×
29.12.2017
217.015.fc2e

Результат интеллектуальной деятельности: СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ ТЕПЛО- И МАССООБМЕНА С ОКРУЖАЮЩЕЙ СРЕДОЙ ЭЛЕМЕНТА КОНСТРУКЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетно-космической технике. Способ моделирования процесса тепло- и массообмена элемента конструкции летательного аппарата (ЭКЛА) с окружающей средой в условиях снижения абсолютного давления основан на введении в экспериментальную модельную установку (ЭМУ) потока газа, обеспечении условий взаимодействия потока газа в зоне контакта с ЭКЛА, измерении температуры, давления, скорости. К ЭКЛА подают дополнительное количество теплоты путем сжигания пиротехнической смеси, закрепленной на ЭКЛА. Параметры потока газа, давление и состав газа в ЭМУ выбирают в соответствии с параметрами атмосферы на текущей высоте при движении ЭКЛА. Дополнительное количество теплоты подают путем нагрева ЭКЛА тепловым эквивалентом пиротехнической смеси, например электронагревателем. В зону нагрева ЭКЛА дополнительно подают энергию в виде акустического, лазерного воздействия, параметры которых определяют из условия повышения эффективности нагрева ЭКЛА. Устройство для реализации способа включает в свой состав экспериментальный стенд, в виде замкнутого объема для создания пониженного абсолютного давления, ЭМУ, содержащую систему фиксации ЭКЛА, датчики температуры, давления, входной и выходной патрубки, газоанализатор для определения процентного содержания газов на входе и выходе. В состав ЭМУ дополнительно введены пиротехническая смесь с системой зажигания, скоростная видеокамера, система подготовки потока газа, система поворота ЭКЛА с закрепленным источником подвода теплоты относительно направления потока газа, акустический, лазерный излучатели, электрический нагреватель. Изобретение позволяет расширить границы моделирования процесса тепло- и массообмена элемента конструкции ЭКЛА с окружающей средой в условиях снижения абсолютного давления. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической технике и может быть использовано при проведении физического моделирования процессов тепло- и массообмена при нагреве элемента конструкции летательного аппарата (ЭКЛА) на основе подачи теплоты с использованием различных механизмов ее передачи, например, конвективный теплообмен с использованием теплоносителя (ТН) в виде горячих газов, кондуктивный теплообмен, например, с помощью пиротехнических составов (ПС), электрических нагревателей, лучевой теплообмен, например, лазерное или акустическое воздействие и т.д. с осуществлением условий, реализующихся при движении ЭКЛА на атмосферном участке траектории (давление, набегающий аэродинамический поток, состав атмосферы).

Известен способ моделирования процесса тепло- и массообмена, с окружающей средой, например, при газификации топлива и устройство, его реализующее, которые описаны на стр. 163-174 в кн. 1 «Снижение техногенного воздействия ракетных средств выведения на жидких токсичных компонентах ракетного топлива на окружающую среду» (Монография) под ред. В.И. Трушлякова, Омск: Изд-во ОмГТУ, 2004. 220 с. Однако этот способ преимущественно ориентирован на работу с высококипящими и токсичными компонентами топлива типа несимметричный диметилгидразин, азотная кислота, азотный тетраксид.

Наиболее близким по технической сущности к предлагаемому решению является Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в условиях пониженного давления и устройство для его реализации по патенту РФ МПК F02K 9/96 №2493414, основанный на введении в экспериментальную модельную установку (ЭМУ) ТН, обеспечении условий взаимодействия в зоне контакта ТН с поверхностью жидкого компонента ракетного топлива, проведении измерений температуры, давления в различных точках ЭМУ, перед подачей ТН осуществляют понижение давления в ЭМУ до 0,01 МПа через дренажный электропневмоклапан (ДЭПК), а в качестве газа наддува используют гелий с параметрами избыточного давления до 0,3 МПа со сбросом до 0,01 МПа абсолютного, в качестве ТН используют азот, массовый секундный расход которого равен производительности вакуумного насоса, а процентное содержание газифицированных продуктов определяют исключением из показаний газоанализатора состава ТН и газа наддува.

К недостаткам способа по прототипу относятся трудности его адаптации при проведении исследований различных процессов тепло- и массообмена ЭКЛА с окружающей средой при пониженном давлении, т.к. по прототипу рассматривается только конвективный механизм тепло- и массообмена (воздействие потока горячего газа в виде ТН) при наличии модельной жидкости, располагаемой на элементе поверхности ЭМУ.

Техническим результатом предлагаемого технического решения является расширение границы применимости известного способа для исследования различных механизмов процесса тепло- и массообмена ЭКЛА с окружающей средой при его движении в различных диапазонах высот и скоростей.

Указанный технический результат достигается тем, что в известном способе по моделированию процесса тепло- и массообмена с окружающей средой, основанном на введении в ЭМУ потока газа, обеспечения условий взаимодействия потока газа в зоне контакта с ЭКЛА, измерению температуры, давления, скорости, вводят следующие действия:

а) подают дополнительное количество теплоты путем сжигания ПС, закрепленной на ЭКЛА, а параметры потока газа (скорость, состав газов, температуру, направление обдува ЭКЛА), давление и состав газа в экспериментальной модельной установке выбирают в соответствии с параметрами атмосферы на текущей высоте при движении ЭКЛА;

б) обеспечивают начальную температуру ЭКЛА, соответствующую фактической температуре ЭКЛА на исследуемой высоте (до 300°С), например, электронагревателем;

в) в зону нагрева ЭКЛА дополнительно подают энергию в виде акустического и лазерного воздействий, параметры которых (амплитуду, частоту) определяют из условия повышения эффективности нагрева ЭКЛА.

Устройство для реализации способа, включающее в свой состав экспериментальную установку в виде замкнутого объема для создания пониженного абсолютного давления, ЭМУ, содержащую систему фиксации ЭКЛА, датчики температуры, давления, входной и выходной патрубки, газоанализатор для определения процентного содержания газов на входе и выходе, дополнительно введены:

а) электрический подогреватель ЭКЛА;

б) система поворота ЭКЛА, относительно потока газа, с закрепленной ПС и системой зажигания;

в) система подготовки потока газа;

г) акустический и лазерный излучатели;

д) скоростная видеокамера.

Реализация предлагаемого решения.

Параметры газового потока, соответствующего исследуемой высоте (химический состав, плотность, температура, скорость натекания, направление), обеспечиваются соответствующей системой подготовки газового потока.

Электрический подогреватель имитирует начальный нагрев (или уменьшение температуры) ЭКЛА, который он получает при движении в окружающей среде на текущей высоте, на которой исследуются параметры системы ЭКЛА + ПС + воздействие атмосферы. Например, начальная температура на старте соответствует температуре окружающей среде, в процессе активного участка траектории выведения различные ЭКЛА могут нагреваться до 300°С и выше, после отделения от ракеты-носителя, в зависимости от параметров движения в атмосфере эта температура, например, для створок головного обтекателя снижается из-за их «порхающего» характера полета.

Подача дополнительной энергии в виде оптического (лазерного) или акустического/ультразвукового (в различной форме, например, путем использования газоструйного воздействия или непосредственного ультразвукового воздействия на ЭКЛА), а также их совместного воздействия приводит к изменению коэффициентов теплопроводности, скорости горения и т.д., что и является одним из предметов исследования.

Сущность предлагаемого способа и устройства для его реализации поясняется чертежом, где на фиг. 1 изображена пневматическая схема ЭМУ для моделирования процесса тепло- и массообмена ЭКЛА с окружающей средой.

1. ЭМУ 1 с находящейся на подложке ЭКЛА 2, фиксированной на системе поворота 3 относительно потока газа, имеющей электрический подогреватель 4 с закрепленной ПС 5 и системой зажигания, соединена через гермоввод 6 с системой подготовки потока газа 7, акустическим излучателем 8, сопловым подводом газа 9 и лазерным излучателем 10. Температуру нагрева ЭКЛА 2 контролируют датчиком 11.

2. Система подготовки потока газа 7 подготавливает газовый поток с заданными физико-химическими характеристиками. Газы из газовых баллонов 12-14 (12 - газовый баллон с газообразным азотом, 13 - газовый баллон с газообразным кислородом, 14 - газовый баллон с газообразным аргоном) подаются в коллектор 15 для смешивания в соответствующей концентрации для каждой высоты, путем открытия вентилей 16-18 и электропневмоклапанов 19-21. Давление и массовый расход газов, поступающих из баллонов 12-14, задаются редукторами 22-24 и клапанами 25-27. Полученный газовый поток нагревают теплоэлектронагревателем 28 до заданной температуры и подают через гермоввод 6 в ЭМУ 1.

3. Газовый поток воздействует на ЭКЛА 2 и ПС 5, при этом фиксируются параметры датчиком 11 и регистрируются скоростной видеокамерой 29. Газ из ЭМУ 1 утилизируется через предохранительный клапан 30 и газоанализатор 31. Параметры газа в ЭМУ 1 контролируются датчиками давления и температуры 32.

4. С помощью вакуумного насоса 33 создают давление Рвк в вакуумной камере 34 в диапазоне (1,0-0,01) атм, контролируемое датчиками 35. Величина исходного давления Рвк варьируется в соответствии с программой экспериментов.

Эффект предлагаемого способа и устройства для его осуществления заключается в возможности проведения физического моделирования процессов тепло- и массообмена при нагреве ЭКЛА, движущегося на атмосферном участке траектории, на основе подачи теплоты с использованием различных механизмов ее передачи: конвективный теплообмен с использованием ТН в виде горячих газов, кондуктивный теплообмен с использованием ПС, лучевой теплообмен с использованием лазерного или акустического/ультразвукового, а также их совместного воздействия.


СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ ТЕПЛО- И МАССООБМЕНА С ОКРУЖАЮЩЕЙ СРЕДОЙ ЭЛЕМЕНТА КОНСТРУКЦИИ ЛЕТАТЕЛЬНОГО АППАРАТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 132.
10.05.2018
№218.016.4309

Датчик угарного газа

Изобретение относится к области газового анализа и может быть использовано для экологического мониторинга. Техническим результатом изобретения является повышение чувствительности и технологичности изготовления датчика. Датчик содержит полупроводниковое основание и подложку. Полупроводниковое...
Тип: Изобретение
Номер охранного документа: 0002649654
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4b5b

Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отработавшей ступени ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ и устройство моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отработавшей ступени (ОС) ракеты-носителя, основанный на введении в экспериментальную модельную установку (ЭМУ) теплоносителя (ТН),...
Тип: Изобретение
Номер охранного документа: 0002651645
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4df2

Способ работы поршневой гибридной машины объемного действия и устройство для его осуществления (варианты)

Изобретение относится к области поршневых гибридных энергетических машин и может быть использовано при одновременном или попеременном сжатии жидкостей и газов при большой разности давлений без их взаимного загрязнения. Способ работы машины заключается в том, что при одновременном сжатии...
Тип: Изобретение
Номер охранного документа: 0002652470
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4ecd

Датчик микропримесей аммиака

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей аммиака. Изобретение может быть использовано для экологического мониторинга. Заявляемый датчик при существенном упрощении технологии его...
Тип: Изобретение
Номер охранного документа: 0002652646
Дата охранного документа: 28.04.2018
29.05.2018
№218.016.5334

Полимерная композиция

Изобретение относится к полимерной композиции, предназначенной для изготовления резинотехнических изделий, эксплуатируемых при экстремальных температурах и высоком давлении. Композиция содержит смесь каучуков, представляющих собой этилен-пропиленовый каучук и бутилкаучук, выбранный из...
Тип: Изобретение
Номер охранного документа: 0002653850
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.55b6

Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя после выключения маршевого жидкостного ракетного двигателя основан на подаче теплоты в баки с остатками компонентов топлива в...
Тип: Изобретение
Номер охранного документа: 0002654235
Дата охранного документа: 17.05.2018
12.07.2018
№218.016.6fbf

Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ газификации остатков жидкого компонента топлива (КТ) в баке отработавшей ступени ракеты-носителя (РН) основан на подаче горячих газов (теплоносителя) в топливный бак и сбросе продуктов газификации (ПГ) по достижении заданного...
Тип: Изобретение
Номер охранного документа: 0002661047
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.7004

Магнитоэлектрическая машина

Изобретение относится к области электротехники, а именно к электрическим машинам, в частности электрогенераторам постоянного тока, и может быть использовано в любой области науки и техники, где требуются автономные источники питания. Технический результат - повышение рабочего магнитного потока...
Тип: Изобретение
Номер охранного документа: 0002660945
Дата охранного документа: 11.07.2018
12.07.2018
№218.016.705d

Поршневая гибридная энергетическая машина со ступенчатым уплотнением

Изобретение относится к области энергетики, гидравлических и пневматических устройств, в частности для сжатия и перемещения газов и жидкостей. Машина содержит цилиндр 1 и размещенный в нем с радиальным зазором δ в верхней части дифференциальный поршень 2 со штоком 3 с образованием верхней...
Тип: Изобретение
Номер охранного документа: 0002660982
Дата охранного документа: 11.07.2018
13.07.2018
№218.016.70ba

Порошковая проволока

Изобретение может быть использовано для восстановления и упрочнения уплотнительных поверхностей запорной и дросселирующей арматуры, торцевых уплотнений контактных пар. Порошковая проволока состоит из стальной оболочки и порошкообразной шихты и содержит компоненты в следующем соотношении, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002661159
Дата охранного документа: 12.07.2018
Показаны записи 81-90 из 95.
10.04.2019
№219.017.0744

Способ управления ракетами космического назначения

Изобретение относится к ракетно-космической технике и может быть использовано при расчете энергетически оптимальных программ управления выведением первых ступеней ракет космического назначения (РКН) исходя из снижения влияния ограничений, обусловленных обеспечением падения отделяющихся частей...
Тип: Изобретение
Номер охранного документа: 0002456217
Дата охранного документа: 20.07.2012
29.05.2019
№219.017.69f7

Способ увода космического мусора с орбит полезных нагрузок на основе использования отделившейся части ракеты-носителя, разгонного блока и устройство для его реализации

Изобретение относится к области космической техники и может быть использовано для очистки околоземного космического пространства от прекративших активное существование космических аппаратов, их обломков, отделившихся частей (ОЧ) последних ступеней ракет-носителей (РН) и разгонных блоков (РБ)....
Тип: Изобретение
Номер охранного документа: 0002462399
Дата охранного документа: 27.09.2012
04.06.2019
№219.017.72e2

Способ проведения лётно-конструкторских испытаний бортовой системы испарения остатков жидкого топлива в баке отработавшей ступени ракеты-носителя

Изобретение относится к автономной бортовой системе спуска (АБСС) отработавшей ступени (ОС) ракеты-носителя (РН) с маршевыми ЖРД. Способ включает испытания входящей в состав АБСС системы испарения остатков жидкого топлива в баке ОС в процессе пуска РН, исключая другие элементы АБСС. Перед...
Тип: Изобретение
Номер охранного документа: 0002690304
Дата охранного документа: 31.05.2019
19.06.2019
№219.017.8a54

Способ увода отделившейся части ракеты-носителя с орбиты полезной нагрузки и двигательная установка для его осуществления

Изобретение относится к ракетно-космической технике. Способ увода на орбиту утилизации отделяющейся части ракеты-носителя (ОЧРН). ОЧРН придают вращение вокруг продольной оси до достижения стабилизации ее углового положения в пространстве, затем газифицируют остатки жидких невыработанных...
Тип: Изобретение
Номер охранного документа: 0002406856
Дата охранного документа: 20.12.2010
22.06.2019
№219.017.8e9c

Способ минимизации зон отчуждения для отделяемых частей ракет-носителей

Изобретение относится к конструкции и эксплуатации ракет-носителей (РН) и их отделяемых частей (ОЧ): отработавших ступеней, переходных отсеков, створок головных обтекателей и т.п. Способ включает этап предполетной подготовки РН, на котором рассчитывают параметры движения ОЧ, определяя участки...
Тип: Изобретение
Номер охранного документа: 0002692207
Дата охранного документа: 21.06.2019
29.06.2019
№219.017.9f36

Способ спуска отделяющейся части ступени ракеты космического назначения и устройство для его осуществления

Изобретения относятся к ракетно-космической технике, в частности к ракетам-носителям на жидком топливе, а именно к отделяющейся части ракеты космического назначения на жидких компонентах топлива и к способу спуска ее в заданный район. Способ спуска отделяющейся части ракеты космического...
Тип: Изобретение
Номер охранного документа: 0002414391
Дата охранного документа: 20.03.2011
02.10.2019
№219.017.cded

Способ минимизации зон отчуждения для отделяемых частей ракет-носителей и устройство для его реализации

Группа изобретений относится к ракетно-космической технике и может быть использована для сокращения районов падения отделяющихся частей ступеней ракет-носителей. Технический результат – снижение районов падения отделяемых частей путем их сжигания на атмосферном участке траектории спуска....
Тип: Изобретение
Номер охранного документа: 0002700150
Дата охранного документа: 12.09.2019
08.11.2019
№219.017.df4d

Головной обтекатель ракеты-носителя

Изобретение относится к головному обтекателю (ГО) ракеты-носителя (РН), сжигаемому после отделения от РН на атмосферном участке траектории спуска ГО. ГО представляет собой трехслойную конструкцию из полимерных композиционных материалов в виде двухстворчатой оболочки переменной кривизны,...
Тип: Изобретение
Номер охранного документа: 0002705258
Дата охранного документа: 06.11.2019
19.12.2019
№219.017.ef44

Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ газификации невырабатываемых остатков жидкого кислорода и керосина предусматривает подачу источника тепловой энергии из отдельной ёмкости (8) в баки (2, 3) с остатками компонентов топлива в жидкой (4, 5) и газообразной фазах, газа...
Тип: Изобретение
Номер охранного документа: 0002709291
Дата охранного документа: 17.12.2019
11.07.2020
№220.018.3194

Способ спуска отделяющейся части ступени ракеты-носителя и устройство для его осуществления

Группа изобретений относится к ракетам-носителям (РН) с жидкостными ракетными двигателями (ЖРД). Способ спуска отделяющейся части (ОЧ) ступени РН основан на ориентации и стабилизации положения ОЧ двигательной установкой вперед, приложении управляющих моментов путём сброса продуктов газификации...
Тип: Изобретение
Номер охранного документа: 0002726214
Дата охранного документа: 09.07.2020
+ добавить свой РИД