×
29.12.2017
217.015.f8ee

Результат интеллектуальной деятельности: СПОСОБ И СИСТЕМА ИДЕНТИФИКАЦИИ АРТЕФАКТОВ ПЕРЕМЕЩЕНИЯ И ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗМЕРЕНИЙ И СИГНАЛОВ ТРЕВОГИ В ФОТОПЛЕТИЗМОГРАФИЧЕСКИХ ИЗМЕРЕНИЯХ

Вид РИД

Изобретение

№ охранного документа
0002640006
Дата охранного документа
25.12.2017
Аннотация: Группа изобретений относится к медицинской технике, а именно к средствам мониторинга. Система для идентификации артефактов движения содержит зонд, выполненный с возможностью измерять физиологический параметр соответствующего пациента, сконфигурированный с возможностью размещения на или вблизи соответствующего пациента и генерирования одного или более физиологических сигналов, указывающих на выявленный физиологический параметр, акселерометр, первый блок обработки физиологических сигналов, поступающих от зонда, для измерения физиологического параметра, и второй блок обработки сигналов ускорения, поступающих от акселерометра, для определения характеристик движения, причем обработка во втором блоке обработки сигналов выполняется параллельно и независимо от обработки в первом блоке обработки сигналов, и блок маркировки измерений физиологического параметра временными соответствующими характеристиками перемещения, исходя из определенных характеристик перемещения. Способ идентификации артефактов движения содержит прием, по меньшей мере, одним процессором одного или более физиологических сигналов обнаруженного физиологического параметра соответствующего пациента от зонда, прием, по меньшей мере, одним процессором одного или более сигналов измерения ускорения от акселерометра, обработку одного или более сигналов, поступающих от зонда, для определения измерений физиологического параметра, обработку одного или более сигналов, поступающих от акселерометра, и маркировку, по меньшей мере, одним процессором измерений физиологического параметра. Способ осуществляется системой, содержащей по меньшей мере, один процессор, включающий маркировку измерений физиологического параметра как проведенных при наличии или при отсутствии перемещения, исходя из порога измеренного ускорения. Группа изобретений позволяет расширить арсенал средств для фотоплетизмографических измерений. 3 н. и 17 з.п. ф-лы, 5 ил.

Настоящая заявка относится в основном к физиологическому мониторингу. Он нашел конкретное применение в сочетании с пульсовой оксиметрией и будет описан с конкретной ссылкой на нее. Однако следует понимать, что он также находит применение и в других сценариях фотоплетизмографического измерения и не обязательно ограничен вышеупомянутым применением.

Пульсовая оксиметрия представляет собой неинвазивный способ, допускающий мониторинг оксигенации гемоглобина пациента. Датчик помещают на тонкую часть тела пациента. В случае ребенка датчик обычно помещают на ступне. В ином случае датчик обычно помещают на кончике пальца или на мочке уха, или, в качестве альтернативы, на лбу. Свет при красной (например, примерно 660 нм) и инфракрасной (например, примерно 940 нм) длинах волн затем последовательно пропускают через пациента на фотодетектор. Изменение поглощательной способности на каждой из двух длин волн измеряют для создания фотоплетизмограммы (photoplethysmogram, PPG) для каждого из красного света и инфракрасного излучения.

Исходя из PPG, поглощательная способность может быть определена благодаря только пульсированию артериальной крови, исключая венозную кровь, кожу, кости, мышцы, жир, отполированному ногтю пальца (в большинстве случаев) и т.д. Используя соотношение изменения поглощательной способности красного и инфракрасного излучения, вызванной разностью в цвете между связанным с кислородом (ярко-красный) и не связанным с кислородом (темно-красный или синий в тяжелых случаях) гемоглобином крови, можно выполнять определение насыщения кислородом (SpO2). Насыщение кислородом представляет собой процентное содержание молекул гемоглобина, связанных с молекулами кислорода от общего количества гемоглобина (кислородсодержащего и не кислородсодержащего).

Поскольку пульсовая оксиметрия является неинвазивной и удобной для использования, она стала обычной в стационарных условиях для мониторинга пациентов, а также в условиях медико-санитарной помощи на дому. Однако существует множество условий, связанных с природой фотоплетизмографических измерений, которые снижают точность расчета SpO2. Это также верно для расчетов процента насыщенности карбоксигемоглобином (SpCO), частоты пульса (PR), изменения пульсового давления (PPV), времени установления пульса (PPT), гемоглобина (HB), гемокрита (HCT), глюкозы (GLU), холестерола (CHOL) и любых других физиологических параметров, выведенных с использованием фотоплетизмографических измерений из PPG. Эта пониженная точность, в свою очередь, повышает количество ложных сигналов тревоги.

Одно состояние, которое снижает точность, представляет собой низкую перфузию (т.е. недостаточную перфузию). Низкая перфузия может, например, вызвать ложно низкое количество считываний SpO2. Однако это условие может быть идентифицировано путем анализа самого сигнала PPG, при условии, что сигнал PPG является чистым (т.е. свободным от шума и/или артефактов). Пользователь может быть тогда уведомлен относительно условий, и, таким образом, пользователь может знать, что текущие измерения являются неточными.

Другим условием, которое снижает точность, является движение датчика. Когда имеет место движение с датчиком, условия измерения нарушаются (т.е. соотношение между поглощательной способностью от красных и инфракрасных фотодатчиков больше не представляет собой теоретически логичную ситуацию), вследствие чего измерения, полученные в период движения, больше не являются надежными и, таким образом, не должны использоваться, например, в целях отображения и/или передачи сигнала тревоги для указания на одну или более характеристик, - SpO2, SpCO, PR, PPV, PPT, HB, HCT, GLU и CHOL пациента.

Для компенсации артефактов движения требуется идентификация движения датчика и идентификация тех частей сигнала PPG, которые связаны с артефактами движения. Одним способом идентификации артефактов движения является анализ сигнала PPG и поиск нетипичных конфигураций. Однако это является трудной задачей, поскольку конфигурации PPG, связанные с патофизиологическими ситуациями и с артефактами движения, - оба могут изменяться в широком диапазоне и перекрываться. А именно, признаки шума, связанные с временным интервалом и/или частотным интервалом, и/или артефакты, связанные с движением датчика, в сигнале PPG, могут показаться сходными с признаками самого PPG. Кроме того, технологии обработки сигнала PPG, используемые для идентификации артефактов движения в сигналах PPG, часто усложняются и требуют определенного оперативного контроля, такого как действия «Период изучения» и «Повторное изучение».

Настоящая заявка обеспечивает новую и усовершенствованную систему и способ, которые преодолевают вышеупомянутые и другие проблемы.

В соответствии с одним аспектом, обеспечена система для идентификации артефактов движения. Система включает в себя зонд, измеряющий физиологический параметр соответствующего пациента. Зонд расположен на или вблизи соответствующего пациента. Акселерометр, расположенный на, вблизи, или интегрально с зондом, измеряет ускорение. Маркировочный блок помечает измерения физиологического параметра и временные характеристики, соответствующие движению, исходя из измеренного ускорения.

В соответствии с другим аспектом, обеспечен способ идентификации артефактов движения. Способ выполняется, по меньшей мере, одним процессором. Измерения физиологического параметра соответствующего пациента получают от зонда, расположенного на или вблизи соответствующего пациента. Кроме того, измерения ускорения получают от акселерометра, расположенного на, вблизи, или интегрально с зондом. Измерения физиологического параметра и временные характеристики, соответствующие движению, помечают, исходя из измеренного ускорения.

В соответствии с другим аспектом, обеспечена система для идентификации артефактов движения. Система включает в себя, по меньшей мере, один процессор, запрограммированный на прием данных измерений физиологического параметра соответствующего пациента от зонда, расположенного на или вблизи соответствующего пациента. Кроме того, измерения ускорения получают от акселерометра, расположенного на, вблизи, или интегрально с зондом, и измерения физиологического параметра помечают как проведенные при наличии или при отсутствии перемещения, исходя из измеренного ускорения.

Одно преимущество состоит в снижении количества ложных сигналов тревоги.

Другое преимущество состоит в более точном измерении насыщения кислородом и частоты пульса или любого из других физиологических расчетов, выведенных с использованием фотоплетизмографических измерений.

Другое преимущество состоит в непосредственном способе выявления артефактов движения.

Другие преимущества настоящего изобретения должны быть учтены обычным специалистом в данной области техники при прочтении и понимании следующего подробного описания.

Изобретение может принимать форму различных компонентов и расположений компонентов, а также различных этапов и порядков этапов. Чертежи приведены лишь в целях иллюстрации предпочтительных вариантов воплощения и не должны рассматриваться как ограничивающие изобретение.

Фиг. 1 иллюстрирует вариант воплощения системы пульсовой оксиметрии.

Фиг. 2 иллюстрирует другой вариант воплощения системы пульсовой оксиметрии.

Фиг. 3 иллюстрирует блок-схему для установления порога показателя качества сигнала (сигнал quality index, SQI).

Фиг. 4 иллюстрирует некоррелированную функцию SQI-поиска перемещения.

Фиг. 5 иллюстрирует коррелированную функцию SQI-поиска перемещения.

Обеспечена система пульсовой оксиметрии для идентификации артефактов движения. Система включает в себя акселерометр, интегральной с, расположенный на, или установленный вблизи фотоплетизмографического (PPG) датчика таким образом, чтобы движение PPG-датчика выявлялось непосредственно. Интенсивность и продолжительность движения могут быть легко идентифицированы путем обработки одного или более сигналов акселерометра, поступающих от акселерометра. Исходя из идентифицированного движения, физиологические измерения, такие как измерения насыщения кислородом (SpO2) и частоты пульса (PR), полученные от датчика PPG, могут быть сохранены как надежные (т.е. свободные от артефакта перемещения) или ненадежные (т.е. подверженные артефактам движения). Врачам-консультантам могут быть представлены и/или использованы для вызова тревоги преимущественно только надежные измерения. Идентифицированное движение также может быть использовано для указания на то, насколько большой или малый вес следует придавать измеренным данным.

Применительно к Фиг. 1 и 2 система пульсовой оксиметрии 10 включает в себя зонд 12 PPG, помещенный на или вокруг тонкой части тела соответствующего пациента. В случае ребенка зонд 12 PPG обычно помещают на ступню. В ином случае зонд 12 PPG обычно помещают на кончик пальца, мочку уха или на лоб. Зонд 12 PPG включает в себя датчик 14 с одним или более источниками света, которые пропускают излучение при красной (например, примерно 660 нм) и инфракрасной (например, примерно 940 нм) длинах волн последовательно через тело соответствующего пациента на фотодетектор. Изменение поглощательной способности при каждой из двух длин волн измеряют для создания сигналов PPG для каждого излучения, - красного и инфракрасного.

Блок 16 обработки сигнала PPG (PPG signal processing unit, PSPU) обрабатывает сигналы PPG для определения, по меньшей мере, одного из следующих параметров: SpO2, PR, показателя качества сигнала (signal quality index, SQI) и PPG. PSPU 16 обрабатывает сигналы PPG согласно хорошо известным технологиям пульсовой оксиметрии. Например, данные по SpO2 могут быть определены, исходя из соотношения изменения поглощательной способности красного и инфракрасного излучения, вызванного разностью в цвете между связанным с кислородом (ярко-красным) и не связанным с кислородом (темно-красный или синий в тяжелых случаях) гемоглобином крови. PSPU 16 может представлять собой программное обеспечение (т.е. команды, исполнимые на процессоре), аппаратное обеспечение или их сочетание. Когда PSPU 16 представляет собой или включает в себя программное обеспечение, программное обеспечение хранится в одной или более памятях 18 программы и исполняется одним или более процессорами 20, как было проиллюстрировано.

Устройство пульсоксиметра (pulse oximeter device, POD) 22, расположенное вблизи соответствующего пациента, обычно на кровати соответствующего пациента, принимает сигналы PPG, поступающие от зонда 12 PPG. POD 22 обычно включает в себя PSPU 16, как было проиллюстрировано. Используя PSPU 16, POD 22 обрабатывает сигналы PPG для определения, по меньшей мере, одного из следующего: SpO2, PR, SQI и PPG. Однако также предполагается, что PSPU 16 расположен удаленно от POD 22, например, в системе 24 мониторинга пациента (patient monitoring system, PMS). В таком случае, POD 22 передает сигналы PPG на PSPU 16. POD 22 также может быть объединено с зондом 12 PPG.

Акселерометр 26 интегральной с, помещенный на, или расположенный вблизи зонда 12 PPG, измеряет перемещение для генерирования одного или более сигналов акселератора. Как было проиллюстрировано на ФИГУРЕ 1, акселерометр 26 расположен вблизи зонда 12 PPG, и, как было проиллюстрировано на ФИГУРЕ 2, акселерометр 26 встроен в зонд 12 PPG. Обычно акселерометр 26 представляет собой трехмерный (3D) или трехосный акселерометр. Однако акселерометр 26 может измерять ускорение по трем или менее измерениям. Сигналы акселерометра обычно включают в себя сигнал акселератора для каждой оси (или измерения) акселерометра 26.

Блок 28 обработки сигнала ускорения (acceleration signal processing unit, ASPU) анализирует сигналы ускорения для выявления движения акселерометра 26. Например, там, где сигналы ускорения включают в себя сигнал ускорения для каждой оси акселератора 26, процесс объединения сигналов может быть использован для сбора информации о движении по каждой оси. Затем может быть сформирован сложный сигнал, и у него может быть определен порог для выявления движения акселерометра 26. Например, сложный сигнал может указывать на перемещение вдоль и вращение вокруг каждой оси. Исходя из анализа, ASPU 28 генерирует индикаторный сигнал перемещения (motion indication signal, MIS).

MIS может быть использован для передачи цифровых сообщений, указывающих на скорость движения, ускорение, направление, продолжительность и т.п. Например, каждое сообщение может идентифицировать перемещение в течение периода движения, и момент начала и конца для периода движения. В качестве альтернативы, амплитуда MIS может быть изменена для выявления интенсивности движения (т.е. ускорения). Интенсивность движения обычно определяют путем применения одного или более порогов к ускорению выявленного движения, причем пороги идентифицируют различные интенсивности движения. Например, одиночный порог может быть использован для различения между собой отсутствия перемещения (или недостаточного перемещения) и наличия перемещения (или достаточного перемещения). В качестве другого примера, для различения между собой отсутствия перемещения, низкого перемещения, среднего перемещения, высокого перемещения и очень высокого перемещения по любому или по каждому направлению может быть использовано несколько порогов.

Анализ и генерирование подходящим образом выполняют параллельно и независимо от обработки сигналов PPG посредством PSPU 16. Кроме того, ASPU 28 может представлять собой программное обеспечение (т.е. команды, выполняемые процессором), аппаратное обеспечение или сочетание их обоих. Когда ASPU 28 представляет собой или включает в себя программное обеспечение, программное обеспечение хранится в одной или более памятях 30 программы и выполняется одним или более процессорами 32, как было проиллюстрировано.

Устройство 34 анализа данных акселерометра, расположенное вблизи соответствующего пациента, обычно на кровати соответствующего пациента, принимает сигналы акселератора, поступающие от акселерометра 26. Устройство 34 анализа данных акселерометра обычно включает в себя ASPU 28, как было проиллюстрировано. Используя ASPU 28, устройство 34 анализа данных акселерометра анализирует сигналы ускорения для выявления движения акселерометра и генерирует MIS, исходя из анализа. Однако также предполагается, что ASPU 28 расположен удаленно от устройства 34 акселерометра, например, в PMS 24. В таком случае, устройство 34 анализа данных акселерометра передает сигналы акселератора на ASPU 28. Устройство 34 анализа данных акселерометра также может быть объединено с POD 22 и/или с акселерометром 26.

Обратимся теперь специально к ФИГУРЕ 1, где один вариант воплощения системы 10 пульсовой оксиметрии включает в себя маркировочный блок 36, который принимает, по меньшей мере, один сигнал из SpO2, PR, SQI и PPG от PSPU 16. Маркировочный блок 36 дополнительно принимает сигнал MIS от ASPU 28. Как было проиллюстрировано, маркировочный блок 36 расположен удаленно от ASPU 28 и PSPU 16 и принимает сигнал MIS и, по меньшей мере, один из SpO2, PR, SQI и PPG по отдельности посредством проводной и/или беспроводной связи.

Исходя из сигнала MIS, маркировочный блок 36 помечает каждый, по меньшей мере, из одного из сигналов SpO2, PR, SQI и PPG соответствующей временной характеристикой перемещения, например, характеристикой наличия перемещения или отсутствия перемещения, исходя из потактового или посекундного анализа. Например, SpO2 или PR в текущем сердечном цикле помечают как факт наличия перемещения. Там, где имеет место перемещение, измерение может быть дополнительно помечено как связанное с низким, средним, высоким, очень высоким перемещением, или другими характеристиками перемещения. Маркировочный блок 36 может представлять собой программное обеспечение (т.е. команды, выполняемые процессором), аппаратное обеспечение или сочетание их обоих. Когда маркировочный блок 36 представляет собой или включает в себя программное обеспечение, программное обеспечение хранится в одной или более памятях 38 программы и выполняется одним или более процессорами 40, как было проиллюстрировано.

Блок 42 выборки принимает помеченный, по меньшей мере, один из сигналов SpO2, PR, SQI и PPG и выбирает измерения SpO2 и/или PR, которые помечены как измерения, в которых отсутствует перемещение или имеются приемлемые характеристики перемещения. Измерения SpO2 и/или PR, не удовлетворяющие этим критериям, выбраковываются или помечаются как имеющие малый вес. Исходя из выбранных измерений SpO2 и/или PR, могут быть сгенерированы измерения кратковременной срединной величины SpO2 и/или PR и/или кратковременные средние измерения SpO2 и/или измерения PR. Например, текущее измерение SpO2 или PR (для вывода для пользователя) является средним от предварительно заданного количества непосредственно предшествующих измерений, которые помечены как измерения при отсутствии перемещения. Блок 42 выборки может представлять собой программное обеспечение (т.е. команды, выполняемые процессором), аппаратное обеспечение или сочетание их обоих. Когда блок 42 выборки представляет собой или включает в себя программное обеспечение, программное обеспечение хранится в памятях программы и исполняется процессорами 40, как было проиллюстрировано.

Блок 44 управления системой сигналов тревоги (system alarm manager unit, SAMU) генерирует сигналы тревоги, когда одно или более из выбранных средних и срединных значений измерений SpO2 и/или PR отвечает предварительно заданным критериям сигналов тревоги. Например, когда выбранное среднее, срединное, скорость изменения и т.п. для измерений SpO2 или PR превышает порог, порог для выбранного промежутка времени или других критериев сигнала тревоги генерируется сигнал тревоги. SAMU 44 также может осуществлять мониторинг соответствующего пациента, исходя из сигнала MIS. Когда сигнал MIS указывает на перемещение в течение непосредственно предшествующего периода предварительно заданного времени, такого как 10 секунд, генерирование сигналов тревоги может быть задержано. Иными словами, сигналы тревоги могут быть генерированы, лишь когда отсутствует какой-либо или имеется приемлемый уровень перемещения для предварительно заданного количества времени. SAMU 44 может представлять собой программное обеспечение (т.е. команды, выполняемые процессором), аппаратное обеспечение или сочетание их обоих. Когда SAMU 44 представляет собой или включает в себя программное обеспечение, программное обеспечение хранится в памятях 38 программ и исполняется процессорами 40, как было проиллюстрировано.

PMS 24 осуществляет мониторинг соответствующего пациента, исходя из одного или более выбранных средних, срединных измерений или скорости изменения измерений SpO2 и/или PR. Используя устройство визуализации 46, PMS 24 может предоставить визуальное представление сигнала MIS пользователю. Например, может быть отображена текущая интенсивность движения. Кроме того, PMS 24 может предоставить визуальное представление одного или более выбранных срединных и средних измерений SpO2 и/или PR. Например, могут быть отображены текущие измерения SpO2 и/или PR. В качестве другого примера, измерения SpO2 и/или PR могут быть отображены как тенденции наряду с условием MIS. Более того, PMS 24 может предоставить визуальное представление генерированных сигналов тревоги. PMS 24 включает в себя SAMU 44 и может включать в себя блоки 36, 42 маркировки и выборки, как было проиллюстрировано. Однако также предполагается, что POD 22 включает в себя блоки 36, 42 маркировки и выборки.

Обратимся теперь специально к Фиг. 2, где обеспечен другой вариант воплощения системы пульсовой оксиметрии 10. Этот вариант воплощения является тем же, что описанный в варианте воплощения согласно Фиг. 1, за исключением того, что он дополнительно включает в себя блок 48 SQI. Блок 48 SQI принимает от PSPU 16, по меньшей мере, одни данные из следующих: SpO2, PR, SQI и PPG. Блок 48 SQI дополнительно принимает сигнал MIS от ASPU 28. Как было проиллюстрировано, блок 48 SQI расположен удаленно от ASPU 28 и PSPU 16 и принимает сигнал MIS и, по меньшей мере, одни из следующих данных: SpO2, PR, SQI и PPG по отдельности, по проводной и/или беспроводной связи. Исходя из сигнала MIS и, по меньшей мере, одних из данных SpO2, PR, SQI и PPG, блок 48 SQI фильтрует измерения, исходя из SQI, перед передачей измерений на маркировочный блок 36.

Фильтрование подходящим образом осуществляют в соответствии с блок-схемой согласно ФИГУРЕ 3. Определение 50 делают относительно того, выявлено ли перемещение с использованием сигнала MIS. Перемещение выявляют, когда сигнал MIS имеется в распоряжении, и сигнал MIS указывает на то, что имеет место перемещение (или достаточное перемещение). Если перемещение отсутствует, порог SQI задают 52 как недостаточный, причем предварительно заданный порог или другие критерии определяют, например, посредством оператора системы 10 пульсовой оксиметрии. Если перемещение имеет место, то определение 54 осуществляют на предмет того, является ли выявленное перемещение коррелированным с временным выравниванием или с частотным составом PPG.

Если перемещение является некоррелированным, то для установления 56 порога SQI используют некоррелированную функцию SQI-поиска перемещения. Функция поиска является специфической для системы пульсовой оксиметрии и функции интенсивности перемещения. ФИГУРА 4 иллюстрирует график примера такой функции поиска, где горизонтальная ось соответствует интенсивности перемещения, а вертикальная ось соответствует порогу SQI. Если перемещение является коррелированным, то коррелированную функцию SQI-поиска перемещения используют для установления 58 порога SQI. Функция поиска является специфической для системы пульсовой оксиметрии и функции интенсивности перемещения. Фиг.5 иллюстрирует график примера такой функции поиска, где горизонтальная ось соответствует интенсивности перемещения, а вертикальная ось соответствует порогу SQI.

После установления 52, 56, 58 порога или других критериев порог или другие критерии сопоставляют с SQI для определения 60 того, превышает ли SQI порог или другие критерии. Если SQI превышает порог, соответствующие измерения, такие как измерения PR и SpO2, выводятся 62 и используются как описанные в первом варианте воплощения. Иными словами, маркировочный блок 36 помечает измерения, блок 42 выборки выбирает измерения без перемещения или с приемлемым перемещением, или определяет размерность измерения с меньшим перемещением, более высокую, чем измерения с большим перемещением, а SAMU 44 генерирует сигналы тревоги, исходя из выбранных измерений. Если SQI не превышает порог или другие критерии, соответствующие измерения выбраковываются 64.

Хотя вышеописанный способ выявления артефактов движения был описан в сочетании с пульсовой оксиметрией и частотой пульса, следует понимать, что этот способ в равной степени хорошо применим для любого из несметного числа других физиологических расчетов, выведенных с использованием фотоплетизмографических измерений, таких как измерение процента насыщенности карбоксигемоглобином (SpCO), изменения пульсового давления (PPV), времени установления пульса (PPT), гемоглобина (HB), гемокрита (HCT), глюкозы (GLU), холестерола (CHOL) и т.п. Следует учитывать, что этот способ также может быть распространен и на другие типы физиологического мониторинга, такие как мониторинг электрокардиограммы (electrocardiogram, ECG), мониторинг дыхания (respiration, RESP) и мониторинг давления артериальной крови (arterial blood pressure, ABP). В таких вариантах воплощения акселерометр помещают на каждый электрод с предварительной обработкой данных, или на преобразователь, для выявления перемещения электрода или преобразователя, и, таким образом, любое движение (с точки зрения времени, продолжительности и интенсивности) электрода или преобразователя может быть непосредственно и надежно выявлено. Двигательная активность, выявленная акселерометром, может быть затем использована для маркировки соответствующей длины волны сигнала. Кроме того, параметр измерений, выведенных из длины волны, которые связаны с перемещением, будет исключен из выходных данных, подаваемых конечному пользователю, и из запуска соответствующих сигналов тревоги. Таким образом, точность и надежность параметра измерения и соответствующих сигналов тревоги будет существенно повышена.

В настоящей работе память включает в себя один или более невременных компьютерных носителей; магнитный диск или другую магнитную запоминающую среду; оптический диск или другое оптическое запоминающее устройство; запоминающее устройство с произвольной выборкой (ЗУПВ), постоянное запоминающее устройство (ПЗУ), или другое устройство электронной памяти или микросхемы, или комплект оперативно соединенных между собой микросхем; сервер Интернет/Интранет, из которого сохраненные команды могут быть извлечены через Internet/Intranet или локальную сеть; и т.д. Кроме того, в целях настоящей работы процессор включает в себя один или более следующих устройств: микропроцессор, микроконтроллер, блок графической обработки (graphic processing unit, GPU), специализированную интегральную микросхему (application-specific integrated circuit, ASIC), FPGA, и т.п.; контроллер включает в себя: (1) процессор и память, причем процессор исполняет команды, считываемые компьютером из памяти, воплощая функцию контроллера; или (2) аналоговое и/или цифровое аппаратное обеспечение; пользовательское устройство ввода включает в себя один или более из следующих устройств: мышь, клавиатуру, сенсорный дисплей, одну или более кнопок, один или более переключателей, один или более тумблеров, механизмов распознавания голоса и т.п.; база данных включает в себя одну или более памятей; а устройство визуализации включает в себя одно или более из следующих устройств: жидкокристаллический дисплей, СИД-дисплей, плазменный дисплей, проекционный дисплей, сенсорный дисплей и т.п.

Изобретение было описано со ссылкой на предпочтительные варианты воплощения. При прочтении и понимании вышеприведенного подробного описания могут возникнуть различные модификации и видоизменения, понятные другим специалистам в данной области техники. Предполагается, что изобретение следует рассматривать, как включающее в себя все такие модификации и видоизменения до тех пор, пока они подпадают под объем прилагаемой формулы изобретения или ее эквивалентов.


СПОСОБ И СИСТЕМА ИДЕНТИФИКАЦИИ АРТЕФАКТОВ ПЕРЕМЕЩЕНИЯ И ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗМЕРЕНИЙ И СИГНАЛОВ ТРЕВОГИ В ФОТОПЛЕТИЗМОГРАФИЧЕСКИХ ИЗМЕРЕНИЯХ
СПОСОБ И СИСТЕМА ИДЕНТИФИКАЦИИ АРТЕФАКТОВ ПЕРЕМЕЩЕНИЯ И ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗМЕРЕНИЙ И СИГНАЛОВ ТРЕВОГИ В ФОТОПЛЕТИЗМОГРАФИЧЕСКИХ ИЗМЕРЕНИЯХ
СПОСОБ И СИСТЕМА ИДЕНТИФИКАЦИИ АРТЕФАКТОВ ПЕРЕМЕЩЕНИЯ И ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗМЕРЕНИЙ И СИГНАЛОВ ТРЕВОГИ В ФОТОПЛЕТИЗМОГРАФИЧЕСКИХ ИЗМЕРЕНИЯХ
СПОСОБ И СИСТЕМА ИДЕНТИФИКАЦИИ АРТЕФАКТОВ ПЕРЕМЕЩЕНИЯ И ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗМЕРЕНИЙ И СИГНАЛОВ ТРЕВОГИ В ФОТОПЛЕТИЗМОГРАФИЧЕСКИХ ИЗМЕРЕНИЯХ
СПОСОБ И СИСТЕМА ИДЕНТИФИКАЦИИ АРТЕФАКТОВ ПЕРЕМЕЩЕНИЯ И ПОВЫШЕНИЯ НАДЕЖНОСТИ ИЗМЕРЕНИЙ И СИГНАЛОВ ТРЕВОГИ В ФОТОПЛЕТИЗМОГРАФИЧЕСКИХ ИЗМЕРЕНИЯХ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 1 730.
27.08.2016
№216.015.50cf

Катушечная сборка ядерного магнитного резонанса с радиочастотным экраном, переключаемым между блокирующим состоянием и прозрачным состоянием

Использование: для формирования магнитно-резонансного изображения. Сущность изобретения заключается в том, что система формирования магнитно-резонансного изображения содержит катушечную сборку, сконфигурированную для излучения в зону формирования изображения и/или приема радиочастотной энергии...
Тип: Изобретение
Номер охранного документа: 0002595798
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.50f5

Устройство и способ получения напитка

Изобретение относится к способу получения напитка, согласно которому подают первую порцию растворителя в емкость, содержащую исходные ингредиенты, причем первая порция растворителя имеет первую температуру, затем подают вторую порцию растворителя в емкость, причем смесь первой порции...
Тип: Изобретение
Номер охранного документа: 0002595977
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.50fa

Детектирующее устройство для обнаружения фотонов, учитывающее накладывающиеся друг на друга события

Изобретение относится к детектированию фотонов. Детектирующее устройство включает в себя блок определения накладывающихся друг на друга событий для определения того, вызваны ли импульсы сигнала обнаружения, указывающие на обнаружение фотонов, накладывающимися событиями или ненакладывающимися...
Тип: Изобретение
Номер охранного документа: 0002595803
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5101

Спектральный детектор изображения

Изобретение относится к формированию спектрального изображения. Способ изготовления устройства формирования изображений содержит этапы, на которых осуществляют получение подложки фотодатчиков, имеющей две противоположные основные поверхности, при этом одна из двух противоположных основных...
Тип: Изобретение
Номер охранного документа: 0002595795
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5161

Варочный агрегат с механизмом управления капсулой

Изобретение относится к варочному агрегату, который содержит варочную камеру, включающую в себя по меньшей мере два отдела варочной камеры, подвижных по отношению друг к другу, и направляющую капсулы для направления капсулы из отверстия для введения капсулы до варочного положения. Направляющая...
Тип: Изобретение
Номер охранного документа: 0002596112
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.51dd

Датчик проводимости кожи

Группа изобретений относится к медицинской технике. Датчик проводимости кожи содержит, по меньшей мере, два сухих электрода и выполнен с возможностью восприятия проводимости кожи пользователя между, по меньшей мере, двумя сухими электродами, где, по меньшей мере, один из электродов представляет...
Тип: Изобретение
Номер охранного документа: 0002596011
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.5272

Источник света, содержащий ленту сид

Изобретение относится к источнику света на СИД (светоизлучающих диодах, LED), содержащему по меньшей мере одну ленту СИД. Техническим результатом является осуществление источника света на СИД с повышенной эффективностью и низкой чувствительностью к перепадам входного напряжения. Результат...
Тип: Изобретение
Номер охранного документа: 0002594293
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.53d5

Радиографическое устройство для обнаружения фотонов с коррекцией смещения

Изобретение относится к устройству обнаружения для обнаружения фотонов, использующемуся в радиографических системах формирования изображений. Блок обнаружения формирует импульсы сигналов обнаружения, имеющие высоту импульса сигнала обнаружения, являющуюся показателем энергии обнаруженных...
Тип: Изобретение
Номер охранного документа: 0002593783
Дата охранного документа: 10.08.2016
10.07.2016
№216.015.56a1

Очистительное устройство для очистки поверхности, содержащее щетку и скребковый элемент

Настоящее изобретение относится к очистительному устройству для очистки поверхности (20), содержащему щетку (12), выполненную с возможностью вращения вокруг оси (14) щетки и имеющую гибкие щеточные элементы (16), которые, по существу, равномерно распределены по периферии щетки (12), причем...
Тип: Изобретение
Номер охранного документа: 0002589565
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.57ef

Адаптивная калибровка для систем томографической визуализации

Группа изобретений относится к медицинской технике, а именно к радиологическим технологиям томографической визуализации. Способ томографической визуализации содержит этапы, на которых собирают данные визуализации с использованием активного средства визуализации, обновляют калибровку на...
Тип: Изобретение
Номер охранного документа: 0002588490
Дата охранного документа: 27.06.2016
Показаны записи 61-70 из 640.
27.08.2016
№216.015.50cf

Катушечная сборка ядерного магнитного резонанса с радиочастотным экраном, переключаемым между блокирующим состоянием и прозрачным состоянием

Использование: для формирования магнитно-резонансного изображения. Сущность изобретения заключается в том, что система формирования магнитно-резонансного изображения содержит катушечную сборку, сконфигурированную для излучения в зону формирования изображения и/или приема радиочастотной энергии...
Тип: Изобретение
Номер охранного документа: 0002595798
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.50f5

Устройство и способ получения напитка

Изобретение относится к способу получения напитка, согласно которому подают первую порцию растворителя в емкость, содержащую исходные ингредиенты, причем первая порция растворителя имеет первую температуру, затем подают вторую порцию растворителя в емкость, причем смесь первой порции...
Тип: Изобретение
Номер охранного документа: 0002595977
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.50fa

Детектирующее устройство для обнаружения фотонов, учитывающее накладывающиеся друг на друга события

Изобретение относится к детектированию фотонов. Детектирующее устройство включает в себя блок определения накладывающихся друг на друга событий для определения того, вызваны ли импульсы сигнала обнаружения, указывающие на обнаружение фотонов, накладывающимися событиями или ненакладывающимися...
Тип: Изобретение
Номер охранного документа: 0002595803
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5101

Спектральный детектор изображения

Изобретение относится к формированию спектрального изображения. Способ изготовления устройства формирования изображений содержит этапы, на которых осуществляют получение подложки фотодатчиков, имеющей две противоположные основные поверхности, при этом одна из двух противоположных основных...
Тип: Изобретение
Номер охранного документа: 0002595795
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5161

Варочный агрегат с механизмом управления капсулой

Изобретение относится к варочному агрегату, который содержит варочную камеру, включающую в себя по меньшей мере два отдела варочной камеры, подвижных по отношению друг к другу, и направляющую капсулы для направления капсулы из отверстия для введения капсулы до варочного положения. Направляющая...
Тип: Изобретение
Номер охранного документа: 0002596112
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.51dd

Датчик проводимости кожи

Группа изобретений относится к медицинской технике. Датчик проводимости кожи содержит, по меньшей мере, два сухих электрода и выполнен с возможностью восприятия проводимости кожи пользователя между, по меньшей мере, двумя сухими электродами, где, по меньшей мере, один из электродов представляет...
Тип: Изобретение
Номер охранного документа: 0002596011
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.5272

Источник света, содержащий ленту сид

Изобретение относится к источнику света на СИД (светоизлучающих диодах, LED), содержащему по меньшей мере одну ленту СИД. Техническим результатом является осуществление источника света на СИД с повышенной эффективностью и низкой чувствительностью к перепадам входного напряжения. Результат...
Тип: Изобретение
Номер охранного документа: 0002594293
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.53d5

Радиографическое устройство для обнаружения фотонов с коррекцией смещения

Изобретение относится к устройству обнаружения для обнаружения фотонов, использующемуся в радиографических системах формирования изображений. Блок обнаружения формирует импульсы сигналов обнаружения, имеющие высоту импульса сигнала обнаружения, являющуюся показателем энергии обнаруженных...
Тип: Изобретение
Номер охранного документа: 0002593783
Дата охранного документа: 10.08.2016
10.07.2016
№216.015.56a1

Очистительное устройство для очистки поверхности, содержащее щетку и скребковый элемент

Настоящее изобретение относится к очистительному устройству для очистки поверхности (20), содержащему щетку (12), выполненную с возможностью вращения вокруг оси (14) щетки и имеющую гибкие щеточные элементы (16), которые, по существу, равномерно распределены по периферии щетки (12), причем...
Тип: Изобретение
Номер охранного документа: 0002589565
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.57ef

Адаптивная калибровка для систем томографической визуализации

Группа изобретений относится к медицинской технике, а именно к радиологическим технологиям томографической визуализации. Способ томографической визуализации содержит этапы, на которых собирают данные визуализации с использованием активного средства визуализации, обновляют калибровку на...
Тип: Изобретение
Номер охранного документа: 0002588490
Дата охранного документа: 27.06.2016
+ добавить свой РИД