×
29.12.2017
217.015.f863

Результат интеллектуальной деятельности: Способ определения концентрации компонента в двухкомпонентной газовой смеси

Вид РИД

Изобретение

№ охранного документа
0002639740
Дата охранного документа
22.12.2017
Аннотация: Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности. Предложен способ определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в измерительной камере, основанный на использовании теплопроводности контролируемой газовой смеси, сначала вычисляют массу m контролируемого компонента в газовой смеси по формуле m=ρ v (λ+λ-λ)/λ, где ρ - плотность контролируемого компонента, v - объем камеры, λ - теплопроводность первого компонента, λ - теплопроводность второго контролируемого компонента, λ - теплопроводность газовой смеси. Затем с учетом массы одной молекулы контролируемого второго компонента, определяют концентрацию искомого параметра. Технический результат - повышение точности измерения концентрации компонента в двухкомпонентной газовой смеси. 1 ил.

Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности.

Известна система, реализующая способ пожарного мониторинга на объектах энергетики с использованием термомагнитных газоанализаторов кислорода (см. Зыков В.И., Крупин М.В., Левчук М.С. и др. Система пожарного мониторинга на объектах энергетики с использованием термомагнитных газоанализаторов кислорода // Пожары и чрезвычайные ситуации: предотвращение, ликвидация. - 2012. - №3. - С. 64-70). Данная система содержит рабочий (для детектирования контролируемого параметра смеси) и сравнительный (для компенсации погрешностей, вызванных неконтролируемым параметром смеси) элементы, представляющие собой полые спирали. Сравнительный чувствительный элемент размещается в том месте смеси, где нет искусственного магнитного поля, а рабочий чувствительный - там, где есть термомагнитная конвекция смеси (наличие магнитного поля). Чувствительные элементы соединяются по уравновешиваемой мостовой схеме. В рассматриваемом случае из-за термомагнитной конвекции изменяется температура рабочего чувствительного элемента, что в свою очередь приводит к изменению его сопротивления. В результате из-за разбаланса измерительного моста на его выходе возникает сигнал, по величине которого можно судить о концентрации кислорода в анализируемой газовой среде.

Недостатком этой известной системы мониторинга можно считать невысокую точность измерения из-за влияния температуры окружающей среды на вторичную цепь измерения сопротивлений спиралей.

Наиболее близким техническим решением к предлагаемому способу является принятый автором за прототип газоанализатор, реализующий способ определения процентного содержания компонента газовой смеси (см. Информационно-измерительная техника и электроника. Учебник. Под редакцией Г.Г. Раннева. Издательство «Академия», 2007, с. 391), принцип действия которого основан на изменении сопротивления проводника в зависимости от теплопроводности смеси двух газов. В этом способе на основе измерения теплопроводности газовой смеси сопротивлением чувствительного элемента (теплового преобразователя) с учетом известного процентного содержания одного компонента смеси и теплопроводности этого же компонента, можно вычислить процентное содержание второго компонента смеси.

Недостатком данного способа является невысокая точность измерения из-за отсутствия информации об объеме, занимаемом контролируемым компонентом в измерительной камере.

Техническим результатом заявляемого технического решения является повышение точности измерения концентрации компонента в двухкомпонентной газовой смеси.

Технический результат достигается тем, что в способе определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в измерительной камере, основанный на использовании теплопроводности контролируемой газовой смеси, сначала вычисляют массу m контролируемого компонента в газовой смеси по формуле

m=ρ vксм1см2см12)/λсм2,

где ρ - плотность контролируемого компонента, vк - объем камеры, λсм1 - теплопроводность первого компонента, λсм2 - теплопроводность второго контролируемого компонента, λсм12 - теплопроводность газовой смеси, и затем с учетом массы одной молекулы контролируемого второго компонента, определяют концентрацию искомого параметра.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение объема второго компонента в двухкомпонентной газовой смеси через ее теплопроводность дает возможность определить концентрацию контролируемого компонента в газовой смеси.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу определения концентрации компонента в двухкомпонентной газовой смеси на основе измерения объема второго компонента через теплопроводность газовой смеси с желаемым техническим результатом, т.е. повышением точности измерения.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ определения концентрации.

Устройство содержит измерительную камеру 1, проволоку 2, термопару 3, усилитель 4, измеритель напряжения 5, блок преобразования 6 и блок ввода 7. Способ работает следующим образом. Наличие в измерительной камере двухкомпонентной газовой смеси и разогретой проволоки обусловливает теплообмен в камере. В рассматриваемом случае теплообмен осуществляется путем теплопроводности самой газовой среды. Как известно при теплообмене в зависимости от теплоотдачи температура проволоки изменяется. В соответствии с этим, если теплопроводность данной газовой смеси будет меняться, то будет меняться температура разогретой проволоки. Следовательно, при изменении теплопроводности газовой смеси по величине изменения температуры проволоки при постоянном значении тока, протекающего через проволоку, можно судить о теплопроводности газовой среды. Для теплопроводности двухкомпонентной газовой смеси, состоящей из двух газов, например, не вступающих в реакцию друг с другом, можно записать

где λсм12, λсм1, λсм2 - соответственно теплопроводности смеси и компонентов; a - и b - процентное содержание компонентов смеси.

Из приведенной выше формулы видно, что если измерить теплопроводность данной двухкомпонентной газовой смеси λсм12, то при известных значениях теплопроводностей компонентов можно вычислить процентное содержание одного (при известном процентном содержании второго компонента) из компонентов газовой смеси. В силу этого формулу (1) можно переписать как

Зная процентное содержание одного компонента в газовой смеси, можно вычислить объем, занимаемый этим компонентом в измерительной камере. Пусть объем измерительной камеры Vк, а объем, занимаемый искомым компонентом в измерительной камере, например кислородом, Vкис. Тогда для процентного содержания кислорода а в измерительной камере с учетом объемов Vк и Vкис можно записать, что

a=(Vкис/Vк)100.

Если значение а из последней формулы подставить в формулу (2), то получим Vкис=Vксм1см2см12)/λсм2.

Из полученной формулы видно, что при известных значениях теплопроводностей компонентов и объема измерительной камеры измерением электропроводности газовой смеси можно вычислить объем искомого компонента в камере.

Согласно предлагаемому способу измерение объема искомого компонента через электропроводность газовой смеси дает возможность далее вычислить массу искомого компонента в газовой смеси. Для этого необходимо знать плотность контролируемого компонента. После этого по известной плотности материала (компонента) и известному объему данного материала можно вычислить массу материала. Следовательно, зная массу одной молекулы материала (из таблиц, например, для кислорода) и общую массу кислорода в объеме Vкис, можно рассчитать концентрацию материала в измерительной камере.

В данном способе определение массы материала через электропроводность газовой смеси можно осуществить измерением температуры разогретой проволоки.

Устройство, реализующий предлагаемый способ, работает следующим образом. Помещенная двухкомпонентная газовая смесь в измерительную камеру 1 посредством проволоки 2 разогревается. При теплообмене за счет электропроводности газовой смеси температура проволоки изменятся (значение тока, прошедшего через проволоку, остается постоянным) в зависимости от изменения электропроводности смеси. Так как электропроводность данной смеси напрямую зависит от концентрации (массы) одного компонента (при постоянной величине концентрации (массы) второго компонента), то измерив температуру проволоки, можно получить информацию об искомом параметре. В рассматриваемом способе для измерения температуры проволоки используется термопара 3. Выходной сигнал термопары (термоЭДС) далее усиливается в усилителе 4 и поступает на вход измерителя напряжения 5. После этого напряжение последнего подается на первый вход блока преобразования 6. Одновременно на второй вход блока преобразования с выхода блока ввода 7 подается сигнал, соответствующий массе одной молекулы, определяется концентрация контролируемого вещества (компонента) в двухкомпонентной газовой смеси.

Таким образом, согласно предлагаемому способу измерение массы одного компонента в двухкомпонентной газовой смеси с дальнейшей поправкой массы одной молекулы контролируемого вещества можно определить концентрацию искомого компонента в двухкомпонентной газовой смеси.

Предлагаемый способ успешно может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности.


Способ определения концентрации компонента в двухкомпонентной газовой смеси
Способ определения концентрации компонента в двухкомпонентной газовой смеси
Источник поступления информации: Роспатент

Показаны записи 161-170 из 282.
20.01.2018
№218.016.1123

Устройство анализа результатов тестирования для локализации двукратных неисправностей

Изобретение относится к области тестирования дискретных объектов большой размерности. Технический результат заключается в повышении кратности неисправностей при их локализации. Устройство анализа результатов тестирования для локализации двукратных неисправностей содержит m m-разрядных...
Тип: Изобретение
Номер охранного документа: 0002633908
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1153

Способ встречного разгона и столкновения нейтральных микрочастиц

Изобретение относится к способам встречного разгона нейтральных микрочастиц. При вращении ротора 1 внутри неподвижного статора 8, 10 исследуемые образцы (жидкость или газ) поступают во входные окна 18 и затем проходят через зазоры, образованные зубцами статора 10 и ротора 7. При этом движение...
Тип: Изобретение
Номер охранного документа: 0002633964
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.115d

Устройство для встречного разгона нейтральных микрочастиц

Изобретение относится к устройствам для встречного разгона нейтральных микрочастиц. Устройство содержит систему управления и состоит из коаксиально установленных двух ускорителей, направленных суженной стороной навстречу друг другу, с зазором и вращающихся относительно друг друга ротора 1 и...
Тип: Изобретение
Номер охранного документа: 0002633994
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1166

Способ перистальтического нагнетания текучих сред на основе пьезоэлектрических элементов

Изобретение относится к способам для нагнетания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. В способе нагнетания текучих сред используют бегущую волну деформаций замкнутого объема...
Тип: Изобретение
Номер охранного документа: 0002633975
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1aee

Устройство для распознавания степени научности опубликованных построений

Изобретение относится к вычислительной технике и может быть использовано для распознавания степени научности опубликованных построений (ОП) в случаях необходимости определения ненаучного, протонаучного и научного исследования. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002635882
Дата охранного документа: 16.11.2017
04.04.2018
№218.016.2f8a

Спецпроцессор для задачи выполнимости булевых формул

Изобретение относится к средствам для решения задач о выполнении булевых функций. Технический результат заключается в решения задачи о выполнимости булевых функций, заданных в конъюнктивной нормальной форме, имеющих N переменных и до М=2 дизъюнктов. При этом упрощение структуры спецпроцессора...
Тип: Изобретение
Номер охранного документа: 0002644505
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.2fde

Перистальтический насос на пьезоэлектрических элементах

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. Устройство для перекачивания текучих сред содержит пьезомодули, установленные в...
Тип: Изобретение
Номер охранного документа: 0002644643
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.3263

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки в электропроводке и электрооборудовании. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной обмотки дифференциального...
Тип: Изобретение
Номер охранного документа: 0002645434
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
Показаны записи 161-170 из 191.
20.01.2018
№218.016.1123

Устройство анализа результатов тестирования для локализации двукратных неисправностей

Изобретение относится к области тестирования дискретных объектов большой размерности. Технический результат заключается в повышении кратности неисправностей при их локализации. Устройство анализа результатов тестирования для локализации двукратных неисправностей содержит m m-разрядных...
Тип: Изобретение
Номер охранного документа: 0002633908
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1153

Способ встречного разгона и столкновения нейтральных микрочастиц

Изобретение относится к способам встречного разгона нейтральных микрочастиц. При вращении ротора 1 внутри неподвижного статора 8, 10 исследуемые образцы (жидкость или газ) поступают во входные окна 18 и затем проходят через зазоры, образованные зубцами статора 10 и ротора 7. При этом движение...
Тип: Изобретение
Номер охранного документа: 0002633964
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.115d

Устройство для встречного разгона нейтральных микрочастиц

Изобретение относится к устройствам для встречного разгона нейтральных микрочастиц. Устройство содержит систему управления и состоит из коаксиально установленных двух ускорителей, направленных суженной стороной навстречу друг другу, с зазором и вращающихся относительно друг друга ротора 1 и...
Тип: Изобретение
Номер охранного документа: 0002633994
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1166

Способ перистальтического нагнетания текучих сред на основе пьезоэлектрических элементов

Изобретение относится к способам для нагнетания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. В способе нагнетания текучих сред используют бегущую волну деформаций замкнутого объема...
Тип: Изобретение
Номер охранного документа: 0002633975
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1aee

Устройство для распознавания степени научности опубликованных построений

Изобретение относится к вычислительной технике и может быть использовано для распознавания степени научности опубликованных построений (ОП) в случаях необходимости определения ненаучного, протонаучного и научного исследования. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002635882
Дата охранного документа: 16.11.2017
04.04.2018
№218.016.2f8a

Спецпроцессор для задачи выполнимости булевых формул

Изобретение относится к средствам для решения задач о выполнении булевых функций. Технический результат заключается в решения задачи о выполнимости булевых функций, заданных в конъюнктивной нормальной форме, имеющих N переменных и до М=2 дизъюнктов. При этом упрощение структуры спецпроцессора...
Тип: Изобретение
Номер охранного документа: 0002644505
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.2fde

Перистальтический насос на пьезоэлектрических элементах

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. Устройство для перекачивания текучих сред содержит пьезомодули, установленные в...
Тип: Изобретение
Номер охранного документа: 0002644643
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.3263

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки в электропроводке и электрооборудовании. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной обмотки дифференциального...
Тип: Изобретение
Номер охранного документа: 0002645434
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
+ добавить свой РИД