×
29.12.2017
217.015.fb65

Результат интеллектуальной деятельности: БОРФТОРСОДЕРЖАЩАЯ ЭНЕРГОЕМКАЯ КОМПОЗИЦИЯ ДЛЯ ЭНЕРГЕТИЧЕСКИХ КОНДЕНСИРОВАННЫХ СИСТЕМ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к борфторсодержащим композициям, которые могут быть использованы в качестве высококалорийных компонентов энергетических конденсированных систем (ЭКС), например порохов, пиротехнических и взрывчатых составов, смесевых твердых ракетных топлив и т.п. Борфторсодержащая энергоемкая композиция для энергетических конденсированных систем содержит в качестве горючего додекагидро-клозо-додекаборат хитозана (COHNH)BH и в качестве кислородного окислителя перхлорат хитозана COHNHClO и дополнительно содержит ультрадисперсный политетрафторэтилен (УПТФЭ) в количестве, обеспечивающем полноту и скорость перехода бора боргидридного соединения в оксофторид бора (BOF). Композицию получают смешением влажного свежеосажденного додекагидро-клозо-додекабората хитозана, водного геля перхлората хитозана и УПТФЭ в виде этанольной дисперсии в соответствующем количестве до однородного геля, при этом оптимальное мольное соотношение додекагидро-клозо-додекаборат хитозана : перхлорат хитозана : УПТФЭ равно 1:1:3. Изобретение обеспечивает получение гомогенных борфторсодержащих энергоемких композиций, отличающихся полнотой сгорания и перспективных для использования их в качестве высококалорийных компонентов ЭКС. 2 н. и 4 з.п. ф-лы, 7 пр.

Изобретение относится к борфторсодержащим композициям, которые могут быть использованы в качестве высококалорийных компонентов энергетических конденсированных систем (ЭКС), например порохов, пиротехнических и взрывчатых составов, смесевых твердых ракетных топлив и т.п.

Известно использование бора и его соединений в качестве энергоемких добавок в ЭКС. Например, смесь бора, порошкообразного бериллия, лития или декаборана предложена в качестве высокоэффективного горючего. Запатентованы композиции на основе декаборана, алкилдекаборана, а также твердые продукты, получающиеся из декаборана и дихлорэтана с AlCl3 или декаборана и ацетиленовых углеводородов в композиции с различными окислителями в качестве ракетного топлива (Сарнер С. Химия ракетных топлив. М.: Мир, 1969. 488 С.).

Недостатком использования в ЭКС бора, получаемого по существующей технологии, является высокое содержание в качестве примеси магния (до 20%), что резко понижает его калорийность.

Недостатком использования в ЭКС декаборана является высокая химическая активность, летучесть при комнатной температуре, а также токсичность.

Большей химической и термической устойчивостью, а также нетоксичностью обладают полиэдрические боргидридные анионы. Запатентовано использование солей NH4B11H14 [Пат. США №3795491, опубл. 05.03.1974 г.); (NR1NR2)2B10H10 (R1, R2-алифатический радикал или Н) (Пат. США №3126305, опубл. 24.03.1964 г.] в качестве добавок в ракетные топлива. Декагидро-клозо-декаборат цезия Cs2B10H10 в смеси с окислителями образует высокоэнергетические горючие составы [Пат. США №3149010, опубл. 15.09.1964 г.]. Декагидро-клозо-декаборат гуанидиния и его производные предложено использовать в воспламеняющихся и пиротехнических составах [Пат. США №4108679, опубл. 22.08.1978 г.; пат. США №4130585, опубл. 19.12.1978 г.]. Для запальных и пиротехнических устройств известно использование двойных солей Cs2B10H10×CsNO3 [Пат. США №3107613, опубл. 22.10.1963 г.] и Cs2B12H12×CsNO3 [Пат. США №3184286, опубл. 18.05.1965 г.]. Представляет интерес введение в качестве энергоемкого компонента в ЭКС додекагидро-клозо-додекаборат хитозания (C6O4H9NH3)2B12H12 [Пат. РФ №2158221, опубл. 27.10.2000 г.].

Недостатком бора и его соединений в качестве энергоемких горючих в целом является образование в продуктах сгорания оксида бора, который может наплавляться на стенки сопла ракетного двигателя, что приводит к его забиванию и выводу из строя.

Этот недостаток устраним при использовании в качестве окислителей фтора и фторсодержащих соединений, например дифторида кислорода, дифторида азота, трифторида хлора, пентафторида хлора, триоксофторида хлора [Сарнер С. Химия ракетных топлив. М.: Мир, 1969 г.. 488 С.]. В этом случае в качестве продуктов окисления образуются летучие трифторид BF3 или оксофторид бора (BOF)3. Хотя теплота образования оксофторида бора (BOF)3 (3,15 ккал/г) имеет промежуточное значение между теплотами образования оксида бора B2O3 (3,02 ккал/г) и трифторида бора BF3 (3,98 ккал/г), он термически более стабилен, чем каждое из указанных соединений. Кроме того (BOF)3 не диссоциирует при высоких температурах, что положительно отражается на удельном импульсе.

Недостатком вышеперечисленных фтор-окислителей является их высокая химическая активность и невозможность их использования в ЭКС, т.к. это газообразные или жидкие вещества.

Известны энергоемкие металл-фторполимерные композиции. В качестве окислителя в них используется политетрафторэтилен (ПТФЭ) в виде порошка фторопласта-4, химической формулы отличающийся высокой устойчивостью. Молекулярная масса этого полимера составляет 140000-500000, которой соответствует среднее значение n=3200. В качестве горючего в этих смесях применяют порошки таких активных металлов, как алюминий, магний, титан, цирконий [Лемперт Д.Б., Нечипоренко Г.Н., Согласнова С.И. Влияние добавок алюминия на величину удельного импульса фторсодержащих композиций смесевых твердых ракетных топлив // Материалы IV Всероссийской конференции «Энергетические конденсированные системы». Черноголовка. 2006 г. С. 61].

Данные композиты получают механохимически методом совместного помола компонентов в шаровой мельнице, в результате чего идет измельчение частиц ПТФЭ, взятого в виде порошка фторопласта-4. Этот подход позволяет получить активные смеси с тонким распределением горючего и окислителя.

Недостатком ПТФЭ в виде фторопласта-4 является крупноразмерность его частиц (160-200 мкм), которые химически малоактивны без предварительного измельчения. Другим недостатком таких композиций является относительно низкая теплота сгорания заявленных металлов до фторидов: AlF3 - 3,41, MgF2 - 2,84, ZrF4 - 2,39 ккал/г или оксофторида алюминия AlOF - 2,25 ккал/г [Сарнер С. Химия ракетных топлив. М.: Мир, 1969 г. 488 С.]. Кроме того, AlF3 и MgF2 образуют твердые отложения на стенках ракетного двигателя, что ухудшает его работу.

Недостатком способа получения таких композиций является опасность их взрывного разложения в результате резкого подъема температуры в ходе их механохимической обработки. Для устранения этого в смеси добавляют инертные растворители, последующее удаление которых усложняет способ [Материалы IV Всероссийской конф. «Энергетические конденсированные системы». Черноголовка. 2006. С. 61].

Известны композиции на основе ультрадисперсного политетрафторэтилена (УПТФЭ), получаемого путем частичной термодеструкции фторопласта-4 при 490-510°C в среде газообразных продуктов термодеструкции [Пат. РФ №1775419, опубл. 15.11.1992 г.], частицы которого имеют сферическую форму размером 0,1-1,0 мкм. УПТФЭ обладает всеми химическими свойствами политетрафторэтилена. Средняя молекулярная масса УПТФЭ составляет 3200 а.е.м., что соответствует структурной формуле (C2F4)32. В качестве горючего в них используются интеркалированные соединения оксида графита (ОГ) с додекагидро-клозо-додекаборатной кислотой H2B12H12 с получением композиции состава ОГ×H2B12H12 - УПТФЭ [Пат. РФ №2479560, опубл. 20.04.2013 г.].

Данные композиции получают смешением водного геля оксида графита с УПТФЭ под действием высокоскоростной мешалки или ультразвуковой обработки, исключающей перегрев смеси и ее взрывное разложение. Далее в гомогенные смеси УПТФЭ с оксидом графита добавляют додекагидро-клозо-додекаборатную кислоту с образованием интеркалированных соединений оксида графита, которые одновременно играют роль полимерного связующего. В результате последующей сушки композиции могут быть получены в твердом виде (порошки, пленки, пластины, гранулы различной формы и размеров).

Преимуществом УПТФЭ в качестве окислителя по сравнению с ПТФЭ, взятого в виде фторопласта-4 (размер частиц 160-200 мкм), является ультрадисперсность его частиц (0,1-1,0 мкм), что не требует их предварительного измельчения и активации. Не менее важным преимуществом таких композиций является летучесть фтористых соединений бора, которые выделяются в результате химического взаимодействия додекагидро-клозо-додекаборатной кислоты H2B12H12, входящей в состав интеркалированного соединения с (C2F4)32, что обеспечивает чистоту сопла ракетного двигателя.

К существенному недостатку данного способа можно отнести то, что для получения однородных дисперсий УПТФЭ в геле оксида графита проводят высокоэнергетическое воздействие на смеси. Вследствие этого происходит постепенная активация частиц УПТФЭ за счет появления в структуре полимера дислокаций, вакансий, сдвигов и других дефектов. В итоге частички УПТФЭ становятся гидрофильными, переходя с поверхности в объем водного геля оксида графита.

Еще одним недостатком таких композиций является сложность получения исходной H2B12H12 и ее дороговизна. По разработанным к настоящему времени способам ее получения [Кузнецов Н.Т., Солнцев К.А., Агафонов А.В. Некоторые закономерности синтеза клозо-гидроборатов // Координ. хим. 1979 г.. Т. 5, №9. С. 1297-1298], на первой стадии идет высокотемпературный синтез ее солей, как правило, натриевой Na2B12H12. После обработки реакционного продукта водой хорошо растворимый додекагидро-клозо-додекаборат натрия Na2B12H12 переходит в водный раствор, из которого его осаждают в виде додекагидро-клозо-додекабората цезия Cs2B12H12 [Кузнецов Н.Т., Солнцев К.А., Куликова Л.Н. О синтезе чистых солей с анионом B12H122- // Координ. хим. 1976 г. Т. 2, №11. С. 1574-1575], который подвергают многократной перекристаллизации с целью очистки его от примесей. Наконец, пропусканием раствора Cs2B12H12 через катионитную смолу КУ-2 его переводят в кислоту Н2В12Н12. Особенностью катионообменного процесса является необходимость работать с разбавленными растворами. В результате на выходе получают кислоту концентрацией не более 5 масс. %. Естественно это приводит к низкой концентрации синтезируемых с ее участием композиций и, как следствие, к дополнительным энергозатратам при длительной сушке таких композиций.

Наиболее близкими по технической сущности к заявляемому изобретению являются энергоемкие композиции, в которых в качестве горючего используют додекагидро-клозо-додекаборат хитозана в сочетании с окислителем перхлоратом хитозана состава (C6O4H9NH3)2B12H12-C6O4H9NH3ClO4 [Пат. РФ №2315774, опубл. 27.01.2008, Бюл. №3].

Указанные составы получают добавлением в вязкий раствор перхлората хитозана C6O4H9NH3ClO4 додекагидро-клозо-додекабората хитозана (C6O4H9NH3)2B12H12 в виде тонкодисперсного порошка (или свежеполученного сметанообразного раствора, или влажного пастообразного продукта) с последующим совместным концентрированием полученной смеси. В процессе концентрирования вязкость раствора перхлората хитозана еще больше увеличивается, в результате чего формируется композиция с равномерным распределением окислителя и горючего. После сушки при 110°C получают однородный твердый полимерный состав. Равномерное распределение солей в этих составах достигается не только за счет высокой вязкости образующегося раствора, но и благодаря тому, что B12H122--анионы являются электронно-дефицитными системами в отличие от ClO4--анионов, содержащих в своей структуре большое число донорных атомов кислорода, имеющих неподеленные пары электронов. Поэтому при испарении воды идет сближение олигомеров солей за счет донорно-акцепторного взаимодействия

B12H122- и ClO4--анионов, что подтверждается смещением характеристических полос валентных колебаний исходных анионов по сравнению с индивидуальными соединениями. В результате образуется однородный с равномерным распределением окислителя и горючего твердый полимерный состав.

Преимуществом таких композитов является использование в качестве горючего додекагидро-клозо-додекабората хитозана (C6O4H9NH3)2B12H12. Он более прост в получении по сравнению с H2B12H12. Благодаря нерастворимости (C6O4H9NH3)2B12H12 в воде в отличие от хорошо растворимых солей хитозана с побочными анионами, присутствующими в реакционном продукте, делается возможным его селективное выделение из сложных водно-солевых растворов на первой стадии [Салдин В.И., Суховей В.В., Игнатьева Л.Н., Слободюк А.Б., Бузник В.М., Михайлова Ю.М. Извлечение додекагидро-клозо-додекаборатного аниона из водных растворов с помощью хитозана // Химическая технология. 2009 г. Т. 10. №4. С. 193-197], а не в конце многостадийной и длительной цепочки химических превращений, как в случае с H2B12H12. При этом (C6O4H9NH3)2B12H12 получают очень чистым и в концентрированном виде.

Недостатком композиций, полученных по способу-прототипу, является неполнота сгорания додекагидро-клозо-додекабората хитозана. Происходит это из-за того, что, как уже отмечалось, при горении бора и его соединений на воздухе на поверхности горящих частиц идет образование защитного расплава кислородных соединений бора.

Задачей изобретения является повышение полноты сгорания композиции на основе додекагидро-клозо-додекаборат хитозана - перхлорат хитозана.

Поставленная задача решается созданием тройных композиций додекагидро-клозо-додекаборат хитозана - перхлорат хитозана - ультрадисперсный политетрафторэтилен (УПТФЭ) путем совместного концентрирования ее составляющих, при этом УПТФЭ берут в виде этанольной дисперсии в количестве, обеспечивающем полноту и скорость перехода бора боргидридного соединения в оксофторид бора (BOF)3, оптимальное мольное соотношение додекагидро-клозо-додекабората хитозана : перхлорат хитозана : УПТФЭ равно 1:1:3.

Использование этанольной дисперсии УПТФЭ существенно упрощает способ ее получения за счет отказа от трудоемкого процесса гидрофилизации порошка УПТФЭ под действием ультразвука или высокоскоростного перемешивания, который используется для получения борфторсодержащей композиции ОГ×H2B12H12 - УПТФЭ.

Сущность предлагаемого изобретения заключается во введении УПТФЭ в качестве фтор-окислителя в виде этанольной дисперсии в композицию (C6O4H9NH3)2B12H12 - C6O4H9NH3ClO4. Патентный поиск показал, что тройные композиции (C6O4H9NH3)2B12H12 - C6O4H9NH3ClO4 - УПТФЭ к настоящему времени не известны, их получение и свойства не описаны. В результате проведенных исследований разработан состав композиций, способ их получения, описаны физико-химические свойства с помощью химического, рентгенофазового анализов, ИК-спектроскопии, термогравиметрии.

Технический результат предлагаемого изобретения заключается в технологически простом способе получения гомогенных борфторсодержащих композиций, отличающихся полнотой сгорания и перспективных для использования их в качестве высококалорийных компонентов ЭКС.

При разработке составов заявляемых композиций принимали во внимание то, что содержание УПТФЭ в них должно обеспечивать выделение бора в виде летучего оксофторида бора (BOF)3 согласно схеме:

(C6O4H9NH3)2B12H12×C6O4H9NH3ClO4+3(C2F4)32+O2→4(BOF)3

Соотношение перхлората хитозана и додекагидро-клозо-додекабората хитозана в заявляемых композициях не является определяющим фактором, поскольку не влияет на полноту окисления бора до (BOF)3. На это влияет содержание УПТФЭ. Однако при увеличении количества перхлората хитозана больше 1 моля на 1 моль додекагидро-клозо-додекабората хитозана уменьшается удельная энергоемкость композиции, т.к. падает доля горючего.

Тройные композиции (C6O4H9NH3)2B12H12 - C6O4H9NH3ClO4 - УДПТФЭ получают смешением водного геля перхлората хитозана со свежеосажденным додекагидро-клозо-додекаборатом хитозана, после чего в полученную смесь вводят дисперсию УПТФЭ в этиловом спирте, затем полученную гелеобразную смесь сушат на воздухе при 105°C до постоянной массы. В результате сушки этой смеси при 105°C получают композицию в виде твердого продукта. В этанольной дисперсии УПТФЭ, которую используют в заявляемом изобретении, частички (C2F4)32 полностью смочены спиртом и находятся в объеме раствора. Однако было неизвестно, как поведет себя смесь этанольной дисперсии УПТФЭ с водными гелями додекагидро-клозо-додекабората и перхлората хитозана. Лабораторные исследования показали, что при этом не происходит коагуляции, расслаивания смесей или проявления гидрофобных свойств частичек УПТФЭ, а также выход их из объема раствора и скопление на его поверхности, т.е. разрушения композиции. Наоборот, предложенный технологический способ позволяет получить устойчивые гомогенные гелеобразные композиции. Вдобавок к этому, благодаря повышенной вязкости перхлората хитозана, не происходит оседания частиц УПТФЭ и додекагидро-клозо-додекабората хитозана в процессе сушки, что обеспечивает гомогенность получаемых твердых композиций.

В качестве исходного хитозана, из которого получали его соли, использовали продукт производства ООО «Биополимеры» (г. Партизанск, Приморский край) по ТУ 9283-174-200472012-03 со степенью дезацетилирования 75,0%, имеющий следующий элементный состав, масс. %: С - 45,5; Н - 6,8; N - 8,1; О - 39,6. Это соответствует брутто-формуле C6,5O4,25H9,5NH2 и его относительной молекулярной массе 171,7 а.е.м. Исходя из этого молекулярный вес додекагидро-клозо-додекабората хитозана (С6,5О4,25H9,5NH3)2B12H12 составляет 487,26 а.е.м., а перхлората хитозана C6,5O4,25H9,5NH3ClO4 равен 272,16 а.е.м. Эти значения использованы для расчета составов композиций.

Изобретение иллюстрируется следующими примерами.

Пример 1. 2,6114 г влажного свежеосажденного додекагидро-клозо-додекабората хитозана, содержащего 0,4970 г (1,02 ммоль) (C6,5O4,25H9,5NH3)2B12H12, смешивают с 5,5220 г водного геля перхлората хитозана, содержащего 0,2776 г (1,02 ммоль) С6,5O4,25Н9.5NH3ClO4, и добавляют в полученную смесь 2,2818 г этанольной дисперсии УПТФЭ, содержащей 0,3061 г (3,03 ммоль) (C2F4)32. В результате получают композицию с мольным отношением (C6O4H9NH3)2B12H12 - C6O4H9NH3ClO4 - 3,0 УПТФЭ (мольное отношение додекагидро-клозо-додекабората хитозана к УПТФЭ равно 1 к 3). Гелеобразную смесь сушат на воздухе при 105°C до постоянного веса и получают 1,0753 г желтоватого твердого продукта. Это соответствует 99,5%-ному выходу от суммы исходных компонентов. При поджигании кусочка композита он энергично сгорает с образованием газообразного продукта.

Пример 2. 2,6879 г влажного свежеосажденного додекагидро-клозо-додекабората хитозана, содержащего 0,5116 г (1,05 ммоль) (С6,5O4,25Н9,5H3)2В12Н12, смешивают с 11,3690 г водного геля перхлората хитозана, содержащего 0,5715 г (2,10 ммоль) C6,5O4,25H9,5NH3ClO4, и добавляют в полученную смесь 2,3485 г этанольной дисперсии УПТФЭ, содержащей 0,3151 г (3,15 ммоль) (C2F4)32. В результате получают композицию с мольным отношением (C6O4H9NH3)2B12H12 - 2,0 C6O4H9NH3ClO4 - 3,0 УПТФЭ (мольное отношение додекагидро-клозо-додекабората хитозана к УПТФЭ равно 1 к 3). Гелеобразную смесь сушат на воздухе при 105°C до постоянного веса и получают 1,3884 г желтоватого твердого продукта. Это соответствует 99,3%-ному выходу от суммы исходных компонентов. При поджигании кусочка композита он энергично сгорает с образованием газообразного продукта.

Пример 3. 2,6113 г влажного свежеосажденного додекагидро-клозо-додекабората хитозана, содержащего 0,4970 г (1,02 ммоль) (C6,5O4,25H9,5NH3)2B12H12, смешивают с 16,5662 г водного геля перхлората хитозана, содержащего 0,8328 г (3,06 ммоль) С6,5O4,25Н9,5NH3ClO4, и добавляют в полученную смесь 2,2814 г этанольной дисперсии УПТФЭ, содержащей 0,3061 г (3,06 ммоль) (C2F4)32. В результате получают композицию с мольным отношением (C6O4H9NH3)2B12H12 - 3,0 C6O4H9NH3ClO4 - 3,0 УПТФЭ (мольное отношение додекагидро-клозо-додекабората хитозана к УПТФЭ равно 1 к 3). Гелеобразную смесь сушат на воздухе при 105°C до постоянного веса и получают 1,6261 г желтоватого твердого продукта. Это соответствует 99,4%-ному выходу от суммы исходных компонентов. При поджигании кусочка композита он энергично сгорает с образованием газообразного продукта.

Пример 4. 2,6865 г влажного свежеосажденного додека-гидро-клозо-додекабората хитозана, содержащего 0,5113 г (1,05 ммоль) (C6,5O4,25H9,5NH3)2B12H12, смешивают с 5,7160 г водного геля перхлората хитозана, содержащего 0,2858 г (1,05 ммоль) С6,5O4,25Н9,5NH3ClO4, и добавляют в полученную смесь 2,2765 г этанольной дисперсии УПТФЭ, содержащей 0,3054 г (3,04 ммоль) (C2F4)32, что соответствует композиции с мольным отношением (C6O4H9NH3)2B12H12 - C6O4H9NH3ClO4 - 2,9 УПТФЭ (мольное отношение додекагидро-клозо-додекабората хитозана к УПТФЭ равно 1 к 2,9). Гелеобразную смесь сушат на воздухе при 105°C до постоянного веса и получают 1,0959 г желтоватого твердого продукта. Это соответствует 99,4%-ному выходу от суммы исходных компонентов. При поджигании кусочка композита он энергично сгорает с образованием незначительного твердого остатка темного цвета. По данным ренгенофазового анализа он представляет смесь борной кислоты и сажи. Присутствие в ИК-спектрах полосы при 2490 см-1 говорит о наличии в остатке недоокисленного додекагидро-клозо-додекаборатного аниона.

Пример 5. 2,7137 г влажного свежеосажденного додекагидро-клозо-додекабората хитозана, содержащего 0,5165 г (1,06 ммоль) (C6,5O4,25H9,5NH3)2B12H12, смешивают с 11,4773 г водного геля перхлората хитозана, содержащего 0,5770 г (2,12 ммоль) C6,5O4,25H9,5NH3ClO4, и добавляют в полученную смесь 2,2143 г этанольной дисперсии УПТФЭ, содержащей 0,2971 г (2,97 ммоль) (C2F4)32, что соответствует композиции с мольным отношением (C6O4H9NH3)2B12H12 - 2,0 C6O4H9NH3ClO4 - 2,8 УПТФЭ (мольное отношение додекагидро-клозо-додекабората хитозана к УПТФЭ равно 1 к 2,8). Гелеобразную смесь сушат на воздухе при 105°C до постоянного веса и получают 1,3836 г желтоватого твердого продукта. Это соответствует 99,5%-ному выходу от суммы исходных компонентов. При поджигании кусочка композита он энергично сгорает с образованием незначительного твердого остатка темного цвета. По данным ренгенофазового анализа он представляет смесь борной кислоты и сажи. Присутствие в ИК-спектрах полосы при 2490 см-1 говорит о наличии в остатке недоокисленного додекагидро-клозо-додекаборатного аниона.

Пример 6. 2,7654 г влажного свежеосажденного додекагидро-клозо-додекабората хитозана, содержащего 0,5263 г (1,08 ммоль) (C6,5O4,25H9,5NH3)2B12H12, смешивают с 5,8800 г водного геля перхлората хитозана, содержащего 0,2940 г (1,08 ммоль) C6,5O4,25H9,5NH3ClO4, и добавляют в полученную смесь 2,4978 г этанольной дисперсии, содержащей 0,3351 г (3,35 ммоль) (C2F4)32, что соответствует композиции с мольным отношением (C6O4H9NH3)2B12H12 - C6O4H9NH3ClO4 - 3,1 УПТФЭ (мольное отношение додекагидро-клозо-додекабората хитозана к УПТФЭ равно 1 к 3,1). Гелеобразную смесь сушат на воздухе при 105°C до постоянного веса и получают 1,1496 г желтоватого твердого продукта. Это соответствует 99,5%-ному выходу от суммы исходных компонентов. При поджигании композиции она энергично сгорает с образованием белого облачка газообразного продукта. По данным рентгенофазового анализа и ИК-спектроскопии продуктом его конденсации является УПТФЭ.

Пример 7. 2,8161 г влажного свежеосажденного додекагидро-клозо-додекабората хитозана, содержащего 0,5360 г (1,10 ммоль) (C6,504,25H9,5NH3)2B12H12, смешивают с 11,9104 г водного геля перхлората хитозана, содержащего 0,5988 г (2,20 ммоль) C6,5O4,25H9,5NH3ClO4, и добавляют в полученную смесь 2,5423 г этанольной дисперсии, содержащей 0,3411 г (3,41 ммоль) (C2F4)32, что соответствует композиции с мольным отношением (C6O4H9NH3)2B12H12 - 2,0 C6O4H9NH3ClO4 - 3,1 УПТФЭ (мольное отношение додекагидро-клозо-додекабората хитозана к УПТФЭ равно 1 к 3,1). Гелеобразный композит сушат на воздухе при 105°C до постоянного веса и получают 1,4670 г желтоватого твердого продукта. Это соответствует 99,4%-ному выходу от суммы исходных компонентов. При поджигании композиции она энергично сгорает с образованием белого облачка газообразного продукта. По данным рентгенофазового анализа и ИК-спектроскопии продуктом его конденсации является УПТФЭ.

Из примеров следует, что:

1) оптимальное мольное соотношение додекагидро-клозо-додекабората хитозана к перхлорату хитозана и УПТФЭ составляет 1:1:3 (пример 1). Увеличение соотношения перхлората хитозана к додекагидро-клозо-додекаборату хитозана в композиции не влияет на полноту сгорания додекагидро-клозо-додекабората (примеры 2 и 3), а только снижает удельную энергоемкость композиции, т.к. доля горючего уменьшается;

2) при недостатке УПТФЭ в композиции (примеры 4, 5) ее сгорание происходит с образованием твердого остатка недогоревшего боргидридного компонента - додекагидро-клозо-додекабората хитозана;

3) при избыточном содержании УПТФЭ (пример 6, 7) фторполимер, не вступивший в реакцию с боргидридным компонентом додекагидро-клозо-додекаборатом хитозана, выделяется в виде белого облачка, что приводит к нерациональному использованию достаточно дорогого УПТФЭ.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 128.
27.01.2016
№216.014.bd4b

Способ получения додекагидро-клозо-додекабората калия

Изобретение может быть использовано в химической области. Способ получения додекагидро-клозо-додекабората калия включает проведение процесса пиролиза исходной смеси, содержащей тетрагидроборат натрия NaBH и тетрафтороборат калия KBF, в инертной атмосфере в интервале температур 280-475°C....
Тип: Изобретение
Номер охранного документа: 0002573679
Дата охранного документа: 27.01.2016
10.03.2016
№216.014.bf29

Способ получения прекурсора на основе гидратированного диоксида титана с наноразмерными металлическими частицами палладия для каталитически активного покрытия на инертном носителе

Изобретение относится к получению прекурсора на основе гидратированного диоксида титана для каталитически активного покрытия на инертном носителе, содержащего наноразмерные металлические частицы палладия. К коллоидному раствору силоксан-акрилатной эмульсии при перемешивании добавляют раствор...
Тип: Изобретение
Номер охранного документа: 0002576568
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c540

Способ получения нанодисперсных танталатов редкоземельных элементов

Изобретение относится к синтезу гептатанталатов европия EuTaO или тербия TbTaO, которые могут быть использованы в качестве рентгеноконтрастных веществ, люминофоров, покрытий рентгеновских экранов, оптоматериалов, материалов для электроники. Для получения нанодисперсных танталатов редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002574773
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.e8a3

Способ получения композиционного магнитного материала на основе оксидов кремния и железа

Изобретение относится к получению магнитного материала, содержащего диоксид кремния и оксид железа, и может быть использовано в производстве магнитных сорбентов. Способ получения композиционного магнитного материала в виде частиц с магнитным железосодержащим ядром и сорбционно-активной...
Тип: Изобретение
Номер охранного документа: 0002575458
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2e3e

Способ изготовления композиционных силовых панелей

Способ предназначен для изготовления композиционных силовых панелей. Способ включает формирование системы ребер силового набора каркаса намоткой гибкого волокнистого материала, пропитанного связующим, на матрицу, размещенную на оправке, последующее формирование обшивочного слоя панели намоткой...
Тип: Изобретение
Номер охранного документа: 0002579779
Дата охранного документа: 10.04.2016
27.08.2016
№216.015.5077

Способ получения волластонита

Изобретение относится к технологии переработки кальций- и кремнийсодержащих техногенных отходов борного производства (борогипса) и может быть использовано при производстве игольчатого волластонита для применения в цветной металлургии, в шинной, асбоцементной и лакокрасочной промышленности, в...
Тип: Изобретение
Номер охранного документа: 0002595682
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5104

Способ получения пористой биоактивной керамики на основе оксида циркония

Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани. Диоксид циркония смешивают с химически стойким стеклом марки ХС-2 №29 и...
Тип: Изобретение
Номер охранного документа: 0002595703
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.6eb1

Способ получения катодного материала для химических источников тока

Изобретение может быть использовано в промышленном синтезе катодных материалов для литиевых химических источников тока высокой энергоемкости. Древесину измельчают до размера частиц менее 2 мм и сушат в потоке сухого азота при 120-130°С. Затем реактор с измельченной и высушенной древесиной...
Тип: Изобретение
Номер охранного документа: 0002597607
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71ac

Аддукты додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами магния или алюминия и способ их получения

Изобретение относится к химии соединений додекагидро-клозо-додекаборатного , хитозана, солей магния и алюминия, а именно к аддуктам додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами магния или алюминия и способу их получения. Синтезированные новые продукты могут найти...
Тип: Изобретение
Номер охранного документа: 0002596741
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7cdd

Способ получения микропористого слоя на поверхности изделий из титана или его сплава

Изобретение относится к получению пористых структур на поверхности изделий из титана или его сплава и может быть использовано при изготовлении эндопротезов и зубных имплантатов на титановой основе, для подготовки поверхности титановых имплантатов под нанесение биосовместимых покрытий, а также...
Тип: Изобретение
Номер охранного документа: 0002600294
Дата охранного документа: 20.10.2016
Показаны записи 31-40 из 75.
27.01.2016
№216.014.bd4b

Способ получения додекагидро-клозо-додекабората калия

Изобретение может быть использовано в химической области. Способ получения додекагидро-клозо-додекабората калия включает проведение процесса пиролиза исходной смеси, содержащей тетрагидроборат натрия NaBH и тетрафтороборат калия KBF, в инертной атмосфере в интервале температур 280-475°C....
Тип: Изобретение
Номер охранного документа: 0002573679
Дата охранного документа: 27.01.2016
10.03.2016
№216.014.bf29

Способ получения прекурсора на основе гидратированного диоксида титана с наноразмерными металлическими частицами палладия для каталитически активного покрытия на инертном носителе

Изобретение относится к получению прекурсора на основе гидратированного диоксида титана для каталитически активного покрытия на инертном носителе, содержащего наноразмерные металлические частицы палладия. К коллоидному раствору силоксан-акрилатной эмульсии при перемешивании добавляют раствор...
Тип: Изобретение
Номер охранного документа: 0002576568
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c540

Способ получения нанодисперсных танталатов редкоземельных элементов

Изобретение относится к синтезу гептатанталатов европия EuTaO или тербия TbTaO, которые могут быть использованы в качестве рентгеноконтрастных веществ, люминофоров, покрытий рентгеновских экранов, оптоматериалов, материалов для электроники. Для получения нанодисперсных танталатов редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002574773
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.e8a3

Способ получения композиционного магнитного материала на основе оксидов кремния и железа

Изобретение относится к получению магнитного материала, содержащего диоксид кремния и оксид железа, и может быть использовано в производстве магнитных сорбентов. Способ получения композиционного магнитного материала в виде частиц с магнитным железосодержащим ядром и сорбционно-активной...
Тип: Изобретение
Номер охранного документа: 0002575458
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2e3e

Способ изготовления композиционных силовых панелей

Способ предназначен для изготовления композиционных силовых панелей. Способ включает формирование системы ребер силового набора каркаса намоткой гибкого волокнистого материала, пропитанного связующим, на матрицу, размещенную на оправке, последующее формирование обшивочного слоя панели намоткой...
Тип: Изобретение
Номер охранного документа: 0002579779
Дата охранного документа: 10.04.2016
27.08.2016
№216.015.5077

Способ получения волластонита

Изобретение относится к технологии переработки кальций- и кремнийсодержащих техногенных отходов борного производства (борогипса) и может быть использовано при производстве игольчатого волластонита для применения в цветной металлургии, в шинной, асбоцементной и лакокрасочной промышленности, в...
Тип: Изобретение
Номер охранного документа: 0002595682
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5104

Способ получения пористой биоактивной керамики на основе оксида циркония

Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани. Диоксид циркония смешивают с химически стойким стеклом марки ХС-2 №29 и...
Тип: Изобретение
Номер охранного документа: 0002595703
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.6eb1

Способ получения катодного материала для химических источников тока

Изобретение может быть использовано в промышленном синтезе катодных материалов для литиевых химических источников тока высокой энергоемкости. Древесину измельчают до размера частиц менее 2 мм и сушат в потоке сухого азота при 120-130°С. Затем реактор с измельченной и высушенной древесиной...
Тип: Изобретение
Номер охранного документа: 0002597607
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71ac

Аддукты додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами магния или алюминия и способ их получения

Изобретение относится к химии соединений додекагидро-клозо-додекаборатного , хитозана, солей магния и алюминия, а именно к аддуктам додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами магния или алюминия и способу их получения. Синтезированные новые продукты могут найти...
Тип: Изобретение
Номер охранного документа: 0002596741
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7cdd

Способ получения микропористого слоя на поверхности изделий из титана или его сплава

Изобретение относится к получению пористых структур на поверхности изделий из титана или его сплава и может быть использовано при изготовлении эндопротезов и зубных имплантатов на титановой основе, для подготовки поверхности титановых имплантатов под нанесение биосовместимых покрытий, а также...
Тип: Изобретение
Номер охранного документа: 0002600294
Дата охранного документа: 20.10.2016
+ добавить свой РИД