×
29.12.2017
217.015.f863

Результат интеллектуальной деятельности: Способ определения концентрации компонента в двухкомпонентной газовой смеси

Вид РИД

Изобретение

№ охранного документа
0002639740
Дата охранного документа
22.12.2017
Аннотация: Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности. Предложен способ определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в измерительной камере, основанный на использовании теплопроводности контролируемой газовой смеси, сначала вычисляют массу m контролируемого компонента в газовой смеси по формуле m=ρ v (λ+λ-λ)/λ, где ρ - плотность контролируемого компонента, v - объем камеры, λ - теплопроводность первого компонента, λ - теплопроводность второго контролируемого компонента, λ - теплопроводность газовой смеси. Затем с учетом массы одной молекулы контролируемого второго компонента, определяют концентрацию искомого параметра. Технический результат - повышение точности измерения концентрации компонента в двухкомпонентной газовой смеси. 1 ил.

Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности.

Известна система, реализующая способ пожарного мониторинга на объектах энергетики с использованием термомагнитных газоанализаторов кислорода (см. Зыков В.И., Крупин М.В., Левчук М.С. и др. Система пожарного мониторинга на объектах энергетики с использованием термомагнитных газоанализаторов кислорода // Пожары и чрезвычайные ситуации: предотвращение, ликвидация. - 2012. - №3. - С. 64-70). Данная система содержит рабочий (для детектирования контролируемого параметра смеси) и сравнительный (для компенсации погрешностей, вызванных неконтролируемым параметром смеси) элементы, представляющие собой полые спирали. Сравнительный чувствительный элемент размещается в том месте смеси, где нет искусственного магнитного поля, а рабочий чувствительный - там, где есть термомагнитная конвекция смеси (наличие магнитного поля). Чувствительные элементы соединяются по уравновешиваемой мостовой схеме. В рассматриваемом случае из-за термомагнитной конвекции изменяется температура рабочего чувствительного элемента, что в свою очередь приводит к изменению его сопротивления. В результате из-за разбаланса измерительного моста на его выходе возникает сигнал, по величине которого можно судить о концентрации кислорода в анализируемой газовой среде.

Недостатком этой известной системы мониторинга можно считать невысокую точность измерения из-за влияния температуры окружающей среды на вторичную цепь измерения сопротивлений спиралей.

Наиболее близким техническим решением к предлагаемому способу является принятый автором за прототип газоанализатор, реализующий способ определения процентного содержания компонента газовой смеси (см. Информационно-измерительная техника и электроника. Учебник. Под редакцией Г.Г. Раннева. Издательство «Академия», 2007, с. 391), принцип действия которого основан на изменении сопротивления проводника в зависимости от теплопроводности смеси двух газов. В этом способе на основе измерения теплопроводности газовой смеси сопротивлением чувствительного элемента (теплового преобразователя) с учетом известного процентного содержания одного компонента смеси и теплопроводности этого же компонента, можно вычислить процентное содержание второго компонента смеси.

Недостатком данного способа является невысокая точность измерения из-за отсутствия информации об объеме, занимаемом контролируемым компонентом в измерительной камере.

Техническим результатом заявляемого технического решения является повышение точности измерения концентрации компонента в двухкомпонентной газовой смеси.

Технический результат достигается тем, что в способе определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в измерительной камере, основанный на использовании теплопроводности контролируемой газовой смеси, сначала вычисляют массу m контролируемого компонента в газовой смеси по формуле

m=ρ vксм1см2см12)/λсм2,

где ρ - плотность контролируемого компонента, vк - объем камеры, λсм1 - теплопроводность первого компонента, λсм2 - теплопроводность второго контролируемого компонента, λсм12 - теплопроводность газовой смеси, и затем с учетом массы одной молекулы контролируемого второго компонента, определяют концентрацию искомого параметра.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение объема второго компонента в двухкомпонентной газовой смеси через ее теплопроводность дает возможность определить концентрацию контролируемого компонента в газовой смеси.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу определения концентрации компонента в двухкомпонентной газовой смеси на основе измерения объема второго компонента через теплопроводность газовой смеси с желаемым техническим результатом, т.е. повышением точности измерения.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ определения концентрации.

Устройство содержит измерительную камеру 1, проволоку 2, термопару 3, усилитель 4, измеритель напряжения 5, блок преобразования 6 и блок ввода 7. Способ работает следующим образом. Наличие в измерительной камере двухкомпонентной газовой смеси и разогретой проволоки обусловливает теплообмен в камере. В рассматриваемом случае теплообмен осуществляется путем теплопроводности самой газовой среды. Как известно при теплообмене в зависимости от теплоотдачи температура проволоки изменяется. В соответствии с этим, если теплопроводность данной газовой смеси будет меняться, то будет меняться температура разогретой проволоки. Следовательно, при изменении теплопроводности газовой смеси по величине изменения температуры проволоки при постоянном значении тока, протекающего через проволоку, можно судить о теплопроводности газовой среды. Для теплопроводности двухкомпонентной газовой смеси, состоящей из двух газов, например, не вступающих в реакцию друг с другом, можно записать

где λсм12, λсм1, λсм2 - соответственно теплопроводности смеси и компонентов; a - и b - процентное содержание компонентов смеси.

Из приведенной выше формулы видно, что если измерить теплопроводность данной двухкомпонентной газовой смеси λсм12, то при известных значениях теплопроводностей компонентов можно вычислить процентное содержание одного (при известном процентном содержании второго компонента) из компонентов газовой смеси. В силу этого формулу (1) можно переписать как

Зная процентное содержание одного компонента в газовой смеси, можно вычислить объем, занимаемый этим компонентом в измерительной камере. Пусть объем измерительной камеры Vк, а объем, занимаемый искомым компонентом в измерительной камере, например кислородом, Vкис. Тогда для процентного содержания кислорода а в измерительной камере с учетом объемов Vк и Vкис можно записать, что

a=(Vкис/Vк)100.

Если значение а из последней формулы подставить в формулу (2), то получим Vкис=Vксм1см2см12)/λсм2.

Из полученной формулы видно, что при известных значениях теплопроводностей компонентов и объема измерительной камеры измерением электропроводности газовой смеси можно вычислить объем искомого компонента в камере.

Согласно предлагаемому способу измерение объема искомого компонента через электропроводность газовой смеси дает возможность далее вычислить массу искомого компонента в газовой смеси. Для этого необходимо знать плотность контролируемого компонента. После этого по известной плотности материала (компонента) и известному объему данного материала можно вычислить массу материала. Следовательно, зная массу одной молекулы материала (из таблиц, например, для кислорода) и общую массу кислорода в объеме Vкис, можно рассчитать концентрацию материала в измерительной камере.

В данном способе определение массы материала через электропроводность газовой смеси можно осуществить измерением температуры разогретой проволоки.

Устройство, реализующий предлагаемый способ, работает следующим образом. Помещенная двухкомпонентная газовая смесь в измерительную камеру 1 посредством проволоки 2 разогревается. При теплообмене за счет электропроводности газовой смеси температура проволоки изменятся (значение тока, прошедшего через проволоку, остается постоянным) в зависимости от изменения электропроводности смеси. Так как электропроводность данной смеси напрямую зависит от концентрации (массы) одного компонента (при постоянной величине концентрации (массы) второго компонента), то измерив температуру проволоки, можно получить информацию об искомом параметре. В рассматриваемом способе для измерения температуры проволоки используется термопара 3. Выходной сигнал термопары (термоЭДС) далее усиливается в усилителе 4 и поступает на вход измерителя напряжения 5. После этого напряжение последнего подается на первый вход блока преобразования 6. Одновременно на второй вход блока преобразования с выхода блока ввода 7 подается сигнал, соответствующий массе одной молекулы, определяется концентрация контролируемого вещества (компонента) в двухкомпонентной газовой смеси.

Таким образом, согласно предлагаемому способу измерение массы одного компонента в двухкомпонентной газовой смеси с дальнейшей поправкой массы одной молекулы контролируемого вещества можно определить концентрацию искомого компонента в двухкомпонентной газовой смеси.

Предлагаемый способ успешно может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности.


Способ определения концентрации компонента в двухкомпонентной газовой смеси
Способ определения концентрации компонента в двухкомпонентной газовой смеси
Источник поступления информации: Роспатент

Показаны записи 241-250 из 282.
13.06.2019
№219.017.809e

Устройство для измерения давления

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения статического и динамического давления. Устройство содержит металлическую полость в виде предельного волновода, для которого частота возбуждаемых в нем электромагнитных волн выбрана ниже...
Тип: Изобретение
Номер охранного документа: 0002691283
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.809f

Способ измерения резонансной частоты

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения резонансной частоты различного типа резонаторов. Способ измерения резонансной частоты содержит этапы, на которых осуществляют режим поиска резонансной частоты, в котором на каждой i-й итерации...
Тип: Изобретение
Номер охранного документа: 0002691291
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.80a0

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве. Сущность заявленного решения заключается в том, что в предлагаемом способе измерения внутреннего диаметра...
Тип: Изобретение
Номер охранного документа: 0002691288
Дата охранного документа: 11.06.2019
20.06.2019
№219.017.8c9a

Устройство для дистанционного отключения поврежденного участка электрической цепи

Использование: в области электротехники и электроэнергетики для управления электрическими сетями при аварийных ситуациях. Техническим результатом является повышение надежности функционирования отключающего аппарата и упрощение процедуры его воздействия на исполнительный механизм. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002691738
Дата охранного документа: 18.06.2019
21.08.2019
№219.017.c1d2

Способ и система управления взаимодействием автономных мобильных технических объектов с быстрой реакцией на изменение состояния объектов и внешней среды

Изобретение относится к области вычислительной техники. Технический результат заключается в обеспечении синхронизации действий мобильных технических объектов при передаче сообщений и выполнении распределенных вычислений. Способ содержит этапы, на которых: выделяют с использованием приоритетного...
Тип: Изобретение
Номер охранного документа: 0002697729
Дата охранного документа: 19.08.2019
01.09.2019
№219.017.c548

Способ измерения положения границы раздела двух веществ в резервуаре

Использование: для высокоточного измерения положения границы раздела двух веществ. Сущность изобретения заключается в том, что способ измерения положения границы раздела двух веществ в резервуаре, при котором в емкости с веществами, одно над другим, образующими плоскую горизонтальную границу...
Тип: Изобретение
Номер охранного документа: 0002698575
Дата охранного документа: 28.08.2019
12.10.2019
№219.017.d536

Пьезоэлектрический электроструйный преобразователь

Устройство относится к электротехнике и может быть использовано для преобразования электрического сигнала в струйный при наличии сильных электромагнитных помех. Технический результат состоит в обеспечении защиты электроструйного преобразователя от сильных электромагнитных помех. Электроструйный...
Тип: Изобретение
Номер охранного документа: 0002702624
Дата охранного документа: 09.10.2019
12.10.2019
№219.017.d54f

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения положения границ раздела трехкомпонентной среды, например воздуха и жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей. В способе размещают два отрезка длинной линии, возбуждают...
Тип: Изобретение
Номер охранного документа: 0002702698
Дата охранного документа: 09.10.2019
17.10.2019
№219.017.d6aa

Привязной аэростат

Изобретение относится к области радиосвязи с использованием летно-подъемных средств для расширения зоны приема радиотехнических средств связи, вещания, контроля и управления. Привязной аэростат содержит оболочку 1 в виде двояковыпуклой линзы, заполненной легким газом, контейнер 14 с...
Тип: Изобретение
Номер охранного документа: 0002702935
Дата охранного документа: 14.10.2019
18.10.2019
№219.017.d7ab

Способ организации системной сети в виде неблокируемого самомаршрутизируемого трехмерного р-ичного мультикольца

Изобретение относится к построению неблокируемых самомаршрутизируемых системных сетей для многопроцессорных систем. Технический результат заключается в расширении арсенала средств. Неблокируемость на произвольной перестановке пакетов означает возможность их параллельной передачи от источников к...
Тип: Изобретение
Номер охранного документа: 0002703351
Дата охранного документа: 16.10.2019
Показаны записи 191-191 из 191.
09.05.2019
№219.017.4faf

Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя...
Тип: Изобретение
Номер охранного документа: 0002433393
Дата охранного документа: 10.11.2011
+ добавить свой РИД