×
29.12.2017
217.015.fb55

Результат интеллектуальной деятельности: СПОСОБ ПОИСКА И ОБНАРУЖЕНИЯ ИСТОЧНИКОВ ГАММА-ИЗЛУЧЕНИЯ В УСЛОВИЯХ НЕРАВНОМЕРНОГО РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002640311
Дата охранного документа
27.12.2017
Аннотация: Изобретение относится к области дозиметрии, а именно к способу осуществления, поиска и обнаружения источников гамма-излучения. Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения дополнительно содержит этапы, на которых определяют источник с максимально активным излучением, проводят замер мощности излучения коллимированным детектором и одновременно определяют расстояние до источника с помощью детекторного лазерного дальномера, при этом оси коллимированного детектора и лазерного дальномера направляют параллельно с разнесением по горизонтали, регистрируют показания лазерного дальномера и значение дозы мощности, фиксируемой детектором, затем на основании этих данных вычисляют мощность дозы излучения реального источника, после чего для проверки адекватности измеренного расстояния до источника излучения перемещают ось нацеливания дальномера на величину разнесения по горизонтали, повторно измеряют и регистрируют расстояние, результаты поочередных измерений расстояния сравнивают и при расхождении в замерах в пределах погрешности лазерного дальномера информацию признают достоверной. Технический результат – повышение точности измерения расстояния до источника. 3 з.п. ф-лы, 1 ил.

Область техники

Изобретение относится к области дозиметрии, а именно к способу осуществления, поиска и обнаружения источников гамма-излучения и предназначено для ликвидации последствий радиационных инцидентов с помощью дистанционно-управляемых робототехнических комплексов и позволяет проводить аварийные работы в радиоактивно загрязненной зоне без присутствия человека.

Уровень техники

Известен способ дистанционного обнаружения ядерных зарядов (патент РФ №2068571, МПК G01T 1/29, опубл. 1996 г.), включающий определение вблизи обследуемого объекта интенсивности потока гамма-излучения в диапазоне 1,5-2,0 МэВ, затем дополнительно определяют интенсивность потока гамма-излучения вблизи 10,83 МэВ, устанавливают фоновое излучение в отмеченных интервалах, находят соотношение измеренных величин, по наличию заряда судят по соответствующему неравенству.

Способ позволяет определить наличие или отсутствие ядерных зарядов внутри обследуемого объекта при проведении измерений в непосредственной близости от него, но не позволяет определить местоположение источника на открытой местности, а также мощность излучения источника удаленного от измерительного устройства, что и относится к причинам, препятствующим использованию данного способа.

Известен способ дистанционного обнаружения радиоактивных объектов (патент РФ №2195006, МПК G01T 1/169, опубл. 2002 г.), включающий в себя определение расстояние до источника радиоактивного излучения и его дозиметрические характеристики путем измерения отношения интенсивностей испускания фотонов на энергетических линиях радионуклида, ослабленных слоем поглощающей среды, и позволяет определить расстояние до источника радиоактивного излучения и его дозиметрические характеристики.

К недостаткам способа можно отнести малую точность указания направления на обнаруженный источник и зависимость результатов измерений от изменения свойств поглощающей среды.

Известен способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения (патент РФ №2195005, МПК G01T 1/169, опубл. 2002 г.), заключающийся в регистрации излучения несколькими детекторами, размещенными на платформе мобильного робота (MP), для обнаружения источника в условиях неравномерно распределенного по площади радиоактивного загрязнения. Для чего регистрируют сигналы от первого и второго детекторов, разделенных экраном, добиваются их равенства путем поворота продольной оси MP в сторону области более интенсивного излучения, перемещают MP в указанном направлении до появления разности в сигналах от этих детекторов, регистрируют получение сигнала от третьего детектора, вызванного повышением мощности дозы при приближении к источнику гамма-излучения, и повторяют эти операции до момента получения сигнала от третьего детектора об уменьшении мощности дозы, свидетельствующего об обнаружении местонахождения источника.

К недостаткам способа относится то, что он не позволяет определить мощность излучения удаленного источника. Расположение детекторов излучения на корпусе подвижного аппарата РТК позволяет определить направление местонахождения источника, но не дает возможности определить конкретное положение источника на местности. По совокупности существенных признаков и достигаемому техническому результату, наиболее близким к заявляемому относится способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения по патенту РФ №2195005, который и выбран в качестве прототипа.

Раскрытие изобретения

Способ поиска и обнаружения источников гамма-излучения с помощью мобильного робота в условиях неравномерного радиоактивного загрязнения, включающий обнаружение источника излучения, замер мощности дозы излучения и регистрацию фиксируемого детектором значения мощности путем поочередного направления на источник излучения осей нацеливания детекторов, размещенных на платформе мобильного робота, определяют источник с максимально активным излучением, проводят замер мощности излучения коллимированным детектором и одновременно определяют расстояние доисточника с помощью детекторного лазерного дальномера, при этом оси коллимированного детектора и лазерного дальномера направляют параллельно с разнесением их между собой по горизонтали, регистрируют показания лазерного дальномера и значение дозы мощности фиксируемой детектором, затем на основании этих данных вычисляют мощность дозы излучения реального источника, после чего для проверки адекватности измеренного расстояния до источника излучения перемещают ось нацеливания дальномера на величину разнесения по горизонтали, повторно измеряют и регистрируют расстояние, результаты поочередных измерений расстояния сравнивают и при расхождении в замерах в пределах погрешности лазерного дальномера информацию признают достоверной. В случаях расхождения в замерах выше погрешности лазерного дальномера результаты измерений передают оператору для визуального выяснения причин расхождения результатов, при этом используют телекамеру, размещенную на подвижной платформе или на мобильном роботе. Обработку результатов измерений осуществляют с помощью программного обеспечения.

Задачей, на решение которой было направлено создание настоящего изобретения, является повышение надежности (достоверности) результатов измерений в процессе поиска радиоактивных источников за счет исключения случайных ошибок.

Технический результат

Техническим результатом является повышение точности измерения расстояния до источника, не зависящее от свойств поглощающей среды, как следствие, полное исключение ошибочных замеров мощности удаленного источника, возникающих вследствие некорректного измерения расстояния до него.

Краткое описание чертежей

Размещение на мобильном роботе дистанционно управляемого технологического оборудования, предназначенного для осуществления способа ликвидации последствий радиационных инцидентов, схематически представлено на фиг. 1, где

1 - коллимированный детектор гамма-излучения;

2 - лазерный дальномер;

3 – радиационно стойкая телекамера;

4 - платформа;

5 - привод качания платформы;

6 - привод ротации платформы;

7 - ось измерения мощности гамма-излучения;

8 - ось измерения расстояния до объекта.

Осуществление изобретения

Способ осуществляют следующим образом.

Начинают работу с определения источника с максимальным активным излучением, для чего исследуемая область условно разбивается на прямоугольные участки с размерами, не превышающими телесный угол коллимированного детектора, и при помощи приводов MP (5) или приводов (6) наклона и поворота коллимированного детектора (1) производятся замеры мощности гамма-излучения в каждом из участков. Для этого проводят замер мощности гамма-излучения коллимированным детектором (1) по оси (7) и одновременно определяют расстояние до источника с помощью детекторного лазерного дальномера (2) по оси (8). Коллимированный детектор (1) гамма-излучения производит измерение мощности гамма-излучения в узком телесном угле (порядка 1,5-2 градусов) вдоль оси (7), что позволяет точно определить направление на источник и разделять источники расположенные близко друг от друга. Для проведения этих измерений оси детекторов (1 и 2) направляют параллельно друг другу, но с разнесением их на некоторое расстояния по горизонтали, после чего регистрируют показания лазерного дальномера (2) и значение дозы мощности фиксируемой коллимированным детектором (1).

Пересчет мощности источника производят бортовым вычислительным устройством обратно-пропорционально квадрату расстояния от источника излучения до коллимированного детектора (1) гамма-излучения. При попадании на ось измерения расстояний (8) посторонних предметов, не относящихся к обследуемому источнику возможен ошибочный результат пересчета мощности источника на основании некорректных данных о расстоянии до него. Для исключения ошибочных замеров для проверки адекватности измеренного расстояния до источника излучения перемещают ось (8) нацеливания дальномера (2) на величину разнесения по горизонтали, повторно измеряют и регистрируют результаты. Полученные в результате поочередных измерений расстояния данные сравнивают и при расхождении в замерах в пределах погрешности лазерного дальномера (2) информацию признают достоверной.

В случаях, когда расхождения в замерах выше погрешности лазерного дальномера (2) результаты измерений передают оператору для визуального выяснения причин расхождения результатов, при этом используют радиационно стойкую телекамеру (3), размещенную на подвижной платформе (4) или на мобильном роботе.

На фиг. 1 схематически представлено размещение на мобильном роботе дистанционно-управляемого технологического оборудования, предназначенного для осуществления способа ликвидации последствий радиационных инцидентов, где 1 - коллимированный детектор гамма-излучения (1), лазерный дальномер (2), радиационно стойкая телекамера (3), установленные на платформе (4), привод качания платформы (5) и привод ротации платформы (6). Коллимированный детектор гамма-излучения (1) производит измерение мощности гамма-излучения вдоль оси (7). Лазерный дальномер производит измерение расстояния до объектов вдоль оси (8).

Испытания предлагаемого способа проводились на опытном полигоне (г. Зеленоград) с источниками гамма-излучения 60Co.

Уровень загрязнения и активность определяемых источников гамма излучения, допустимые для применения данного метода, определяются в основном коэффициентом направленности (или защитой) и нагрузочной способностью коллимированного детектора.

Разнесение осей коллимированного детектора и лазерного дальномера зависит от используемых материалов и конструкции этих приборов, на испытаниях были опробованы следующие величины разнесения: 80 мм, 100 мм, 120 мм.

Измерения проводились в помещениях, где был сравнительно низкий уровень радиационного фона, а также так в специальном подвальном помещении, где уровень радиационного фона был до 8 Р/ч.

В подвальном помещении были размещены трубопроводы, диаметры которых, 65-200 мм, были сопоставимы с величиной разнесения параллельных лучей по горизонтали. Наблюдалась ситуация, когда луч лазера отражался от трубопроводов, а точечный источник находился далеко за ними (оптическим препятствием) или наоборот. Для загроможденных аварийных производственных помещений такая ситуация является обычной. На объекте проводили замер мощности и определение расстояния до источника (с разнесением по горизонтали параллельных лучей на 100 мм). На основании этих данных вычисляли мощность дозы реального источника. Затем для проверки адекватности измеренного расстояния перемещали ось нацеливания дальномера на 100 мм (величина разнесения лучей по горизонтали) и проводили повторное измерение с регистрацией расстояния. Сравнивали результат. Если расхождения в замерах не было, информация признавалась достоверной.

Так как в расчет мощности дозы входит квадрат расстояния до источника излучения, то ошибка в определении расстояния в 2 раза неизбежно приведет к ошибке в определении мощности дозы в 4 раза, в 3 раза - в 9 раз и т.д.

В случае расхождения в результатах замеров оператор оценивал обстановку при помощи телекамеры, размещенной на подвижной платформе, и далее производят замеры с другой точки наблюдения, чтобы исключить оптическое препятствие.

Ранее при проведении измерений при обнаружении источника излучения без использования предлагаемого способа приводило к необходимости в подозрительных случаях (наличия в исследуемой области распределенных по дальности объектов) проводить повторные измерения из других точек наблюдения, что не всегда возможно в силу геометрии и загруженности помещений.

Сравнение результатов, полученных дистанционно в соответствии с предлагаемым способом, с результатами непосредственных замеров показало полное соответствие по координатам выявленных «горячих точек».

Проблемные результаты могут возникнуть при проведении достаточно удаленных измерений, когда разрешающая способность телевизионной камеры может оказаться недостаточной для точной компенсации сдвига между лучами. Конкретные значения зависят от качества телевизионной камеры (разрешение, ZOOM и т.д.) и обрабатывающей аппаратуры. Использовавшаяся аппаратура позволяла компенсировать сдвиг на расстояниях до 8-10 метров.

В процессе испытаний предлагаемого способа на опытном полигоне предприятия с использованием калибровочного радиоактивного источника в условиях приближенных к реальным не были зафиксированы ошибочные замеры мощности удаленного источника.

Таким образом испытания предлагаемого способа полностью доказали достижение технического результата, указанного выше, а именно значительное повышение точности измерения расстояния до источника, не зависящее от свойств поглощающей среды, как следствие полное исключение ошибочных замеров мощности удаленного источника за счет некорректного измерения расстояния до него.


СПОСОБ ПОИСКА И ОБНАРУЖЕНИЯ ИСТОЧНИКОВ ГАММА-ИЗЛУЧЕНИЯ В УСЛОВИЯХ НЕРАВНОМЕРНОГО РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ
СПОСОБ ПОИСКА И ОБНАРУЖЕНИЯ ИСТОЧНИКОВ ГАММА-ИЗЛУЧЕНИЯ В УСЛОВИЯХ НЕРАВНОМЕРНОГО РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 421-430 из 556.
21.07.2018
№218.016.72f7

Устройство контроля работы генератора

Изобретение относится к импульсной технике и может быть использовано для повышения надежности цифровых систем транспортных устройств в условиях воздействия механических ударов. Устройство контроля работы генератора содержит основной и резервный генераторы, первый и второй логические элементы,...
Тип: Изобретение
Номер охранного документа: 0002661354
Дата охранного документа: 16.07.2018
25.08.2018
№218.016.7ec8

Способ балансировки магниторезистивного датчика

Изобретение относится к датчикам для измерения угла поворота, основанным на анизотропном магниторезистивном эффекте в тонких магнитных пленках, и может быть использовано в системах управления подвижными объектами. Технический результат – балансировка углового магниторезистивного датчика. Способ...
Тип: Изобретение
Номер охранного документа: 0002664868
Дата охранного документа: 23.08.2018
29.08.2018
№218.016.807a

Формирователь меток времени

Изобретение относится к измерительной технике и автоматике. Технический результат заключается в увеличении информационной емкости кода номера меток времени. Технический результат достигается за счет формирователя меток времени, который содержит выходную шину, первый генератор, первый счетчик...
Тип: Изобретение
Номер охранного документа: 0002665283
Дата охранного документа: 28.08.2018
29.08.2018
№218.016.8096

Дифференциальный измерительный преобразователь

Изобретение относится к области измерительной техники. Технический результат – повышение точности дифференциального измерительного преобразователя за счет введения блока коррекции, осуществляющего корректировку выходной характеристики преобразования. Дифференциальный измерительный...
Тип: Изобретение
Номер охранного документа: 0002665219
Дата охранного документа: 28.08.2018
05.09.2018
№218.016.8347

Гидропривод

Гидропривод предназначен для грузоподъемных машин. Гидропривод содержит два трехпозиционных крана управления, гидроцилиндр, цилиндр, поршень, шток, трубу, которая закреплена со стороны поршневой полости в торце цилиндра и соединена с левой гидролинией от первого трехпозиционного крана,...
Тип: Изобретение
Номер охранного документа: 0002665762
Дата охранного документа: 04.09.2018
14.09.2018
№218.016.87fe

Устройство для перемотки ленточного сверхпроводника

Изобретение относится к устройствам, специально предназначенным для изготовления сверхпроводников или обработки приборов с использованием сверхпроводимости. Устройство для перемотки ленточного сверхпроводника содержит корпус, внутри которого установлена труба для намотки ленты, катушку для...
Тип: Изобретение
Номер охранного документа: 0002666900
Дата охранного документа: 13.09.2018
03.10.2018
№218.016.8cf6

Система управления неустойчивостью внутреннего срыва плазмы в режиме реального времени в установках типа токамак

Изобретение относится к cистеме управления неустойчивостью внутреннего срыва плазмы в режиме реального времени в установках типа Токамак. Система содержит автоматизированное рабочее место АРМ оператора 13, соединенное с комплексом СВЧ-нагрева плазмы 6, вакуумную камеру 1 с установленными в ней...
Тип: Изобретение
Номер охранного документа: 0002668231
Дата охранного документа: 27.09.2018
11.10.2018
№218.016.9081

Способ корпусирования отражательной линии задержки

Изобретение относится к области разработки и производства электронных компонентов, в частности линий задержки, функционирующих на поверхностных акустических волнах. Техническим результатом предлагаемого решения является снижение паразитных емкостей отражательной линии задержки (ОЛЗ) и повышение...
Тип: Изобретение
Номер охранного документа: 0002669006
Дата охранного документа: 05.10.2018
11.10.2018
№218.016.9082

Пороговый датчик инерционного типа

Изобретение относится к области приборостроения, а именно к пороговым датчикам инерционного типа, и предназначено для контроля за достижением ускорений движущихся объектов пороговых уровней, в том числе при столкновении с другими объектами, например, при транспортных авариях. Пороговый датчик...
Тип: Изобретение
Номер охранного документа: 0002669014
Дата охранного документа: 05.10.2018
19.10.2018
№218.016.93a8

Способ удаления перенапылённых углеводородных слоёв

Изобретение относится к технологии очистки вакуумных камер и других элементов в вакууме, находящихся в труднодоступных для очистки местах, от перенапыленных углеводородных слоев и может быть использовано в установках с обращенными к плазме элементами из углеродных материалов и в технологических...
Тип: Изобретение
Номер охранного документа: 0002669864
Дата охранного документа: 16.10.2018
Показаны записи 411-417 из 417.
29.04.2019
№219.017.40cb

Способ дистанционной очистки поверхностей от радиоактивных загрязнений

Изобретение относится к технологии очистки поверхностей от различных загрязнений, способ дистанционной очистки поверхности от загрязнений, преимущественно радиоактивных, путем их удаления с помощью гибкой неметаллической сетки включает доставку гибкой сетки к месту производства работ, укладку...
Тип: Изобретение
Номер охранного документа: 0002397560
Дата охранного документа: 20.08.2010
20.05.2019
№219.017.5d5b

Листовая хладостойкая сталь для высоконагруженных конструкций контейнерной техники атомной и термоядерной энергетики

Изобретение относится к области металлургии, а именно к листовой хладостойкой стали, используемой в атомном энергомашиностроении при серийном производстве высоконадежной контейнерной техники для транспортировки и длительного хранения отработавшего ядерного топлива и радиоактивных отходов...
Тип: Изобретение
Номер охранного документа: 0002413782
Дата охранного документа: 10.03.2011
01.06.2019
№219.017.7211

Способ производства поковок из штамповых сталей типа 5хнм

Изобретение относится к производству поковок из штамповой стали типа 5ХНМ, предназначенных для изготовления штампов для горячей штамповки. В процессе выплавки стали в нее вводят кальций в количестве от 0,0005 до 0,003%. Затем осуществляют ковку, при которой перед первым выносом слиток нагревают...
Тип: Изобретение
Номер охранного документа: 0002690084
Дата охранного документа: 30.05.2019
19.06.2019
№219.017.8432

Способ дистанционной очистки поверхности от загрязнений

Изобретение относится к области очистки поверхностей от загрязнений. Сущность изобретения: способ дистанционной очистки поверхности от загрязнений, преимущественно радиоактивных. Загрязнения удаляют с помощью захвата в виде рамки с закрепленной на ней гибкой сеткой. При этом захват сначала...
Тип: Изобретение
Номер охранного документа: 0002274916
Дата охранного документа: 20.04.2006
10.07.2019
№219.017.ad2d

Способ долговременного хранения твердых радиоактивных отходов

Изобретение относится к долговременному хранению твердых радиоактивных отходов (ТРО), образующихся при эксплуатации промышленных реакторов, в процессе работы атомных электростанций и других ядерных производств. При долговременном хранении ТРО, включающем их складирование в хранилищах и изоляцию...
Тип: Изобретение
Номер охранного документа: 0002357308
Дата охранного документа: 27.05.2009
18.10.2019
№219.017.d815

Радиационно-стойкая аустенитная сталь для внутрикорпусной выгородки ввэр

Изобретение относится к области металлургии легированных сталей и сплавов, которые предназначены для использования в атомном энергетическом машиностроении при производстве основного оборудования АЭС, а именно для изготовления внутрикорпусной выгородки водо-водяных энергетических реакторов...
Тип: Изобретение
Номер охранного документа: 0002703318
Дата охранного документа: 16.10.2019
23.05.2023
№223.018.6d2e

Способ изготовления поковок из сталей аустенитного класса

Изобретение относится к области черной металлургии и может быть использовано при изготовлении толстостенных поковок из сталей аустенитного класса, применяемых для получения изделий тепловой и атомной энергетики. Выплавленный слиток после полного прогрева подвергают гомогенизации при температуре...
Тип: Изобретение
Номер охранного документа: 0002766225
Дата охранного документа: 10.02.2022
+ добавить свой РИД