×
29.12.2017
217.015.fb37

СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002640290
Дата охранного документа
27.12.2017
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: в области электротехники и электроэнергетики. Технический результат заключается в расширении функциональных возможностей и в упрощении способа. Генератор наблюдают со стороны линейных и нулевых выводов. Фиксируют момент смены предшествующего режима текущим режимом. Алгоритмическую модель активируют источниками напряжений текущего режима. Определяют ее реакцию в виде первых токов обмотки статора. Если генератор не поврежден, то первые токи будут близки к наблюдаемым, так как модель в этом случае адекватна реальному объекту. В случае повреждения генератора адекватность нарушается, и тогда различие между первыми токами и наблюдаемыми величинами физически предопределена. Данное обстоятельство используют для распознавания аварийных ситуаций в генераторе, опираясь на вторые токи как разности между соответствующими наблюдаемыми и первыми токами. Согласно способу используется базис комплексных величин, в котором составляют отдельные автономные модули алгоритмической модели. Таких модулей три: предшествующего режима, прямой последовательности и обратной последовательности. Первые два активные - в их состав входит один и тот же источник напряжения. Третий модуль - пассивный. Поскольку генератор полагают неповрежденным, становится очевидной предложение проводить обучение релейной защиты только теми режимами, когда замыкание, если оно есть, происходит не в генераторе, а во внешней части сети. Результатами такого обучения становятся области блокирования защиты, тем более мелкие, чем более адекватна имитационная модель сети реальному объекту. Обучение проводят на плоскостях двумерных сигналов. В комплексной форме двумерный сигнал определяют в виде отношения вторых токов к соответствующим первым токам. 2 з.п. ф-лы, 12 ил.
Реферат Свернуть Развернуть

Изобретение относится к электроэнергетике, а именно к релейной защите энергообъекта, осуществляемой средствами цифровой техники, позволяющей сохранять в памяти информацию о режиме, предшествующем повреждению объекта, а, кроме того, дающей возможность применять в реальном режиме модель неповрежденного объекта. Это специальная модель, называемая алгоритмической в связи с тем, что в ее функцию входит преобразование наблюдаемых электрических величин в некоторые оценочные величины, отображаемые в пространстве, обычно двумерном [1, 2].

Известно техническое решение в области защиты генераторов, ориентированное на применение микропроцессорной техники [3]. В отличие от [1, 2], оно узкоспециализировано, т.е. предназначено для защиты от конкретного вида аномальных режимов. Такой же подход характерен и для иных предложений в области защиты генераторов [4-6].

Известен способ релейной защиты энергообъекта любого типа, если только существует его модель, которая может быть активирована источниками наблюдаемых электрических величин [7]. Важно, что энергообъект моделируется в неповрежденном состоянии, хотя наблюдается не только в нем, но и в режиме короткого замыкания. Для защиты статических объектов данного основополагающего признака достаточно. Но для защиты электрических машин упомянутый способ требует дополнения. Дело в том, что модель генератора представляет собой активный многополюсник, так как содержит наводимое в обмотках статора напряжение, т.е. ЭДС. Способ нуждается в дополнении операциями определения наводимого напряжения. Кроме того, для релейной защиты малопригодна модель генератора в базисе мгновенных значений токов и напряжений, как это принято в прототипе, потому что индуктивности электрической машины изменяются во времени. Закономерность такого изменения сама по себе требует определения.

Цель изобретения заключается в расширении функциональных возможностей способа релейной защиты и вместе с тем в таком упрощении, которое необходимо в том случае, когда объект защиты - генератор.

Поставленная цель достигается благодаря тому, что известные технические признаки конкретизируются для данного приложения и дополняются новыми признаками, вносящими необходимые детали в способ защиты генератора, допускающий простую реализацию. К известным признакам относятся наблюдения напряжений и токов генератора; фиксация момента изменения режима: предшествующий режим сменяется текущим режимом; использование алгоритмической модели неповрежденного генератора, воздействие на нее источниками наблюдаемых напряжений и определение ее реакции как первой группы токов во всех местах, где наблюдаются токи; определение вторых токов - разностей между наблюдаемыми токами генератора и первыми токами его алгоритмической модели. К числу новых признаков относятся те, которые детализируют структуру алгоритмической модели, формирование замеров релейной защиты и условие ее срабатывания. Алгоритмическая модель представлена в комплексном базисе, что делает ее универсальной и легко реализуемой в качестве блока, работающего в реальном времени. Модель составляют из двух модулей - прямой и обратной последовательностей. Первый - активный, а второй - пассивный. В активный модуль входит источник напряжения, подлежащий определению по результатам наблюдения предшествующего режима. Замеры формируют отдельно для токов прямой и обратной последовательностей, причем для каждого места наблюдения. В итоге образуют четыре комплексных замера в виде отношения комплексов вторых токов к комплексам первых токов. Ряд признаков относится к условию срабатывания защиты, которые отличаются своеобразием. Каждый замер отображается на его комплексной плоскости, и условие срабатывания задается на всех плоскостях. Для обеспечения селективности релейной защиты определяются области ее блокирования, которые задают на плоскостях замеров. Эта процедура интерпретируется как обучение релейной защиты. Роль учителя отводится имитационной модели электрической сети, в которой работает защищаемый генератор. Модель воспроизводит те режимы, которые не относятся к повреждению генератора и, следовательно, не должны вызывать срабатывание защиты. Эти режимы сети альтернативны аварийным режимам сети, вызванным повреждением генератора. Множество альтернативных режимов отображают на комплексных плоскостях всех замеров в виде областей блокирования защиты. При эксплуатации защиты распознают аварийное состояние генератора путем сопоставления отображений наблюдаемого режима и блокирующих областей. Сигнал на срабатывание защиты подают в том случае, если хотя бы на одной из плоскостей отображение режима располагается вне блокирующей области.

В зависимых пунктах формулы изобретения дается простейшая модификация способа, в которой алгоритмическая модель генератора представлена одним источником напряжения (ЭДС) и двумя комплексными сопротивлениями прямой и обратной последовательности.

На фиг. 1 приведена схема электрической сети, состоящей из генератора и внешней части - его нагрузки; указаны наблюдаемые величины. На фиг. 2 показана алгоритмическая модель генератора в предшествующем режиме, на фиг. 3 - та же модель, но в искусственно создаваемом общем режиме активирования источниками наблюдаемых напряжений, на фиг. 4 - та же модель, но в режиме, дополняющем предшествующий режим (фиг. 2) до общего режима (фиг. 3). Токи на фиг. 3 и 4 отнесены к первой группе. Модель, иллюстрирующая представления о второй группе токов, дана на фиг. 5. Простейшая модификация алгоритмической модели приведена на фиг. 6-8: фиг. 6 - в предшествующем режиме, фиг. 7, 8 - в режиме первых токов; фиг. 7 - прямой последовательности, фиг. 8 - обратной последовательности. Режим вторых токов в комплексном базисе иллюстрируется на фиг. 9. Структура защиты генератора, построенная по данному способу, показана на фиг. 10. Иллюстрация процедуры обучения защиты дана на фиг. 11.

Защищаемый генератор 1 является составной частью электрической сети 2, вся внешняя по отношению к генератору часть сети 3 представляет собой его нагрузку. Наблюдаются выводы статора генератора - линейные выводы 4 и нулевые выводы 5, на линейных выводах наблюдают напряжения uν(t) и токи iν(t), ν=A, B, C, а на нулевых выводах - токи iνN(t). В информационную базу релейной защиты наблюдаемые величины входят с указанием режима сети 2: uпд(t), t<0 - момент окончания предшествующего режима.

Алгоритмическая модель 6 генератора 1 обладает рядом особенностей. Во-первых, она строится для неповрежденного генератора. Во-вторых, для ее активирования достаточно подключить к выводам 7 источники наблюдаемых напряжений uν(t). Реакцией станут токи на выводах 7 и 8, соответствующих местам наблюдения 4 и 5 генератора 1. В-третьих, эта модель автономна, т.е. реакция не зависит от внешней части 3 сети 2. В-четвертых, она содержит ЭДС e(t), подлежащую определению по результатам наблюдения предшествующего режима.

Формально реакция алгоритмической модели охватывает два процесса: предшествующий (фиг. 2) и текущий (фиг. 4). Они могут быть объединены (фиг. 3), тогда реакцией будут первые токи , определенные на всей оси времени (-∞<t<∞), но такая конструкция нуждается в пояснении. Первый ток может быть конкретизирован:

где - реакция модели 6 на напряжения uνпд(t) фиг. 2, а - реакция той же модели на напряжения uνтк(t). Заметим, что смена воздействий совершается в одной и той же модели в момент t=0 с сохранением условий, сложившихся в модели к моменту окончания предшествующего режима. Выделение двух составляющих каждого наблюдаемого тока предусмотрено только в текущем режиме при t≥0. Поэтому реакция не сопровождается верхним индексом, но отмечена сверху символом оценки, так как между нею и наблюдаемым током iνпд(t) не может быть полного совпадения, хотя процессы и будут близки, так как в предшествующем режиме генератор заведомо не был поврежден, а модель 6 составлена как раз для такого состояния.

Вторые токи представляют собой разности между наблюдаемой и модельной величинами:

В предшествующем режиме ток

говорит всего лишь о степени адекватности алгоритмической модели 6 реальному объекту 1. Но в текущем режиме второй ток

несет ценную информацию о состоянии генератора 1. Модель 9 генератора в режиме вторых токов в данном способе не составляется. Но если бы вопрос о ней возник, то можно было бы сказать, что она совпадает с моделью 6, если процесс близок к наблюдаемому и ток незначителен в сравнении с ними. В противном случае последует вывод, что генератор поврежден, модель 9 отличается от алгоритмической модели 6, и отличие заключается в том, что в некотором месте модели, соответствующем месту повреждения объекта, появляется источник тока повреждения iƒ(t), создающий в местах наблюдения токи .

Базис комплексных величин и симметричных составляющих представляет алгоритмическую модель 6 в виде подмодели (модуля) прямой последовательности 10 и модуля обратной последовательности 11. Простейшая реализация модуля 10 ограничивается двумя комплексными элементами - ЭДС и сопротивлениями прямой последовательности, в предшествующем режиме - это сопротивление , а в текущем - . Модуль 11 реализуется всего лишь одним сопротивлением обратной последовательности . В симметричном предшествующем режиме комплексы наблюдаемых величин и определяют неизвестную ЭДС, наводимую в статоре генератора.

Результатом преобразований, совершаемых модулями 10, 11, являются первые токи двух последовательностей

Вторые токи представляют собой разности

Режим вторых токов в комплексном базисе создается либо внешними источниками, если генератор 1 не поврежден, либо внутренними источниками тока , в случае повреждения (фиг. 9).

Структурная схема защиты генератора также представлена в комплексном базисе. Она состоит из входного модуля 12, формирователя замеров 13, обучаемого блокирующего модуля 14 и оконечного исполнительного модуля 15. В свою очередь, входной модуль 12 состоит из пускового органа 16, определяющего момент смены режимов t=0 и разделяющего тем самым предшествующий и текущий процессы; фильтры ортогональных составляющих 17-20, преобразующие мгновенные векторы i(t), u(t) в комплексные блок 21, реализующий операцию определения источника напряжения (5), фильтры симметричных составляющих 22, 23 и, наконец, формирователь первых и вторых токов 24, действующий по алгоритму (6)-(9). Векторная форма объединяет элементарные токи:

Формирователь замеров преобразует токи в отношения

Распознающий блок 14 состоит из четырех модулей по числу замеров. На плоскости q=1, 2, 1N, 2N, каждого замера задают область блокирования защиты Sqбл. Условие блокирования - отображение замера в ходе его изменения в области блокирования

Соответственно, условие срабатывания - иное расположения годографа когда в отличие от случая (12) он либо вообще не попадает в область блокирования, либо выходит из нее и более к ней не приближается. Проверка выполнения условия срабатывания - функция исполнительного модуля 15.

Селективность релейной защиты, т.е. ее отстройку от любых режимов электрической сети 2, кроме повреждений генератора 1, обеспечивает процедура обучения защиты от имитационной модели сети 25, которая воспроизводит, в частности, короткие замыкания во внешней части сети 3. На фиг. 12 в составе имитационной модели 25 показаны отдельные модели неповрежденного генератора 26 и внешней части сети 27, в которой устраивают короткие замыкания. В отличие от величин i(t), u(t) реальной сети имитируемые величины отмечены индексом "им". Обучаемая защита показана на фиг. 12 без исполнительного модуля 15, который функционирует только при распознавании режима реальной сети, а в обучении не задействован.

Процедура обучения предшествует вводу защиты в эксплуатацию. Цель обучения - задание областей блокирования Sqбл, которые представляют собой совокупности отображений режимов сети 2 при неповрежденном генераторе 1. Такие режимы проистекают вследствие разного рода нарушений во внешней сети 3. Имитируемые моделью 27, они не ставят под сомнение собственную модель генератора 26. В ходе обучения моделью 27 воспроизводятся те режимы общей имитационной модели сети 25, которые отображаются на границах областей Sqбл. Границы сохраняются в памяти блокирующего модуля 14, и в таком виде защита вводится в эксплуатацию, т.е. переходит от этапа обучения (фиг. 12) к рабочему состоянию (фиг. 10). В процессе эксплуатации каждый режим сети с точки зрения защиты генератора может быть отнесен только к одному из двух типов: а) генератор не поврежден - режим блокировки, б) генератор поврежден - режим срабатывания. Опять же с точки зрения релейной защиты отношение к этим двум типам не может быть равнозначным. Условие селективной работы требует, чтобы ни один режим блокировки не был способен вызвать ложное срабатывание защиты. К режимам срабатывания столь всеобъемлющего требования предъявить невозможно, так как обеспечение селективности защиты стоит на первом месте, а высокой чувствительности к повреждениям генератора - на втором. Между тем, предлагаемый способ по принципу своего действия обеспечивает предельно высокую чувствительность к повреждениям генератора. Имеется физическое объяснение данного утверждения. Имитационная модель 25, обучавшая релейную защиту, адекватно отображает режимы блокирования, в которых генератор 1 не поврежден. Поэтому области блокирования получаются небольшими: токи в (8), (9) близки к наблюдаемым , разностные токи 5, как следствие, близки к нулю, то же и замеры в (11). Что же касается режимов повреждения генератора 1, то здесь имитационная модель 12 с неповрежденным генератором физически неадекватна электрической сети 2. Мало того, поврежденному генератору неадекватна и принятая здесь алгоритмическая модель, дающая соотношения (6), (7). Двойная неадекватность как имитационной обучающей модели, так и алгоритмической модели, лежащей в основе преобразования сигналов, служит объяснением того, что годографы замеров при повреждении генератора 1 вовсе не попадают в области Sqбл или, попав, не задерживаются в ней. Так или иначе, условие блокирования защиты (12) при повреждении генератора нарушается, вследствие чего происходит ее срабатывание.

Широкие функциональные возможности изложенного способа обеспечиваются разнообразием алгоритмических моделей защищаемого генератора. Универсальная модель действует в базисе мгновенных токов и напряжений. Однако наиболее простой вариант реализован в базисе комплексных величин.

Источники информации

1. Патент РФ №2247456, кл. Н02Н 3/40, 2002 г.

2. Патент РФ №2594361, кл. Н02Н 3/40, 2015 г.

3. Патент США №5671112, кл. Н02Н 3/18, 1997 г.

4. Патент РФ №2096885, кл. Н02Н 7/06, 1995 г.

5. Патент РФ №2380809, кл. Н02Н 7/06, Н02К 9/193, G01R 31/34, G01N 25/56, 2008 г.

6. Патент РФ №2508587, кл. Н02Н 7/06, G01R 27/18, 2012 г.

7. Заявка на изобретение РФ №2016/104503/07 (007130) от 10.02.2016, Решение о выдаче патента от 09.01.2017 (прототип).


СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
СПОСОБ РЕЛЕЙНОЙ ЗАЩИТЫ ГЕНЕРАТОРА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 36.
26.08.2017
№217.015.d673

Способ дистанционной защиты линии электропередачи

Использование: в области электроэнергетики. Технический результат - повышение распознающей способности защиты по отношению к короткому замыканию в защищаемой зоне. Согласно способу входные комплексные величины преобразуют и вторые группы токов и напряжений, которые далее в модели неповрежденной...
Тип: Изобретение
Номер охранного документа: 0002622895
Дата охранного документа: 21.06.2017
29.12.2017
№217.015.f582

Способ защиты синхронных генераторов от замыкания на землю в одной точке цепи возбуждения

Использование: в области электротехники. Технический результат - повышение точности измерения сопротивления изоляции без усложнения конструкции устройства защиты. Способ защиты синхронных генераторов от замыкания на корпус (землю) в одной точке цепи возбуждения заключается в воздействии...
Тип: Изобретение
Номер охранного документа: 0002637505
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f88d

Способ интервального определения места повреждения линии электропередачи

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и повышение достоверности способа локации повреждений. Способ заключается в фиксации отсчетов токов и напряжений, наблюдаемых в линии в текущем и в предшествующем режимах, преобразовании...
Тип: Изобретение
Номер охранного документа: 0002639718
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.fc9c

Способ релейной защиты энергообъекта

Использование – в области электротехники. Технический результат – расширение функциональных возможностей обучаемой релейной защиты. Согласно способу релейной защиты энергообъекта в составе электрической сети путем преобразования информации об энергообъекте в двумерные сигналы, отображаемые...
Тип: Изобретение
Номер охранного документа: 0002638300
Дата охранного документа: 13.12.2017
29.12.2017
№217.015.fea9

Способ релейной защиты дальнего резервирования

Использование: в области электроэнергетики. Технический результат - повышение чувствительности и расширение функциональных возможностей способа дальнего резервирования. Согласно способу фиксируют токи и напряжения в начале линии, используют передающую модель линии со входом в месте наблюдения и...
Тип: Изобретение
Номер охранного документа: 0002638548
Дата охранного документа: 14.12.2017
13.02.2018
№218.016.23b9

Способ распознавания повреждённых фаз линий электропередачи при неполнофазном замыкании на землю

Изобретение относится к релейной защите высоковольтных линий электропередачи, которые работают в режиме с глухозаземленной нейтралью, в частности к распознаванию поврежденных фаз. Техническим результатом является упрощение и повышение распознающей способности способа фазовой селекции. Способ...
Тип: Изобретение
Номер охранного документа: 0002642506
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2abf

Способ релейной защиты линии электропередачи с ответвлениями

Использование: в области электротехники. Технический результат – расширение функциональных возможностей и повышение чувствительности защиты. Согласно способу предполагается двухстороннее наблюдение электропередачи с обменом информации между двумя полукомплектами релейной защиты, установленными...
Тип: Изобретение
Номер охранного документа: 0002642844
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2cfd

Способ релейной защиты трансформатора

Использование: в области электротехники. Технический результат – повышение точности разграничения режимов повреждения трансформатора и альтернативных им режимов. Согласно способу релейной защиты трансформатора осуществляют наблюдение токов и напряжений на зажимах его обмоток, преобразование...
Тип: Изобретение
Номер охранного документа: 0002643779
Дата охранного документа: 06.02.2018
10.05.2018
№218.016.3ab9

Способ определения интервалов однородности (сегментации) электрической величины

Использование: в области электротехники. Технический результат – устранение проблемы нелинейного искажения тока короткого замыкания вследствие насыщения трансформаторов тока. Сегментация призвана выделить интервалы правильной трансформации, возникающие в те промежутки времени, когда...
Тип: Изобретение
Номер охранного документа: 0002647484
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3aeb

Способ релейной защиты линии электропередачи при двухстороннем наблюдении

Использование: в области электроэнергетики. Технический результат - упрощение способа и повышение чувствительности защиты. Полукомплекты микропроцессорной защиты синхронно фиксируют токи и напряжения на обеих сторонах линии, а оптоволоконный канал связи передает информацию от одного комплекта к...
Тип: Изобретение
Номер охранного документа: 0002647485
Дата охранного документа: 16.03.2018
Показаны записи 21-30 из 34.
29.12.2017
№217.015.f582

Способ защиты синхронных генераторов от замыкания на землю в одной точке цепи возбуждения

Использование: в области электротехники. Технический результат - повышение точности измерения сопротивления изоляции без усложнения конструкции устройства защиты. Способ защиты синхронных генераторов от замыкания на корпус (землю) в одной точке цепи возбуждения заключается в воздействии...
Тип: Изобретение
Номер охранного документа: 0002637505
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f88d

Способ интервального определения места повреждения линии электропередачи

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и повышение достоверности способа локации повреждений. Способ заключается в фиксации отсчетов токов и напряжений, наблюдаемых в линии в текущем и в предшествующем режимах, преобразовании...
Тип: Изобретение
Номер охранного документа: 0002639718
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.fc9c

Способ релейной защиты энергообъекта

Использование – в области электротехники. Технический результат – расширение функциональных возможностей обучаемой релейной защиты. Согласно способу релейной защиты энергообъекта в составе электрической сети путем преобразования информации об энергообъекте в двумерные сигналы, отображаемые...
Тип: Изобретение
Номер охранного документа: 0002638300
Дата охранного документа: 13.12.2017
29.12.2017
№217.015.fea9

Способ релейной защиты дальнего резервирования

Использование: в области электроэнергетики. Технический результат - повышение чувствительности и расширение функциональных возможностей способа дальнего резервирования. Согласно способу фиксируют токи и напряжения в начале линии, используют передающую модель линии со входом в месте наблюдения и...
Тип: Изобретение
Номер охранного документа: 0002638548
Дата охранного документа: 14.12.2017
13.02.2018
№218.016.23b9

Способ распознавания повреждённых фаз линий электропередачи при неполнофазном замыкании на землю

Изобретение относится к релейной защите высоковольтных линий электропередачи, которые работают в режиме с глухозаземленной нейтралью, в частности к распознаванию поврежденных фаз. Техническим результатом является упрощение и повышение распознающей способности способа фазовой селекции. Способ...
Тип: Изобретение
Номер охранного документа: 0002642506
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2abf

Способ релейной защиты линии электропередачи с ответвлениями

Использование: в области электротехники. Технический результат – расширение функциональных возможностей и повышение чувствительности защиты. Согласно способу предполагается двухстороннее наблюдение электропередачи с обменом информации между двумя полукомплектами релейной защиты, установленными...
Тип: Изобретение
Номер охранного документа: 0002642844
Дата охранного документа: 29.01.2018
17.02.2018
№218.016.2cfd

Способ релейной защиты трансформатора

Использование: в области электротехники. Технический результат – повышение точности разграничения режимов повреждения трансформатора и альтернативных им режимов. Согласно способу релейной защиты трансформатора осуществляют наблюдение токов и напряжений на зажимах его обмоток, преобразование...
Тип: Изобретение
Номер охранного документа: 0002643779
Дата охранного документа: 06.02.2018
10.05.2018
№218.016.3ab9

Способ определения интервалов однородности (сегментации) электрической величины

Использование: в области электротехники. Технический результат – устранение проблемы нелинейного искажения тока короткого замыкания вследствие насыщения трансформаторов тока. Сегментация призвана выделить интервалы правильной трансформации, возникающие в те промежутки времени, когда...
Тип: Изобретение
Номер охранного документа: 0002647484
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3aeb

Способ релейной защиты линии электропередачи при двухстороннем наблюдении

Использование: в области электроэнергетики. Технический результат - упрощение способа и повышение чувствительности защиты. Полукомплекты микропроцессорной защиты синхронно фиксируют токи и напряжения на обеих сторонах линии, а оптоволоконный канал связи передает информацию от одного комплекта к...
Тип: Изобретение
Номер охранного документа: 0002647485
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.40b9

Способ восстановления тока при насыщении трансформатора

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и адаптивности способа. Параметры модели трансформатора, подверженные изменению в ходе эксплуатации, подлежат определению в реальном времени, что в структурной схеме, реализующей предлагаемый...
Тип: Изобретение
Номер охранного документа: 0002648991
Дата охранного документа: 29.03.2018
+ добавить свой РИД