельные секции слотов 26 могут соединяться между собой под другими углами. Например, секции слотов G и F, проиллюстрированные на фигуре 2, соединяются в общей точке пересечения 30 для образования острого угла более 0 градусов и менее 90 градусов. В качестве примера угол между такими секциями слотов может составлять около 45 градусов. В данном примере секции слотов A и F соединяются в одной точке пересечения 30 с образование угла более 90 градусов и менее 180 градусов. В качестве примера угол между такими секциями слотов может составлять около 135 градусов. Однако следует обратить внимание, что различные секции слотов 26 могут быть образованы различным образом и соединены под различными углами и с различным сочетанием углов, включая другие углы, помимо 45 градусов, 90 градусов и 135 градусов, как было указано выше.

[0026] Как было проиллюстрировано на фигуре 3, коллектор слотов 22 может содержать множество входных отверстий 38, через которые флюид подается в сеть слотов 28. Коллектор слотов 22 может также содержать множество выходных отверстий 40, через которые происходит отток флюида из сети слотов 28. В некоторых приложениях могут быть использованы одно входное отверстие 38 и/или одно выходное отверстие 40. Однако в других приложениях используется множество входных отверстий 38 и/или множество выходных отверстий 40. Входные отверстия 38 и выходные отверстия 40 могут образовываться фланцами, которые выполняют роль впускного и выпускного устройств, расположенных со свободных концов секций слота 26. Однако множество устройств могут быть использованы для обеспечения притока и отвода флюида на входном отверстии 38 и выходном отверстии 40 соответственно. Фланцы или другие соответствующие устройства спроектированы для обеспечения их взаимозаменяемого использования в качестве входного и выходного отверстий, обеспечивая таким образом более высокое число потенциальных моделей характеров потока через коллектор слотов 22, как более подробно описано ниже, со ссылкой на фигуре 6.

[0027] Ссылаясь, главным образом, на фигуру 4, проиллюстрирован дополнительный вариант реализации изобретения с множеством входных отверстий по середине 42. Промежуточные входные отверстия 42 расположены между концами определенной секции слота 26. Например, промежуточные входные отверстия 42 могут быть расположены по центру или в других местах, по всей длине выбранной секции слота 26. Если слоты 28 образованы параллельными пластинами 32, промежуточные входные отверстия 42 могут быть установлены на необходимой стороне пластин и могут обеспечивать порт передачи флюида в соответствующий канал или слот 28. В зависимости от применения коллектор слотов 22 может быть спроектирован с одним промежуточным входным отверстием 42 или множеством промежуточных входных отверстий 42, как проиллюстрировано на фигуре 4. Промежуточные входные отверстия 42 также могут быть представлены в виде фланцев. Фланцы или другие соответствующие устройства могут быть установлены и использованы на различных отверстиях притока и оттока для обеспечения более высокой гибкости функционирования. Например, фланцы или другие соответствующие устройства снова могут быть выбраны таким образом, чтобы проиллюстрированные входные отверстия 38, 42 и выходное отверстие 40 были взаимозаменяемыми для обеспечения притока и оттока флюида в зависимости от параметров моделирования определенного потока через трещины.

[0028] Как проиллюстрировано на фигуре 5, коллектор слотов 22 может также содержать устройство распределения потока 44. Устройство распределения потока 44 задействует множество секций слотов 26 и является избирательно регулируемым для разрешения или блокирования потока флюида вдоль зазора для потока определенных секций слотов 26. Например, устройство распределения потока 44 может содержать множество элементов контроля потока 46, например как клапаны, пробки, шпильки, ограничения или другие свойства, которые могут быть выборочно инициированы для разрешения или блокирования потока флюида через определенные секции слотов 28 из предварительного установленных секций слотов 26. В качестве примера распределительное устройство 44 может сдержать элементы контроля потока 46 в форме временных пробок, установленных в непосредственной близости к проиллюстрированным центральным точкам пересечения 30, соединенным несколькими секциями слотов 26.

[0029] Ширина зазоров для потока, определяемых слотами 28, может варьироваться для различных секций слотов 26 для удобства моделирования, например, первичных, вторичных и третичных трещин. Частный пример проиллюстрирован на фигуре 6, на которой секция слота А представляет первичную трещину и имеет сравнительно большую ширину зазора для потока, например 10 мм, или другую соответствующую ширину. Такая ширина может быть выбрана в качестве представления средней гидравлической ширины трещин в сланцах. Для частного примера секции слотов B и G, в целом, перпендикулярны секции слота А и представляют вторичные трещины. Угол между максимальным и минимальным напряжениями часто близок к 90 градусам, таким образом, угол между первичными и вторичными трещинами также часто близок к 90 градусам. Однако по причине неоднородности угол между первичными и вторичными трещинами иногда может значительно отличаться от 90 градусов. Для иллюстрирования данного случая секция слота F сориентирована относительно пересечения с секцией слота А под углом более 0 градусов и менее чем 90 градусов, например под углом 45 градусов. В проиллюстрированном примере секция слота D сориентирована как продолжение секции слота А, но с другой шириной зазора для потока, например 5 мм. Секция слота E выбрана как практически перпендикулярная секции слота D и имеющая сопоставимую ширину зазора для потока, например 5 мм. В данном примере секция слота Е также имеет фланец входящего/выходящего отверстий на внешнем крае. Секции слотов С и E могут быть сориентированы практически перпендикулярно относительно секций слотов B и G соответственно. Следует отметить, что ширина зазора для потока, выбранная для каждой секции слота, может быть увеличена или уменьшена для других моделей потоков.

[0030] При использовании варианта реализации изобретения коллектора слотов 22, проиллюстрированного на фигуре 6, контроль направления потока обеспечивается устройством распределения потока 44 и возможностью контроля отдельных потоков флюида при помощи элементов контроля потока 46. Элементы контроля потока 46 могут быть использованы индивидуально для блокирования потока флюида через отдельные секции слота 26. Также поток флюида может быть направлен через коллектор слотов 22 во множестве направлений и через множество каналов 28. Примеры описаны со ссылкой на фигуре 6 для удобства описания использования коллектора слотов 22 для моделирования и исследования потоков флюида в сложных структурах трещин. Однако коллектор слотов 22 является многофункциональным и может также быть использован для исследования множества различных типов потоков через слоты различной ширины с различными угловыми переходами.

[0031] В данном частном примере, приток флюида поступает в коллектор слотов 22 через входной фланец 38 в конце секции слота A. В качестве выходных отверстий использован выходной фланец 40 на конце секций слота С, Е, F и Н. Проиллюстрированная конфигурация обеспечивает моделирование потока через трещину с потоком флюида, например скважинного флюида, разделяясь на вторичные и третичные трещины. Для контроля скоростей потока на различных ветвях слотов 28 могут быть использованы выпускные клапаны. Выбранные секции слотов могут быть отключены путем активации определенных элементов контроля потока 46, например, используя временные пробки для устройства распределения потока 44. Стабильность потока флюида, например геометрия, закупорки и преодоление углов, например как образование закупорки с арочным эффектом, могут быть исследованы и наблюдаться по мере течения флюида через коллектор слотов 22 в данной конфигурации.

[0032] Однако стабильность, закупорка и другие характеристики потока могут быть изучены и наблюдаться во множестве различных конфигураций коллектора слотов 22. В качестве еще одного примера приток флюида обеспечивается через входное отверстие на фланце 38, расположенном в конце секции слота С, а выходное отверстие для флюида расположено на выходном фланце 40, расположенном по краям секций слотов Е, F и Н. По мере течения флюида от входного фланца 38 к выходному фланцу на конце секции слота Е флюид проходит три поворота на 90 градусов и три слота с различной шириной зазора. По мере движения флюида от входного фланца 38 к выходному фланцу в конце секции слота F флюид проходит один поворот на 90 градусов, один поворот на 45 градусов и изменение ширины слота. По мере течения флюида от входного фланца 38 к выходному фланцу на конце секции слота Н флюид проходит два поворота на 90 градусов и через два канала слота с различной шириной.

[0033] В качестве еще одного примера приток флюида обеспечивается через входное отверстие на фланце 38, расположенном в конце секции слота Е, а вывод флюида обеспечивается через выходное отверстие, расположенное на выходном фланце 40, в конце секции слота F. По мере движения флюида от входного фланца 38 к выходному фланцу в конце секции слота F в данном примере флюид проходит один поворот на 90 градусов, один поворот на 135 градусов и изменение ширины слота. Включаются соответствующие устройства контроля потока 46 для обеспечения необходимого направления потока.

[0034] В качестве еще одного примера приток флюида обеспечивается через входное отверстие на фланце 38, расположенном в конце секции слота F, а вывод флюида обеспечивается через выходное отверстие, расположенное на выходном фланце 40, в конце секции слота Н. По мере движения флюида от входного фланца 38 к выходному фланцу в конце секции слота Н в данном примере флюид проходит один поворот на 135 градусов, один поворот на 90 градусов и изменение ширины слота. Снова включаются соответствующие устройства контроля потока 46 для обеспечения необходимого направления потока.

[0035] В качестве еще одного примера приток флюида обеспечивается через входное отверстие на фланце 38, расположенном в конце секции слота Н, а вывод флюида обеспечивается через выходное отверстие, расположенное на выходном фланце 40, в конце секции слота F. По мере движения флюида от входного фланца 38 к выходному фланцу в конце секции слота F в данном примере флюид проходит один поворот на 90 градусов, один поворот на 135 градусов и изменение ширины слота на различных пересечениях 30 по сравнению с примером, описанным выше, для протекания флюида, поступающего от входного фланца в конце секции слота Е, к выходному фланцу на конце секции слота F. Включаются соответствующие устройства контроля потока 46 для обеспечения необходимого направления потока.

[0036] Также возможно наблюдение и исследование других характеристик потока, например как трансформация радиального потока в линейный поток и разделение закупорки на пересечениях секций слотов. Характеристики такого типа и другие характеристики потока могут быть изучены при помощи множества различных конфигураций коллектора слотов 22. В приведенном примере приток флюида обеспечивается через промежуточные входные отверстия 42, каждое из которых расположено в центральной точке секций слота А, В и D, а выходное отверстие для флюида расположено на выходном фланце 40, расположенном по краям секций слотов А, С, Е, F и Н. Можно изучать и исследовать различные схемы потоков путем блокирования потока, т.е. закрывания слотов потока 28 вдоль выбранных секций слотов А, В, D, F, G через устройства распределения потока 44. Это позволяет выполнять моделирование различных режимов потока для различных сложных структур трещин.

[0037] Функциональность коллектора слотов 22 упрощает исследование потоков флюида для многих типов сложных структур трещин. Коллектор слотов 22 может также содержать множество компонентов и свойств, которые аналогичным образом упрощают исследование потока флюида. Например, секции слота 26 могут быть образованы параллельными пластинами 32 с маленьким зазором между ними или с другими структурами, предназначенными для образования необходимых слотов 28. Устройство распределения потока 44 может содержать шпильки или пробки, которые могут выборочно вставляться для предотвращения потока через одну или несколько секций слотов 26. Однако устройство распределения потока 44 может быть выполнено с клапанами или другими средствами блокирования или разрешения движения потока по выбранным секциям слотов.

[0038] Устройство распределения потока 44 может работать в сочетании с множеством компоновок секций слотов 26 для обеспечения моделирования потоков различного характера, включая E-, X-, T- и L- образные схемы движения потока, с различными углами между секциями слотов. В некоторых приложениях ширина слотов может регулироваться от одного слота к другому. Различные входные и выходные фланцы могут меняться для создания впускных и выпускных отверстий на концах некоторых секций слота 26. Кроме того, фланцы могут быть использованы на промежуточных точках вдоль выбранных секций слота 26 для обеспечения дополнительных возможных входных и/или выходных отверстий.

[0039] Входные отверстия 38, 42 и выходные отверстия 40 также могут иметь различные конфигурации. На фигурах 7-10 проиллюстрированы примеры входных отверстий 38, 42, выходных отверстий 40. На фигурах 7 и 8 проиллюстрирован пример входного отверстия 38, 42 или выходного отверстия 40 (фигура 7 иллюстрирует поток, направленный внутрь через входное отверстие 38, притом что структура также может быть использована для выходных отверстий 40). В данном примере входное/выходное отверстия представлены корпусом 48 с пустотелой внутренней частью 50. Корпус 48 имеет структуру для трубы потока 52, например, трубу входящего потока. Если, например, корпус 48 выполняет роль корпуса на входе, поток флюида поступает через трубу 52, как указано стрелками 54 на фигуре 7. В данном примере корпус 48 дополнительно содержит секцию перехода 56, секцию диффузора/конфузора 58, секцию стабилизатора потока 60 и соединение 62, например соединительный фланец.

[0040] В зависимости от назначения корпус 48 также может иметь другие конфигурации. Ссылаясь, главным образом, на вариант реализации изобретения, проиллюстрированный на фигуре 9, например, корпус 48 может быть выполнен с дополнительной секцией диффузора 64. В некоторых применениях корпус 48 может быть выполнен с ограниченной областью потока 66, например ограниченным входом. В качестве примера ограниченная область потока 66 может быть обеспечена уменьшением высоты слота на секции стабилизатора потока 60, как проиллюстрировано в варианте реализации изобретения на фигуре 10.

[0041] В проиллюстрированных примерах корпус 48 выполнен таким образом, чтобы обеспечивать управление потоком флюида. Относительно входных отверстий, например, корпус 48 может быть выполнен таким образом, чтобы сглаживать входящий поток таким образом, чтобы скорость потока на входе в секцию слота была равномерной по всей высоте слота (или по части высоты слота при использовании средств ограничения входного отверстия, таких как проиллюстрировано в варианте реализации изобретения на фигуре 10). Относительно выходных отверстий, например, корпус 48 может быть выполнен таким образом, чтобы обеспечивать равномерный поток по высоте слота для выхода флюида из соответствующей секции слота, например из конечной секции слота.

[0042] Множество типов материалов и компонентов также могут быть использованы при конструировании системы 20. Например, коллектор слотов 22 может быть выполнен с компонентами, изготовленными из различных материалов. Аналогично остов 24 может иметь различную форму и быть выполнен из материалов нескольких типов. В зависимости от конструкции для коллектора слотов 22 и остова 24 может быть использовано несколько типов креплений 34 для фиксации коллектора слотов 22 в необходимой конфигурации. В некоторых приложениях крепления 34 могут быть спроектированы для обеспечения настройки секций со слотами 26 для изменения ширины зазора для потока и/или расположения секций слотов 26. Соответственно система 20 может быть выполнена в нескольких вариантах конфигурации для достижения необходимой функциональности при изучении определенной сложной структуры трещин.

[0043] Хотя некоторые варианты реализации изобретения были подробно описаны выше, рядовые специалисты в данной области легко поймут, что возможны многочисленные модификации без существенного отступления от идей настоящего изобретения. Соответственно такие модификации предназначены для включения в объем данного изобретения, определенный формулой изобретения.


СИСТЕМА И СПОСОБ ОЦЕНКИ СТРУКТУР ТРЕЩИН
СИСТЕМА И СПОСОБ ОЦЕНКИ СТРУКТУР ТРЕЩИН
СИСТЕМА И СПОСОБ ОЦЕНКИ СТРУКТУР ТРЕЩИН
СИСТЕМА И СПОСОБ ОЦЕНКИ СТРУКТУР ТРЕЩИН
СИСТЕМА И СПОСОБ ОЦЕНКИ СТРУКТУР ТРЕЩИН
Источник поступления информации: Роспатент

Показаны записи 101-110 из 324.
10.01.2015
№216.013.178a

Анализ фазового поведения с применением микрофлюидной платформы

Изобретение относится к способу и системе для анализа свойств флюидов в микрофлюидном устройстве. Флюид вводится под давлением в микроканал, и в ряде мест, расположенных вдоль микроканала, оптически детектируются фазовые состояния флюида. Газообразная и жидкая фазы флюида распознаются на основе...
Тип: Изобретение
Номер охранного документа: 0002537454
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dca

Самовосстанавливающиеся цементы

Изобретение относится к способу сохранения разобщения пластов в подземной скважине, в которой ствол скважины пересекает один или большее число пластов, содержащих углеводороды, включающему: (i) накачивание цементного раствора, содержащего термопластичные блок-сополимерные частицы, в...
Тип: Изобретение
Номер охранного документа: 0002539054
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.220f

Кабельный обход и способ регулируемого ввода колонны насосно-компрессорных труб и кабеля, соседнего с ними, в скважину

Система и способ для регулируемого ввода колонны насосно-компрессорных труб и кабеля в ствол скважины содержит неподвижный кожух, обходной кабельный блок и уплотнительный узел. Неподвижный кожух имеет канал, сообщающийся со стволом скважины, поверхность уплотнения и кабельный проем,...
Тип: Изобретение
Номер охранного документа: 0002540172
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.290c

Способ и устройство завершения многоярусной скважины

Группа изобретений относится к горному делу и может быть применена при завершении многоярусной скважины. Устройство включает колонну, направленную в скважину, и расположенный в колонне инструмент. Инструмент приспособлен для образования гнезда с целью улавливания объекта, направляемого в...
Тип: Изобретение
Номер охранного документа: 0002541965
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2949

Способы определения особенностей пластов, осуществления навигации траекторий бурения и размещения скважин применительно к подземным буровым скважинам

Изобретение относится к области бурения подземных буровых скважин и измерения в них. Техническим результатом является расширение функциональных возможностей и повышение информативности исследований. Предложен способ направления бурения буровой скважины в целевом подземном пласте, включающий...
Тип: Изобретение
Номер охранного документа: 0002542026
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b7a

Многофазный расходомер и способ измерения пленки жидкости

Предложенная группа изобретений относится к средствам измерения расхода смеси многофазной жидкости, содержащей по меньшей мере одну газовую фазу и одну жидкую фазу. Заявленный расходомер содержит участок трубы и измерительный участок, через которые поступает смесь. Расходомер также содержит...
Тип: Изобретение
Номер охранного документа: 0002542587
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2d6f

Погружной электродвигатель с зазором с ферромагнитной жидкостью

Группа изобретений направлена на обеспечение возможности уменьшения потерь электроэнергии, подаваемой по длинным силовым кабелям к электрическому погружному насосу во время работы погружного электродвигателя. Система содержит источник питания на поверхности, силовые кабели между погружным...
Тип: Изобретение
Номер охранного документа: 0002543099
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2fc6

Анализ петрографических изображений для определения капиллярного давления в пористых средах

Изобретение относится к способам описания характеристик двухмерных и трехмерных образцов для определения распределений размеров тела пор и каналов пор, а также кривых зависимости капиллярного давления в пористой среде. Входная информация включает петрографические изображения высокого разрешения...
Тип: Изобретение
Номер охранного документа: 0002543698
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2fc7

Способ и устройство для автоматического восстановления геометрии скважины по измерениям низкочастотных электромагнитных сигналов

Изобретение относится к геофизическим измерениям в скважине. Сущность: способ включает в себя создание модели для прогнозирования измерений, которые получают приемниками благодаря передачам с помощью источников, на основании оцененных положений приемников относительно источников. Оцененные...
Тип: Изобретение
Номер охранного документа: 0002543699
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3461

Способ определения репрезентативных элементов площадей и объемов в пористой среде

Изобретение относится к области геофизики и может быть использовано при моделировании геологических объектов. Предложен способ (варианты) определения репрезентативных элементов площадей и объемов в пористой среде. Репрезентативный элемент площади (РЭП) является наименьшей площадью, которая...
Тип: Изобретение
Номер охранного документа: 0002544884
Дата охранного документа: 20.03.2015
Показаны записи 101-110 из 236.
20.10.2014
№216.012.ff58

Электродвигатель и связанная с ним система для размещения в среде на забое скважины (варианты)

Предложенная группа изобретений относится к нефтедобывающей технике, в частности к средствам управления скважинной насосной установкой. Техническим результатом является повышение надежности работы насосной установки в скважинах малого диаметра. В одном из вариантов выполнения электродвигатель...
Тип: Изобретение
Номер охранного документа: 0002531224
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.024a

Разделение нефти, воды и твердых частиц внутри скважины

Группа изобретений относится к скважинным устройствам, способам разделения жидкостей и твердых веществ в скважине, а также к способам подготовки системы разделения скважинных флюидов и твердых веществ. Технический результат заключается в облегчении разделения флюидов и твердых веществ и в...
Тип: Изобретение
Номер охранного документа: 0002531984
Дата охранного документа: 27.10.2014
20.11.2014
№216.013.077d

Система расходомера и способ измерения количества жидкости в многофазном потоке с большим содержанием газовой фазы

Система включает в себя расходомер, имеющий датчик дифференциального давления, присоединенный параллельно трубке Вентури к трубопроводу, и фракциомер с двухпиковым источником энергии, каждый из которых функционально соединен с цифровым процессором. Система дополнительно включает в себя насос,...
Тип: Изобретение
Номер охранного документа: 0002533318
Дата охранного документа: 20.11.2014
27.11.2014
№216.013.0ada

Способ (варианты) и система для оптимизации операций изоляции диоксида углерода

Способ и система предназначены для оптимизации операций изоляции диоксида углерода и направлены на управление рабочими параметрами наземной установки для сжатия диоксида углерода (CO) или трубопровода для поддержания потока CO в жидком или сверхкритическом состоянии при транспортировке к месту...
Тип: Изобретение
Номер охранного документа: 0002534186
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0ce8

Уточненные измерения пористости подземных пластов

Настоящее изобретение относится к области геофизики и может быть использовано для определения пористости пласта, окружающего скважину. Согласно заявленному предложению буровой раствор проникает в пласт на определенное расстояние, представляющее собой функцию времени. Выполняются первое и...
Тип: Изобретение
Номер охранного документа: 0002534721
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1077

Система, способ и установка для измерения многофазного потока

Система, способ и установка для измерения свойств флюидов флюидного потока, имеющего четыре фазы, включают в себя устройство измерения доли, выполненное с возможностью определения соответствующих измерений доли каждой из четырех фаз флюидов, протекающих во флюидном потоке; и устройство...
Тип: Изобретение
Номер охранного документа: 0002535638
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1152

Система дозирования и смешивания проппанта

Группа изобретений относится к нефтяной и газовой промышленности и может быть использована при смешении и дозировании проппанта в жидкости гидроразрыва пласта. Резервуар для материала, применяемого на нефтяном месторождении, состоит из корпуса с верхним днищем, нижним днищем, боковой стенкой...
Тип: Изобретение
Номер охранного документа: 0002535857
Дата охранного документа: 20.12.2014
27.12.2014
№216.013.1570

Способ обработки подземного пласта разлагаемым веществом

Изобретение относится к обработке подземных пластов при добыче углеводородов. Способ обработки подземного пласта, пересеченного скважиной, включающий: обеспечение обрабатывающей жидкости, содержащей вязкоупругое поверхностно-активное вещество, имеющее по меньшей мере одну разлагаемую связь,...
Тип: Изобретение
Номер охранного документа: 0002536912
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1778

Содержащая частицы промывочная среда для очистки скважины

Группа изобретений относится к нефтегазодобывающей промышленности. Технический результат - улучшение очистки затрубного пространства перед размещением цементных растворов или во время фазы заканчивания, абразивная очистка всего мягкого материала, присутствующего в затрубном пространстве, в...
Тип: Изобретение
Номер охранного документа: 0002537436
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.178a

Анализ фазового поведения с применением микрофлюидной платформы

Изобретение относится к способу и системе для анализа свойств флюидов в микрофлюидном устройстве. Флюид вводится под давлением в микроканал, и в ряде мест, расположенных вдоль микроканала, оптически детектируются фазовые состояния флюида. Газообразная и жидкая фазы флюида распознаются на основе...
Тип: Изобретение
Номер охранного документа: 0002537454
Дата охранного документа: 10.01.2015
+ добавить свой РИД