×
29.12.2017
217.015.f863

Результат интеллектуальной деятельности: Способ определения концентрации компонента в двухкомпонентной газовой смеси

Вид РИД

Изобретение

№ охранного документа
0002639740
Дата охранного документа
22.12.2017
Аннотация: Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности. Предложен способ определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в измерительной камере, основанный на использовании теплопроводности контролируемой газовой смеси, сначала вычисляют массу m контролируемого компонента в газовой смеси по формуле m=ρ v (λ+λ-λ)/λ, где ρ - плотность контролируемого компонента, v - объем камеры, λ - теплопроводность первого компонента, λ - теплопроводность второго контролируемого компонента, λ - теплопроводность газовой смеси. Затем с учетом массы одной молекулы контролируемого второго компонента, определяют концентрацию искомого параметра. Технический результат - повышение точности измерения концентрации компонента в двухкомпонентной газовой смеси. 1 ил.

Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности.

Известна система, реализующая способ пожарного мониторинга на объектах энергетики с использованием термомагнитных газоанализаторов кислорода (см. Зыков В.И., Крупин М.В., Левчук М.С. и др. Система пожарного мониторинга на объектах энергетики с использованием термомагнитных газоанализаторов кислорода // Пожары и чрезвычайные ситуации: предотвращение, ликвидация. - 2012. - №3. - С. 64-70). Данная система содержит рабочий (для детектирования контролируемого параметра смеси) и сравнительный (для компенсации погрешностей, вызванных неконтролируемым параметром смеси) элементы, представляющие собой полые спирали. Сравнительный чувствительный элемент размещается в том месте смеси, где нет искусственного магнитного поля, а рабочий чувствительный - там, где есть термомагнитная конвекция смеси (наличие магнитного поля). Чувствительные элементы соединяются по уравновешиваемой мостовой схеме. В рассматриваемом случае из-за термомагнитной конвекции изменяется температура рабочего чувствительного элемента, что в свою очередь приводит к изменению его сопротивления. В результате из-за разбаланса измерительного моста на его выходе возникает сигнал, по величине которого можно судить о концентрации кислорода в анализируемой газовой среде.

Недостатком этой известной системы мониторинга можно считать невысокую точность измерения из-за влияния температуры окружающей среды на вторичную цепь измерения сопротивлений спиралей.

Наиболее близким техническим решением к предлагаемому способу является принятый автором за прототип газоанализатор, реализующий способ определения процентного содержания компонента газовой смеси (см. Информационно-измерительная техника и электроника. Учебник. Под редакцией Г.Г. Раннева. Издательство «Академия», 2007, с. 391), принцип действия которого основан на изменении сопротивления проводника в зависимости от теплопроводности смеси двух газов. В этом способе на основе измерения теплопроводности газовой смеси сопротивлением чувствительного элемента (теплового преобразователя) с учетом известного процентного содержания одного компонента смеси и теплопроводности этого же компонента, можно вычислить процентное содержание второго компонента смеси.

Недостатком данного способа является невысокая точность измерения из-за отсутствия информации об объеме, занимаемом контролируемым компонентом в измерительной камере.

Техническим результатом заявляемого технического решения является повышение точности измерения концентрации компонента в двухкомпонентной газовой смеси.

Технический результат достигается тем, что в способе определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в измерительной камере, основанный на использовании теплопроводности контролируемой газовой смеси, сначала вычисляют массу m контролируемого компонента в газовой смеси по формуле

m=ρ vксм1см2см12)/λсм2,

где ρ - плотность контролируемого компонента, vк - объем камеры, λсм1 - теплопроводность первого компонента, λсм2 - теплопроводность второго контролируемого компонента, λсм12 - теплопроводность газовой смеси, и затем с учетом массы одной молекулы контролируемого второго компонента, определяют концентрацию искомого параметра.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение объема второго компонента в двухкомпонентной газовой смеси через ее теплопроводность дает возможность определить концентрацию контролируемого компонента в газовой смеси.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу определения концентрации компонента в двухкомпонентной газовой смеси на основе измерения объема второго компонента через теплопроводность газовой смеси с желаемым техническим результатом, т.е. повышением точности измерения.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ определения концентрации.

Устройство содержит измерительную камеру 1, проволоку 2, термопару 3, усилитель 4, измеритель напряжения 5, блок преобразования 6 и блок ввода 7. Способ работает следующим образом. Наличие в измерительной камере двухкомпонентной газовой смеси и разогретой проволоки обусловливает теплообмен в камере. В рассматриваемом случае теплообмен осуществляется путем теплопроводности самой газовой среды. Как известно при теплообмене в зависимости от теплоотдачи температура проволоки изменяется. В соответствии с этим, если теплопроводность данной газовой смеси будет меняться, то будет меняться температура разогретой проволоки. Следовательно, при изменении теплопроводности газовой смеси по величине изменения температуры проволоки при постоянном значении тока, протекающего через проволоку, можно судить о теплопроводности газовой среды. Для теплопроводности двухкомпонентной газовой смеси, состоящей из двух газов, например, не вступающих в реакцию друг с другом, можно записать

где λсм12, λсм1, λсм2 - соответственно теплопроводности смеси и компонентов; a - и b - процентное содержание компонентов смеси.

Из приведенной выше формулы видно, что если измерить теплопроводность данной двухкомпонентной газовой смеси λсм12, то при известных значениях теплопроводностей компонентов можно вычислить процентное содержание одного (при известном процентном содержании второго компонента) из компонентов газовой смеси. В силу этого формулу (1) можно переписать как

Зная процентное содержание одного компонента в газовой смеси, можно вычислить объем, занимаемый этим компонентом в измерительной камере. Пусть объем измерительной камеры Vк, а объем, занимаемый искомым компонентом в измерительной камере, например кислородом, Vкис. Тогда для процентного содержания кислорода а в измерительной камере с учетом объемов Vк и Vкис можно записать, что

a=(Vкис/Vк)100.

Если значение а из последней формулы подставить в формулу (2), то получим Vкис=Vксм1см2см12)/λсм2.

Из полученной формулы видно, что при известных значениях теплопроводностей компонентов и объема измерительной камеры измерением электропроводности газовой смеси можно вычислить объем искомого компонента в камере.

Согласно предлагаемому способу измерение объема искомого компонента через электропроводность газовой смеси дает возможность далее вычислить массу искомого компонента в газовой смеси. Для этого необходимо знать плотность контролируемого компонента. После этого по известной плотности материала (компонента) и известному объему данного материала можно вычислить массу материала. Следовательно, зная массу одной молекулы материала (из таблиц, например, для кислорода) и общую массу кислорода в объеме Vкис, можно рассчитать концентрацию материала в измерительной камере.

В данном способе определение массы материала через электропроводность газовой смеси можно осуществить измерением температуры разогретой проволоки.

Устройство, реализующий предлагаемый способ, работает следующим образом. Помещенная двухкомпонентная газовая смесь в измерительную камеру 1 посредством проволоки 2 разогревается. При теплообмене за счет электропроводности газовой смеси температура проволоки изменятся (значение тока, прошедшего через проволоку, остается постоянным) в зависимости от изменения электропроводности смеси. Так как электропроводность данной смеси напрямую зависит от концентрации (массы) одного компонента (при постоянной величине концентрации (массы) второго компонента), то измерив температуру проволоки, можно получить информацию об искомом параметре. В рассматриваемом способе для измерения температуры проволоки используется термопара 3. Выходной сигнал термопары (термоЭДС) далее усиливается в усилителе 4 и поступает на вход измерителя напряжения 5. После этого напряжение последнего подается на первый вход блока преобразования 6. Одновременно на второй вход блока преобразования с выхода блока ввода 7 подается сигнал, соответствующий массе одной молекулы, определяется концентрация контролируемого вещества (компонента) в двухкомпонентной газовой смеси.

Таким образом, согласно предлагаемому способу измерение массы одного компонента в двухкомпонентной газовой смеси с дальнейшей поправкой массы одной молекулы контролируемого вещества можно определить концентрацию искомого компонента в двухкомпонентной газовой смеси.

Предлагаемый способ успешно может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности.


Способ определения концентрации компонента в двухкомпонентной газовой смеси
Способ определения концентрации компонента в двухкомпонентной газовой смеси
Источник поступления информации: Роспатент

Показаны записи 231-240 из 282.
29.04.2019
№219.017.3e20

Сверхвысокочастотный измеритель электрических величин

Изобретение относится к области электрических измерений и может быть использовано в измерительной технике для измерения токов и напряжений. Сущность заявленного технического решения заключается в том, что в сверхвысокочастотный измеритель электрических величин, содержащий источник переменного...
Тип: Изобретение
Номер охранного документа: 0002686452
Дата охранного документа: 25.04.2019
29.04.2019
№219.017.3e2c

Способ калибровки расходомера газа

Изобретение относится к области измерительной техники и предназначено для использования в системах измерения расхода газообразных сред. По способу калибровки расходомеров газа используется уменьшение погрешности измерения структурным способом в схеме измерения с отрицательной обратной связью с...
Тип: Изобретение
Номер охранного документа: 0002686451
Дата охранного документа: 25.04.2019
02.05.2019
№219.017.4863

Бесконтактный способ измерения пройденного пути

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения пройденного пути транспортного средства. Указанный...
Тип: Изобретение
Номер охранного документа: 0002686674
Дата охранного документа: 30.04.2019
02.05.2019
№219.017.489c

Способ измерения вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения вектора перемещения транспортного средства. Технический...
Тип: Изобретение
Номер охранного документа: 0002686676
Дата охранного документа: 30.04.2019
10.05.2019
№219.017.5150

Способ удаления гололеда с проводов линии электропередачи

Использование: в области электроэнергетики для защиты проводов линии электропередачи от гололеда. Технический результат - упрощение процесса нагрева проводов линии электропередачи теплотой. Способ удаления гололеда с проводов линии электропередачи включает нагрев проводов линии электропередачи...
Тип: Изобретение
Номер охранного документа: 0002687247
Дата охранного документа: 08.05.2019
10.05.2019
№219.017.516d

Способ и система для быстрого измерения интервалов времени переноса сигнала между подвижными объектами и центром ретрансляции сообщений

Изобретение относится к разделу вычислительной техники. Техническим результатом способа является уменьшение времени определения максимальной удаленности объектов T. Способ быстрого измерения интервалов времени переноса сигнала между подвижными объектами и центром ретрансляции сообщений CRC:...
Тип: Изобретение
Номер охранного документа: 0002687222
Дата охранного документа: 07.05.2019
17.05.2019
№219.017.5332

Устройство для измерения плотности бурового раствора в легкосплавленной бурильной трубе

Изобретение относится к области измерительной техники и может быть использовано для измерения плотности и других физических параметров бурового раствора непосредственно в процессе бурения скважин. Техническим результатом является упрощение процедуры измерения плотности бурового раствора. В...
Тип: Изобретение
Номер охранного документа: 0002687710
Дата охранного документа: 15.05.2019
20.05.2019
№219.017.5d34

Привязной аэростат

Изобретение относится к области летно-подъемных радиотехнических средств. Привязной аэростат содержит двояковыпуклую оболочку 1 с легким газом, контейнер 11 с аппаратурой, тросовой разводкой 12 и ветропривод с электрическим генератором, питающим аппаратуру в контейнере. Привязной аэростат...
Тип: Изобретение
Номер охранного документа: 0002688115
Дата охранного документа: 17.05.2019
08.06.2019
№219.017.757e

Бесконтактный измеритель пройденного пути

Изобретение относится к измерительной технике, в частности к устройствам измерения пройденного расстояния наземным транспортным средством с использованием эффекта Доплера. Достигаемый технический результат – повышение точности измерения пути, пройденного наземным транспортным средством....
Тип: Изобретение
Номер охранного документа: 0002690842
Дата охранного документа: 06.06.2019
09.06.2019
№219.017.7628

Датчик давления

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения избыточного давления высокотемпературных сред в широком диапазоне его изменения. Датчик давления выполнен в виде совокупности первого коаксиального резонатора, содержащего цилиндрический корпус,...
Тип: Изобретение
Номер охранного документа: 0002690971
Дата охранного документа: 07.06.2019
Показаны записи 191-191 из 191.
09.05.2019
№219.017.4faf

Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя...
Тип: Изобретение
Номер охранного документа: 0002433393
Дата охранного документа: 10.11.2011
+ добавить свой РИД