×
29.12.2017
217.015.fb55

Результат интеллектуальной деятельности: СПОСОБ ПОИСКА И ОБНАРУЖЕНИЯ ИСТОЧНИКОВ ГАММА-ИЗЛУЧЕНИЯ В УСЛОВИЯХ НЕРАВНОМЕРНОГО РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002640311
Дата охранного документа
27.12.2017
Аннотация: Изобретение относится к области дозиметрии, а именно к способу осуществления, поиска и обнаружения источников гамма-излучения. Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения дополнительно содержит этапы, на которых определяют источник с максимально активным излучением, проводят замер мощности излучения коллимированным детектором и одновременно определяют расстояние до источника с помощью детекторного лазерного дальномера, при этом оси коллимированного детектора и лазерного дальномера направляют параллельно с разнесением по горизонтали, регистрируют показания лазерного дальномера и значение дозы мощности, фиксируемой детектором, затем на основании этих данных вычисляют мощность дозы излучения реального источника, после чего для проверки адекватности измеренного расстояния до источника излучения перемещают ось нацеливания дальномера на величину разнесения по горизонтали, повторно измеряют и регистрируют расстояние, результаты поочередных измерений расстояния сравнивают и при расхождении в замерах в пределах погрешности лазерного дальномера информацию признают достоверной. Технический результат – повышение точности измерения расстояния до источника. 3 з.п. ф-лы, 1 ил.

Область техники

Изобретение относится к области дозиметрии, а именно к способу осуществления, поиска и обнаружения источников гамма-излучения и предназначено для ликвидации последствий радиационных инцидентов с помощью дистанционно-управляемых робототехнических комплексов и позволяет проводить аварийные работы в радиоактивно загрязненной зоне без присутствия человека.

Уровень техники

Известен способ дистанционного обнаружения ядерных зарядов (патент РФ №2068571, МПК G01T 1/29, опубл. 1996 г.), включающий определение вблизи обследуемого объекта интенсивности потока гамма-излучения в диапазоне 1,5-2,0 МэВ, затем дополнительно определяют интенсивность потока гамма-излучения вблизи 10,83 МэВ, устанавливают фоновое излучение в отмеченных интервалах, находят соотношение измеренных величин, по наличию заряда судят по соответствующему неравенству.

Способ позволяет определить наличие или отсутствие ядерных зарядов внутри обследуемого объекта при проведении измерений в непосредственной близости от него, но не позволяет определить местоположение источника на открытой местности, а также мощность излучения источника удаленного от измерительного устройства, что и относится к причинам, препятствующим использованию данного способа.

Известен способ дистанционного обнаружения радиоактивных объектов (патент РФ №2195006, МПК G01T 1/169, опубл. 2002 г.), включающий в себя определение расстояние до источника радиоактивного излучения и его дозиметрические характеристики путем измерения отношения интенсивностей испускания фотонов на энергетических линиях радионуклида, ослабленных слоем поглощающей среды, и позволяет определить расстояние до источника радиоактивного излучения и его дозиметрические характеристики.

К недостаткам способа можно отнести малую точность указания направления на обнаруженный источник и зависимость результатов измерений от изменения свойств поглощающей среды.

Известен способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения (патент РФ №2195005, МПК G01T 1/169, опубл. 2002 г.), заключающийся в регистрации излучения несколькими детекторами, размещенными на платформе мобильного робота (MP), для обнаружения источника в условиях неравномерно распределенного по площади радиоактивного загрязнения. Для чего регистрируют сигналы от первого и второго детекторов, разделенных экраном, добиваются их равенства путем поворота продольной оси MP в сторону области более интенсивного излучения, перемещают MP в указанном направлении до появления разности в сигналах от этих детекторов, регистрируют получение сигнала от третьего детектора, вызванного повышением мощности дозы при приближении к источнику гамма-излучения, и повторяют эти операции до момента получения сигнала от третьего детектора об уменьшении мощности дозы, свидетельствующего об обнаружении местонахождения источника.

К недостаткам способа относится то, что он не позволяет определить мощность излучения удаленного источника. Расположение детекторов излучения на корпусе подвижного аппарата РТК позволяет определить направление местонахождения источника, но не дает возможности определить конкретное положение источника на местности. По совокупности существенных признаков и достигаемому техническому результату, наиболее близким к заявляемому относится способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения по патенту РФ №2195005, который и выбран в качестве прототипа.

Раскрытие изобретения

Способ поиска и обнаружения источников гамма-излучения с помощью мобильного робота в условиях неравномерного радиоактивного загрязнения, включающий обнаружение источника излучения, замер мощности дозы излучения и регистрацию фиксируемого детектором значения мощности путем поочередного направления на источник излучения осей нацеливания детекторов, размещенных на платформе мобильного робота, определяют источник с максимально активным излучением, проводят замер мощности излучения коллимированным детектором и одновременно определяют расстояние доисточника с помощью детекторного лазерного дальномера, при этом оси коллимированного детектора и лазерного дальномера направляют параллельно с разнесением их между собой по горизонтали, регистрируют показания лазерного дальномера и значение дозы мощности фиксируемой детектором, затем на основании этих данных вычисляют мощность дозы излучения реального источника, после чего для проверки адекватности измеренного расстояния до источника излучения перемещают ось нацеливания дальномера на величину разнесения по горизонтали, повторно измеряют и регистрируют расстояние, результаты поочередных измерений расстояния сравнивают и при расхождении в замерах в пределах погрешности лазерного дальномера информацию признают достоверной. В случаях расхождения в замерах выше погрешности лазерного дальномера результаты измерений передают оператору для визуального выяснения причин расхождения результатов, при этом используют телекамеру, размещенную на подвижной платформе или на мобильном роботе. Обработку результатов измерений осуществляют с помощью программного обеспечения.

Задачей, на решение которой было направлено создание настоящего изобретения, является повышение надежности (достоверности) результатов измерений в процессе поиска радиоактивных источников за счет исключения случайных ошибок.

Технический результат

Техническим результатом является повышение точности измерения расстояния до источника, не зависящее от свойств поглощающей среды, как следствие, полное исключение ошибочных замеров мощности удаленного источника, возникающих вследствие некорректного измерения расстояния до него.

Краткое описание чертежей

Размещение на мобильном роботе дистанционно управляемого технологического оборудования, предназначенного для осуществления способа ликвидации последствий радиационных инцидентов, схематически представлено на фиг. 1, где

1 - коллимированный детектор гамма-излучения;

2 - лазерный дальномер;

3 – радиационно стойкая телекамера;

4 - платформа;

5 - привод качания платформы;

6 - привод ротации платформы;

7 - ось измерения мощности гамма-излучения;

8 - ось измерения расстояния до объекта.

Осуществление изобретения

Способ осуществляют следующим образом.

Начинают работу с определения источника с максимальным активным излучением, для чего исследуемая область условно разбивается на прямоугольные участки с размерами, не превышающими телесный угол коллимированного детектора, и при помощи приводов MP (5) или приводов (6) наклона и поворота коллимированного детектора (1) производятся замеры мощности гамма-излучения в каждом из участков. Для этого проводят замер мощности гамма-излучения коллимированным детектором (1) по оси (7) и одновременно определяют расстояние до источника с помощью детекторного лазерного дальномера (2) по оси (8). Коллимированный детектор (1) гамма-излучения производит измерение мощности гамма-излучения в узком телесном угле (порядка 1,5-2 градусов) вдоль оси (7), что позволяет точно определить направление на источник и разделять источники расположенные близко друг от друга. Для проведения этих измерений оси детекторов (1 и 2) направляют параллельно друг другу, но с разнесением их на некоторое расстояния по горизонтали, после чего регистрируют показания лазерного дальномера (2) и значение дозы мощности фиксируемой коллимированным детектором (1).

Пересчет мощности источника производят бортовым вычислительным устройством обратно-пропорционально квадрату расстояния от источника излучения до коллимированного детектора (1) гамма-излучения. При попадании на ось измерения расстояний (8) посторонних предметов, не относящихся к обследуемому источнику возможен ошибочный результат пересчета мощности источника на основании некорректных данных о расстоянии до него. Для исключения ошибочных замеров для проверки адекватности измеренного расстояния до источника излучения перемещают ось (8) нацеливания дальномера (2) на величину разнесения по горизонтали, повторно измеряют и регистрируют результаты. Полученные в результате поочередных измерений расстояния данные сравнивают и при расхождении в замерах в пределах погрешности лазерного дальномера (2) информацию признают достоверной.

В случаях, когда расхождения в замерах выше погрешности лазерного дальномера (2) результаты измерений передают оператору для визуального выяснения причин расхождения результатов, при этом используют радиационно стойкую телекамеру (3), размещенную на подвижной платформе (4) или на мобильном роботе.

На фиг. 1 схематически представлено размещение на мобильном роботе дистанционно-управляемого технологического оборудования, предназначенного для осуществления способа ликвидации последствий радиационных инцидентов, где 1 - коллимированный детектор гамма-излучения (1), лазерный дальномер (2), радиационно стойкая телекамера (3), установленные на платформе (4), привод качания платформы (5) и привод ротации платформы (6). Коллимированный детектор гамма-излучения (1) производит измерение мощности гамма-излучения вдоль оси (7). Лазерный дальномер производит измерение расстояния до объектов вдоль оси (8).

Испытания предлагаемого способа проводились на опытном полигоне (г. Зеленоград) с источниками гамма-излучения 60Co.

Уровень загрязнения и активность определяемых источников гамма излучения, допустимые для применения данного метода, определяются в основном коэффициентом направленности (или защитой) и нагрузочной способностью коллимированного детектора.

Разнесение осей коллимированного детектора и лазерного дальномера зависит от используемых материалов и конструкции этих приборов, на испытаниях были опробованы следующие величины разнесения: 80 мм, 100 мм, 120 мм.

Измерения проводились в помещениях, где был сравнительно низкий уровень радиационного фона, а также так в специальном подвальном помещении, где уровень радиационного фона был до 8 Р/ч.

В подвальном помещении были размещены трубопроводы, диаметры которых, 65-200 мм, были сопоставимы с величиной разнесения параллельных лучей по горизонтали. Наблюдалась ситуация, когда луч лазера отражался от трубопроводов, а точечный источник находился далеко за ними (оптическим препятствием) или наоборот. Для загроможденных аварийных производственных помещений такая ситуация является обычной. На объекте проводили замер мощности и определение расстояния до источника (с разнесением по горизонтали параллельных лучей на 100 мм). На основании этих данных вычисляли мощность дозы реального источника. Затем для проверки адекватности измеренного расстояния перемещали ось нацеливания дальномера на 100 мм (величина разнесения лучей по горизонтали) и проводили повторное измерение с регистрацией расстояния. Сравнивали результат. Если расхождения в замерах не было, информация признавалась достоверной.

Так как в расчет мощности дозы входит квадрат расстояния до источника излучения, то ошибка в определении расстояния в 2 раза неизбежно приведет к ошибке в определении мощности дозы в 4 раза, в 3 раза - в 9 раз и т.д.

В случае расхождения в результатах замеров оператор оценивал обстановку при помощи телекамеры, размещенной на подвижной платформе, и далее производят замеры с другой точки наблюдения, чтобы исключить оптическое препятствие.

Ранее при проведении измерений при обнаружении источника излучения без использования предлагаемого способа приводило к необходимости в подозрительных случаях (наличия в исследуемой области распределенных по дальности объектов) проводить повторные измерения из других точек наблюдения, что не всегда возможно в силу геометрии и загруженности помещений.

Сравнение результатов, полученных дистанционно в соответствии с предлагаемым способом, с результатами непосредственных замеров показало полное соответствие по координатам выявленных «горячих точек».

Проблемные результаты могут возникнуть при проведении достаточно удаленных измерений, когда разрешающая способность телевизионной камеры может оказаться недостаточной для точной компенсации сдвига между лучами. Конкретные значения зависят от качества телевизионной камеры (разрешение, ZOOM и т.д.) и обрабатывающей аппаратуры. Использовавшаяся аппаратура позволяла компенсировать сдвиг на расстояниях до 8-10 метров.

В процессе испытаний предлагаемого способа на опытном полигоне предприятия с использованием калибровочного радиоактивного источника в условиях приближенных к реальным не были зафиксированы ошибочные замеры мощности удаленного источника.

Таким образом испытания предлагаемого способа полностью доказали достижение технического результата, указанного выше, а именно значительное повышение точности измерения расстояния до источника, не зависящее от свойств поглощающей среды, как следствие полное исключение ошибочных замеров мощности удаленного источника за счет некорректного измерения расстояния до него.


СПОСОБ ПОИСКА И ОБНАРУЖЕНИЯ ИСТОЧНИКОВ ГАММА-ИЗЛУЧЕНИЯ В УСЛОВИЯХ НЕРАВНОМЕРНОГО РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ
СПОСОБ ПОИСКА И ОБНАРУЖЕНИЯ ИСТОЧНИКОВ ГАММА-ИЗЛУЧЕНИЯ В УСЛОВИЯХ НЕРАВНОМЕРНОГО РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 556.
27.11.2013
№216.012.853e

Способ получения дихлоргидринов глицерина

Изобретение относится к способу получения дихлоргидринов глицерина, которые являются промежуточными продуктами для синтеза эпихлоргидрина. Способ включает гидрохлорирование глицерина газообразным хлористым водородом при температуре 70-140°С в присутствии карбоновой кислоты и нерастворимого в...
Тип: Изобретение
Номер охранного документа: 0002499788
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.8620

Пассивная система охлаждения электронных компонент печатных плат

Изобретение относится к области электроники, в частности к охлаждению теплонапряженных компонентов постоянно работающих электронных приборов, включая компьютеры, а также к области теплотехники, в частности к тепловым трубам. Техническим результатом является повышение эффективности охлаждения за...
Тип: Изобретение
Номер охранного документа: 0002500014
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.8a5a

Способ эксплуатации ядерного реактора на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем

Изобретение относится к ядерной технике и может быть использовано в ядерных реакторах на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем. Способ эксплуатации ядерного реактора осуществляют в замкнутом топливном цикле с переходом в течение нескольких кампаний к работе...
Тип: Изобретение
Номер охранного документа: 0002501100
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a5b

Способ эксплуатации ядерного реактора на быстрых нейтронах с жидкометаллическим теплоносителем

Изобретение относится к ядерной технике и может быть использовано в ядерных реакторах на быстрых нейтронах с жидкометаллическим теплоносителем. Способ эксплуатации ядерного реактора на быстрых нейтронах с жидкометаллическим теплоносителем осуществляют в замкнутом топливном цикле с переходом в...
Тип: Изобретение
Номер охранного документа: 0002501101
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a5e

Устройство для резки чехла с отработавшим ядерным топливом в ячейке хранилища

Изобретение относится к области атомной техники и может быть использовано в устройствах для резки чехла с отработавшим ядерным топливом в ячейке хранилища. Устройство содержит вертикально-сверлильный станок, который установлен на платформе, расположенной с возможностью поворота относительно...
Тип: Изобретение
Номер охранного документа: 0002501104
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a60

Способ дезактивации материалов

Изобретение относится к ядерной технике и технологии, к дезактивации различных материалов, загрязненных радионуклидами. В заявленном способе дезактивацию проводят в две стадии: на первой стадии в разогретую до 110°C камеру дезактивации с загрязненными материалами подают пар, активированный...
Тип: Изобретение
Номер охранного документа: 0002501106
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e33

Устройство для определения максимальной энергии электронов

Предложено устройство для определения максимальной энергии электронов. Устройство содержит фильтр из электропроводящего материала с малым атомным весом и известной зависимостью пробега электронов от их энергии и детектор для регистрации электронов. Устройство выполнено в виде монолитного...
Тип: Изобретение
Номер охранного документа: 0002502086
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e76

Способ модификации поверхностей металлов или гетерогенных структур полупроводников

Изобретение относится к области машиностроения и может быть использовано в космических технологиях, авиастроении, автомобилестроении, станкостроении, технологиях создания строительных материалов и конструкций, в области трубопроводного транспорта и в технологии создания полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002502153
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.905a

Лазерное устройство контроля околоземного космического пространства

Изобретение относится к области лазерной локации. Лазерное устройство контроля околоземного космического пространства содержит установленные на первой оптической оси вспомогательный источник лазерного излучения, селектор угловых мод с первым зеркалом резонатора, задающий генератор рабочего...
Тип: Изобретение
Номер охранного документа: 0002502647
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9179

Способ стабилизации монорельсовой ракетной тележки (варианты) и устройство для его осуществления (варианты)

Изобретение относится к пусковым установкам, а именно к испытательным стендам. Стабилизирующее устройство монорельсовой ракетной тележки (РТ) содержит основной башмак с собственной парой крыльев в виде пластин и возможностью охвата рельсовой направляющей и перемещения вдоль нее, два крыла,...
Тип: Изобретение
Номер охранного документа: 0002502934
Дата охранного документа: 27.12.2013
Показаны записи 51-60 из 417.
27.11.2013
№216.012.853e

Способ получения дихлоргидринов глицерина

Изобретение относится к способу получения дихлоргидринов глицерина, которые являются промежуточными продуктами для синтеза эпихлоргидрина. Способ включает гидрохлорирование глицерина газообразным хлористым водородом при температуре 70-140°С в присутствии карбоновой кислоты и нерастворимого в...
Тип: Изобретение
Номер охранного документа: 0002499788
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.8620

Пассивная система охлаждения электронных компонент печатных плат

Изобретение относится к области электроники, в частности к охлаждению теплонапряженных компонентов постоянно работающих электронных приборов, включая компьютеры, а также к области теплотехники, в частности к тепловым трубам. Техническим результатом является повышение эффективности охлаждения за...
Тип: Изобретение
Номер охранного документа: 0002500014
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.8a5a

Способ эксплуатации ядерного реактора на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем

Изобретение относится к ядерной технике и может быть использовано в ядерных реакторах на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем. Способ эксплуатации ядерного реактора осуществляют в замкнутом топливном цикле с переходом в течение нескольких кампаний к работе...
Тип: Изобретение
Номер охранного документа: 0002501100
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a5b

Способ эксплуатации ядерного реактора на быстрых нейтронах с жидкометаллическим теплоносителем

Изобретение относится к ядерной технике и может быть использовано в ядерных реакторах на быстрых нейтронах с жидкометаллическим теплоносителем. Способ эксплуатации ядерного реактора на быстрых нейтронах с жидкометаллическим теплоносителем осуществляют в замкнутом топливном цикле с переходом в...
Тип: Изобретение
Номер охранного документа: 0002501101
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a5e

Устройство для резки чехла с отработавшим ядерным топливом в ячейке хранилища

Изобретение относится к области атомной техники и может быть использовано в устройствах для резки чехла с отработавшим ядерным топливом в ячейке хранилища. Устройство содержит вертикально-сверлильный станок, который установлен на платформе, расположенной с возможностью поворота относительно...
Тип: Изобретение
Номер охранного документа: 0002501104
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a60

Способ дезактивации материалов

Изобретение относится к ядерной технике и технологии, к дезактивации различных материалов, загрязненных радионуклидами. В заявленном способе дезактивацию проводят в две стадии: на первой стадии в разогретую до 110°C камеру дезактивации с загрязненными материалами подают пар, активированный...
Тип: Изобретение
Номер охранного документа: 0002501106
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e33

Устройство для определения максимальной энергии электронов

Предложено устройство для определения максимальной энергии электронов. Устройство содержит фильтр из электропроводящего материала с малым атомным весом и известной зависимостью пробега электронов от их энергии и детектор для регистрации электронов. Устройство выполнено в виде монолитного...
Тип: Изобретение
Номер охранного документа: 0002502086
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e76

Способ модификации поверхностей металлов или гетерогенных структур полупроводников

Изобретение относится к области машиностроения и может быть использовано в космических технологиях, авиастроении, автомобилестроении, станкостроении, технологиях создания строительных материалов и конструкций, в области трубопроводного транспорта и в технологии создания полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002502153
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.905a

Лазерное устройство контроля околоземного космического пространства

Изобретение относится к области лазерной локации. Лазерное устройство контроля околоземного космического пространства содержит установленные на первой оптической оси вспомогательный источник лазерного излучения, селектор угловых мод с первым зеркалом резонатора, задающий генератор рабочего...
Тип: Изобретение
Номер охранного документа: 0002502647
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9179

Способ стабилизации монорельсовой ракетной тележки (варианты) и устройство для его осуществления (варианты)

Изобретение относится к пусковым установкам, а именно к испытательным стендам. Стабилизирующее устройство монорельсовой ракетной тележки (РТ) содержит основной башмак с собственной парой крыльев в виде пластин и возможностью охвата рельсовой направляющей и перемещения вдоль нее, два крыла,...
Тип: Изобретение
Номер охранного документа: 0002502934
Дата охранного документа: 27.12.2013
+ добавить свой РИД