×
29.12.2017
217.015.fa5f

Результат интеллектуальной деятельности: Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи (ЛЭП). Технический результат - повышение точности определения места повреждения на линии электропередачи в условиях наличия в мгновенных значениях токов и напряжений высокочастотных составляющих. Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений заключается в том, что измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале и в конце линии для одних и тех же моментов времени , передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие, осуществляют сдвиг сигналов фазы B на угол 120°и фазы C на угол 240°, производят фильтрацию мгновенных значений напряжений и токов  с применением дискретного преобразования Фурье и получением комплексных составляющих фазных напряжений и токов, зафиксированных в начале и конце линии, а расчет расстояния до места обрыва l реализуют согласно выражению где i – мнимая единица; – коэффициент распространения электромагнитной волны; – коэффициент затухания электромагнитной волны; – коэффициент изменения фазы электромагнитной волны; Z – волновое сопротивление линии; L – длина линии. 1 ил., 5 табл.

Изобретение относится к области электротехники, а именно средствам обработки информации в электротехнике, и может быть использовано для определения места обрыва на воздушной линии электропередачи (ЛЭП).

Известен способ определения местоположения и вида повреждения на воздушной линии электропередачи [Патент на полезную модель РФ №100632 U1, МПК G01R 31/08, опубл. 20.12.2010, Бюл. №35], где с помощью конденсатора емкостью С регистрируют суммарную напряженность электрического поля Е, пропорциональную сумме фазных напряжений, а посредством катушки с ферромагнитным сердечником индуктивностью L регистрируют суммарную индукцию магнитного поля В, пропорциональную сумме линейных токов. Полученную информацию обрабатывают с помощью устройства, состоящего из последовательно соединенных усилителей и пороговых устройств, причем пороговые устройства настраиваются в соответствии с фиксированными значениями токов и напряжений, представленными авторами там же. В блоке логического сравнения осуществляется сопоставление полученной информации с пороговыми значениями, на основании которого делается вывод о наличии, виде и месторасположении повреждения.

Недостатками этого способа являются невозможность определения точного месторасположения повреждения.

Известен способ определения поврежденного участка и типа повреждения в электроэнергетической сети с разветвленной топологией [Патент на изобретение РФ №2455654, МПК G01R 31/08, опубл. 10.07.2012, Бюл. №19], заключающийся в том, что производят мониторинг электрической сети расположенным на питающей сеть подстанции ведущим устройством, осуществляющим сканированием сети, предварительный сбор информации о целостности сегментов сети путем опроса ведомых устройств. Ведомые устройства, расположенные на границах сети на каждом конце линии разветвленной сети, подают высокочастотные напряжения прямой последовательности на все три фазных провода линии электропередачи, сдвинутые по фазе относительно друг друга на 120º, а ведущее устройство принимает и записывает трехфазное высокочастотное напряжение, получаемое ведущим устройством от каждого ведомого устройства в отдельности, при этом при совместной обработке всех записанных трехфазных высокочастотных сигналов со всех ведомых устройств определяют место обрыва фазы воздушной линии электропередачи.

Недостатком способа является то, что определяют не точное место обрыва, а лишь сегмент сети, где произошел обрыв фазы. Кроме того, не учитывают распределенность параметров линии электропередачи.

Наиболее близким техническим решением к предлагаемому изобретению является «Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений» [Патент на изобретение РФ № 2540443, МПК G01R 31/08, опубл. 10.02.2015, Бюл. №4], заключающийся в том, что в режиме обрыва измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале ,

и в конце

линии для одних и тех же моментов времени с дискретностью массивов мгновенных значений

где T – период сигнала напряжения/тока, N – число отсчетов на периоде T,

передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие, осуществляют сдвиг сигналов фазы B на угол 120°и фазы C на угол 240°, далее одновременно определяют массивы мгновенных значений симметричных составляющих напряжений и токов в начале и конце линии и соответствующие им векторные значения , затем определяют расстояние до места обрыва l1 из выражения

,

где - коэффициент распространения электромагнитной волны; – коэффициент затухания электромагнитной волны; – коэффициент изменения фазы электромагнитной волны; ZB – волновое сопротивление линии; L – длина линии.

Недостатком способа-прототипа является высокая погрешность определения расстояния до места обрыва на линии электропередачи в условиях наличия в мгновенных значениях токов и напряжений высокочастотных составляющих.

Задача изобретения состоит в повышении точности способа определения места обрыва на линии электропередачи в условиях наличия в мгновенных значениях токов и напряжений высокочастотных составляющих.

Поставленная задача достигается способом определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений, заключающимся в том, что в режиме обрыва измеряют массивы мгновенных значений сигналов напряжений и токов трех фаз в начале ,

и в конце

линии для одних и тех же моментов времени с дискретностью массивов мгновенных значений

где T – период сигнала напряжения/тока, N – число отсчетов на периоде T,

передают сигналы с конца линии в ее начало по каналу связи, сохраняют пары цифровых отсчетов как текущие, осуществляют сдвиг сигналов фазы B на угол 120°и фазы C на угол 240°, по массивам мгновенных значений производят вычисление комплексных составляющих токов и напряжений, входящих в расчетное выражение для расстояния до места обрыва l1. Согласно предлагаемому способу дополнительно производят фильтрацию мгновенных значений напряжений и токов с применением дискретного преобразования Фурье и получением комплексных составляющих фазных напряжений и токов, зафиксированных в начале и конце линии, а расчет расстояния до места обрыва l1 реализуют согласно выражению

,

где i – мнимая единица; – коэффициент распространения электромагнитной волны; – коэффициент затухания электромагнитной волны; – коэффициент изменения фазы электромагнитной волны; ZB – волновое сопротивление линии; L – длина линии.

Предложенный способ позволяет более точно определять место обрыва за счет фильтрации посредством дискретного преобразования Фурье исходных массивов мгновенных значений фазных токов и напряжений, измеренных на обоих концах линии, а также полученного авторами нового расчетного выражения для определения места повреждения ЛЭП, что позволяет исключить влияние апериодической и высокочастотных составляющих аварийных напряжений и токов и обеспечивает повышенную точность определения места повреждения.

На фиг.1 представлена структурная схема реализации способа определения места обрыва на воздушной линии электропередачи, которая является аналогичной способу-прототипу.

В таблице 1 приведены цифровые отсчеты мгновенных значений сигналов напряжении и токов всех трех фаз в начале линии .

В таблице 2 приведены цифровые отсчеты мгновенных значений сигналов напряжений и токов всех трех фаз в конце линии .

В таблицах 3 и 4 приведены промежуточные результаты расчета места обрыва на воздушной линии электропередачи.

В таблице 5 представлены реальное, определенное предложенным способом и способом-прототипом значения расстояния до места обрыва, а также погрешность определения места обрыва (табл. 1-5 см. в конце описания).

Способ может быть осуществлен с помощью устройства для определения места обрыва на воздушной линии электропередачи, представленного на фиг.1. В начале и в конце линии электропередачи 1 (ЛЭП) установлены регистраторы аварийных событий РАС1 и РАС2, обозначенные соответственно на фиг.1 цифрами 21 и 22. Регистраторы аварийных событий 21 и 22 через каналы связи 31 и 32 связаны с ЭВМ 4. ЭВМ 4 с помощью коммуникационного программного обеспечения реализует сбор мгновенных значений напряжений и токов с регистраторов аварийных событий 21, 22, производит расчет требуемых комплексов напряжений и токов по мгновенным значениям, хранит значения постоянных расчетных коэффициентов, а также выполняет вычислительные операции, необходимые для определения места повреждения ЛЭП 1. Как правило, в предприятиях электрических сетей (ПЭС) такая ЭВМ устанавливается в центре управления сетями (ЦУС), а выполнение операций, необходимых для расчета расстояния до места повреждения, возлагается на диспетчера ЦУС.

В качестве примера реализации способа определения места обрыва на воздушной линии электропередачи рассмотрим обрыв одной фазы на расстоянии l1=200км воздушной ЛЭП напряжением 500 кВ, протяженностью l=600 км, выполненной проводом АС- 500/64. Определим, что обрыв происходит в момент времени t=0c. Для получения аварийных токов и напряжений, а также расчетов расстояния до места повреждения ЛЭП проводилось моделирование в программном комплексе Matlab. Получение мгновенных значений аварийных токов и напряжений выполнялось при наличии высокочастотных составляющих (в состав сигналов токов и напряжений входила третья гармоника интенсивностью 30% от значения амплитуды основной частоты и пятая гармоника интенсивностью 20% от значения амплитуды основной частоты).

Предлагаемый способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений реализуется следующим образом.

Посредством регистраторов аварийных событий 21 и 22 измеряют в режиме обрыва мгновенные значения сигналов напряжений и токов всех трех фаз в начале (табл.1)

и в конце (табл.2) линии для одних и тех же моментов времени с дискретностью массивов мгновенных значений, определяемой N=64 отсчета на период промышленной частоты.

С использованием каналов связи 31 и 32 указанные мгновенные значения предаются в ЭВМ 4 для последующей фильтрации и определения комплексных составляющих фазных напряжений и токов. В отличие от способа-прототипа для фильтрации мгновенных значений и получения комплексных составляющих фазных напряжений и токов применяется дискретное преобразование Фурье (ДПФ) [например, Шнеерсон Э.М. Цифровая релейная защита. – М.: Энергоатомиздат, 2007. 549 с.]. С учетом принятых обозначений выражения для реализации ДПФ принимают вид

, , ,

, , ,

, , ,

, , ,

где – круговая частота, =50 Гц;

– векторное значение тока в фазе А в начале линии;

– векторное значение тока в фазе B в начале линии;

– векторное значение тока в фазе C в начале линии;

– векторное значение напряжения в фазе А в начале линии;

– векторное значение напряжения в фазе B в начале линии;

– векторное значение напряжения в фазе C в начале линии;

– векторное значение тока в фазе А в конце линии;

– векторное значение тока в фазе B в конце линии;

– векторное значение тока в фазе C в конце линии;

– векторное значение напряжения в фазе А в конце линии;

– векторное значение напряжения в фазе B в конце линии;

– векторное значение напряжения в фазе C в конце линии.

Фильтрующие свойства ДПФ позволяют обеспечить подавление нежелательных высокочастотных составляющих в мгновенных значениях аварийных сигналов напряжений и токов, что в совокупности с точным расчетом по формульному выражению

,

где i – мнимая единица; – коэффициент распространения электромагнитной волны; – коэффициент затухания электромагнитной волны; коэффициент изменения фазы электромагнитной волны; ZB – волновое сопротивление линии; L – длина линии;

обеспечивает высокую точность расчета расстояния до повреждения.

Следует отметить, что в способе-прототипе используется метод расчета комплексных составляющих токов и напряжений, не обладающий требуемыми свойствами фильтрации [Функциональный контроль и диагностика электротехнических и электромеханических систем и устройств по цифровым отсчетам мгновенных значений тока и напряжения/ B.C. Аврамчук, Н.Л. Бацева, Е.И. Гольдштейн, И.Н. Исаченко, Д.В. Ли, А.О. Сулайманов, И.В. Цапко. //Под ред. Е.И.Гольдштейна. Томск: Печатная мануфактура. 2003. – 240 с.] и уступающий по точности оценки комплексов токов и напряжений по мгновенным значениям в условиях высокочастотных составляющих. Это подтверждает сравнительный анализ точности оценки комплексов напряжений и токов, приведенный в табл. 5 с использованием мгновенных значений, полученных по результатам моделирования табл. 1, 2.

После получения комплексных значений аварийных фазных напряжений и токов с использованием постоянных коэффициентов (аналогичных способу-прототипу), а также ЭВМ 4 диспетчер ЦУС ПЭС выполняет расчет расстояния до места повреждения по формуле

,

где i – мнимая единица; – коэффициент распространения электромагнитной волны; – коэффициент затухания электромагнитной волны; – коэффициент изменения фазы электромагнитной волны; ZB – волновое сопротивление линии; L – длина линии.

По результатам расчетов в таблице 5 видно, что расчетное расстояние до места обрыва в условиях наличия в мгновенных значениях аварийных напряжений и токов высокочастотных составляющих не совпадает с реальным значением. Относительную погрешность ε вычислим по формуле [Бронштейн И.Н., Семендяев К.А. Справочник для инженеров и учащихся ВТУзов. – М.: Наука. 1980. – 976 с.]. Погрешность соответствует формульному выражению

,

где a – расчетное значение, z– реальное значение. Полученные значения относительной погрешности расчета расстояния до места повреждения для предлагаемого способа и способа-прототипа приведены в табл. 5. Анализ таблицы показывает, что по результатам моделирования предлагаемый способ обладает на 2% большей точностью по сравнению с прототипом.

Таким образом, предлагаемый способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений более точен в реализации в условиях наличия в мгновенных значениях аварийных напряжений и токов высокочастотных составляющих по сравнению с прототипом, что обеспечивает достижение требуемой цели изобретения.

Результаты моделирования при наличии в сигналах тока и напряжения третьей и пятой гармоник в фазе А

При моделировании принималось, что амплитуда 3-й гармоники равна 30% от амплитуды сигнала, амплитуда 5-й гармоники равна 20% от амплитуды сигнала.


Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Способ определения места обрыва на воздушной линии электропередачи по массивам мгновенных значений токов и напряжений
Источник поступления информации: Роспатент

Показаны записи 91-100 из 117.
22.11.2019
№219.017.e52d

Шнековый пластикатор для литья под давлением полимеров

Изобретение относится к устройству для литья под давлением пластмасс. Техническим результатом является повышение точности температуры нагрева и степени компрессии жидкого пластиката, понижение энергоемкости и материалоемкости, сокращение цикла литья и увеличение производительности. Технический...
Тип: Изобретение
Номер охранного документа: 0002706625
Дата охранного документа: 19.11.2019
24.11.2019
№219.017.e647

Модификатор для жаропрочных никельхромовых сплавов

Изобретение относится к области металлургии, а именно к модифицированию жаропрочных сплавов на основе тугоплавких элементов никеля, хрома, молибдена, кобальта, вольфрама ультрадисперсными порошковыми комплексами тугоплавких соединений. Модификатор содержит, мас.%: ультрадисперсный порошок...
Тип: Изобретение
Номер охранного документа: 0002706922
Дата охранного документа: 21.11.2019
01.12.2019
№219.017.e92d

Способ изготовления керамических оболочковых форм для литья по выплавляемым моделям

Изобретение относится к литейному производству. Воскообразные модели выплавляют из оболочковых форм в стальной ванне с горячей водой, причем блоки погружают в воду литниковыми воронками вверх. В состав воды вносят добавки лаурилсульфата натрия и соляной кислоты в количестве 0,8-1,0% суммарно от...
Тип: Изобретение
Номер охранного документа: 0002707642
Дата охранного документа: 28.11.2019
31.12.2020
№219.017.f461

Универсальный тиристорный регулятор величины вольтодобавочного напряжения

Изобретение относится к высоковольтным электротехническим комплексам для управляемых линий электропередач. Технический результат – реализация продольного и поперечного регулирования напряжения с использованием одного модуля регулирования выходного напряжения, что сокращает количество...
Тип: Изобретение
Номер охранного документа: 0002710660
Дата охранного документа: 30.12.2019
16.01.2020
№220.017.f5e0

Универсальное модульное вольтодобавочное устройство для распределительных сетей среднего напряжения

Изобретение относится к высоковольтным электротехническим комплексам для управляемых линий электропередач. Технический результат – расширение области применения, сокращение количества тиристорных ключей, находящихся под напряжением распределительной сети 6-10 кВ. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002710886
Дата охранного документа: 14.01.2020
22.01.2020
№220.017.f7e6

Вихревой теплообменный аппарат

Изобретение относится к теплотехнике, а в частности к теплообменным аппаратам с рекуперативной передачей тепла, и может быть использовано в химической, пищевой и смежных отраслях промышленности. Наиболее эффективное использование данного устройства возможно при умеренных и малых расходах...
Тип: Изобретение
Номер охранного документа: 0002711569
Дата охранного документа: 17.01.2020
29.02.2020
№220.018.079d

Система автоматического ограничения снижения напряжения в промышленных энергорайонах 6-220 кв с источниками распределенной генерации

Использование: в области электроэнергетики. Технический результат – обеспечение учета особенностей промышленных энергорайонов с источниками распределенной генерации при автоматическом ограничении снижения напряжения. Система автоматического ограничения снижения напряжения (АОСН) в промышленных...
Тип: Изобретение
Номер охранного документа: 0002715339
Дата охранного документа: 27.02.2020
29.02.2020
№220.018.07aa

Дистанционирующая и перемешивающая решетка тепловыделяющей сборки ядерного реактора

Изобретение относится к конструкции перемешивающих дистанционирующих решеток для тепловыделяющих сборок ядерных реакторов. Перемешивающая дистанционирующая решетка, состоящая из взаимно перпендикулярных в двух плоскостях пластин, образует в поперечном сечении каналы квадратного сечения решетки...
Тип: Изобретение
Номер охранного документа: 0002715387
Дата охранного документа: 27.02.2020
17.04.2020
№220.018.1574

Брикет для производства чугуна в вагранке

Изобретение относится к области металлургии и литейного производства, в частности к подготовке материалов для ваграночной плавки чугуна. Брикет содержит железосодержащий материал, включающий чугунную, стальную стружку и оксиды железа, углеродосодержащее вещество и известковую пыль. В качестве...
Тип: Изобретение
Номер охранного документа: 0002718838
Дата охранного документа: 14.04.2020
20.04.2020
№220.018.161c

Способ определения места и расстояния до места однофазного замыкания на землю в электрических сетях 6-35 кв с изолированной или компенсированной нейтралью

Изобретение относится к электротехнике, в частности к способам определения местоположения повреждений (ОМП) в электрических сетях 6-35 кВ с изолированной или компенсированной нейтралью. Техническим результатом изобретения является повышение точности определения расстояния до места замыкания на...
Тип: Изобретение
Номер охранного документа: 0002719278
Дата охранного документа: 17.04.2020
Показаны записи 61-68 из 68.
20.04.2020
№220.018.161c

Способ определения места и расстояния до места однофазного замыкания на землю в электрических сетях 6-35 кв с изолированной или компенсированной нейтралью

Изобретение относится к электротехнике, в частности к способам определения местоположения повреждений (ОМП) в электрических сетях 6-35 кВ с изолированной или компенсированной нейтралью. Техническим результатом изобретения является повышение точности определения расстояния до места замыкания на...
Тип: Изобретение
Номер охранного документа: 0002719278
Дата охранного документа: 17.04.2020
25.04.2020
№220.018.192a

Способ автоматического повторного включения кабельно-воздушной линии электропередачи

Использование: в области электротехники. Технический результат - повышение помехозащищенности способа автоматического повторного включения кабельно-воздушной линии электропередачи (ЛЭП) и его упрощение. Согласно способу при повреждении кабельно-воздушной ЛЭП фиксируют электромагнитные волны,...
Тип: Изобретение
Номер охранного документа: 0002719763
Дата охранного документа: 23.04.2020
14.05.2020
№220.018.1c76

Способ релейной защиты энергообъекта

Использование: в области электроэнергетики. Технический результат - создание способа релейной защиты энергообъекта, обладающего высокой распознающей способностью аварийных режимов, а также быстродействием и простотой технической реализации. Способ релейной защиты энергообъекта осуществляется...
Тип: Изобретение
Номер охранного документа: 0002720710
Дата охранного документа: 12.05.2020
21.05.2020
№220.018.1f19

Система управления накопителями электрической энергии для расширения области допустимых режимов генерирующих установок источников распределенной генерации при провалах напряжения

Изобретение относится к электроэнергетике и может быть применено в промышленных энергорайонах для расширения области допустимых режимов генерирующих установок источников распределенной генерации при провалах напряжения, возникающих в сетях внешнего и внутреннего электроснабжения 6-220 кВ, для...
Тип: Изобретение
Номер охранного документа: 0002721477
Дата охранного документа: 19.05.2020
12.04.2023
№223.018.433c

Способ определения места короткого замыкания на воздушной линии электропередачи при несинхронизированных замерах с двух ее концов

Изобретение относится к электроэнергетике и может быть использовано для определения места короткого замыкания на линиях электропередачи при несинхронизированных замерах с двух ее концов. Технический результат: повышение точности определения места короткого замыкания в условиях неоднородного...
Тип: Изобретение
Номер охранного документа: 0002793555
Дата охранного документа: 04.04.2023
12.05.2023
№223.018.5468

Способ автоматического повторного включения (апв) питающих линий контактной сети двухпутного участка системы 25 кв с постом секционирования на разъединителях

Изобретение относится к системе автоматизации электроснабжения электрических железных дорог переменного тока, а именно к автоматизации выключателей питающих линий контактной сети с постами секционирования на разъединителях. Технический результат: повышение надежности автоматического повторного...
Тип: Изобретение
Номер охранного документа: 0002795540
Дата охранного документа: 04.05.2023
15.05.2023
№223.018.5a06

Способ автоматической частотной разгрузки энергорайона в условиях отклонения показателей качества электроэнергии

Использование: в области электроэнергетики. Технический результат – уменьшение объемов отключаемой нагрузки при существенных отклонениях показателей качества электроэнергии от нормируемых значений. Согласно способу при фиксации приборами контроля качества электроэнергии энергорайона...
Тип: Изобретение
Номер охранного документа: 0002761859
Дата охранного документа: 13.12.2021
15.05.2023
№223.018.5a54

Способ анализа качества электрической энергии в трехфазной системе промышленного электроснабжения

Изобретение относится к измерительной технике, а именно к оценке показателей качества электрической энергии (КЭЭ) в системах промышленного электроснабжения. Технический результат – разработка способа анализа КЭЭ в трехфазной системе, реализующего выборочный контроль. Заявленный способ анализа...
Тип: Изобретение
Номер охранного документа: 0002769082
Дата охранного документа: 28.03.2022
+ добавить свой РИД