×
29.12.2017
217.015.f863

Результат интеллектуальной деятельности: Способ определения концентрации компонента в двухкомпонентной газовой смеси

Вид РИД

Изобретение

№ охранного документа
0002639740
Дата охранного документа
22.12.2017
Аннотация: Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности. Предложен способ определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в измерительной камере, основанный на использовании теплопроводности контролируемой газовой смеси, сначала вычисляют массу m контролируемого компонента в газовой смеси по формуле m=ρ v (λ+λ-λ)/λ, где ρ - плотность контролируемого компонента, v - объем камеры, λ - теплопроводность первого компонента, λ - теплопроводность второго контролируемого компонента, λ - теплопроводность газовой смеси. Затем с учетом массы одной молекулы контролируемого второго компонента, определяют концентрацию искомого параметра. Технический результат - повышение точности измерения концентрации компонента в двухкомпонентной газовой смеси. 1 ил.

Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности.

Известна система, реализующая способ пожарного мониторинга на объектах энергетики с использованием термомагнитных газоанализаторов кислорода (см. Зыков В.И., Крупин М.В., Левчук М.С. и др. Система пожарного мониторинга на объектах энергетики с использованием термомагнитных газоанализаторов кислорода // Пожары и чрезвычайные ситуации: предотвращение, ликвидация. - 2012. - №3. - С. 64-70). Данная система содержит рабочий (для детектирования контролируемого параметра смеси) и сравнительный (для компенсации погрешностей, вызванных неконтролируемым параметром смеси) элементы, представляющие собой полые спирали. Сравнительный чувствительный элемент размещается в том месте смеси, где нет искусственного магнитного поля, а рабочий чувствительный - там, где есть термомагнитная конвекция смеси (наличие магнитного поля). Чувствительные элементы соединяются по уравновешиваемой мостовой схеме. В рассматриваемом случае из-за термомагнитной конвекции изменяется температура рабочего чувствительного элемента, что в свою очередь приводит к изменению его сопротивления. В результате из-за разбаланса измерительного моста на его выходе возникает сигнал, по величине которого можно судить о концентрации кислорода в анализируемой газовой среде.

Недостатком этой известной системы мониторинга можно считать невысокую точность измерения из-за влияния температуры окружающей среды на вторичную цепь измерения сопротивлений спиралей.

Наиболее близким техническим решением к предлагаемому способу является принятый автором за прототип газоанализатор, реализующий способ определения процентного содержания компонента газовой смеси (см. Информационно-измерительная техника и электроника. Учебник. Под редакцией Г.Г. Раннева. Издательство «Академия», 2007, с. 391), принцип действия которого основан на изменении сопротивления проводника в зависимости от теплопроводности смеси двух газов. В этом способе на основе измерения теплопроводности газовой смеси сопротивлением чувствительного элемента (теплового преобразователя) с учетом известного процентного содержания одного компонента смеси и теплопроводности этого же компонента, можно вычислить процентное содержание второго компонента смеси.

Недостатком данного способа является невысокая точность измерения из-за отсутствия информации об объеме, занимаемом контролируемым компонентом в измерительной камере.

Техническим результатом заявляемого технического решения является повышение точности измерения концентрации компонента в двухкомпонентной газовой смеси.

Технический результат достигается тем, что в способе определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в измерительной камере, основанный на использовании теплопроводности контролируемой газовой смеси, сначала вычисляют массу m контролируемого компонента в газовой смеси по формуле

m=ρ vксм1см2см12)/λсм2,

где ρ - плотность контролируемого компонента, vк - объем камеры, λсм1 - теплопроводность первого компонента, λсм2 - теплопроводность второго контролируемого компонента, λсм12 - теплопроводность газовой смеси, и затем с учетом массы одной молекулы контролируемого второго компонента, определяют концентрацию искомого параметра.

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что измерение объема второго компонента в двухкомпонентной газовой смеси через ее теплопроводность дает возможность определить концентрацию контролируемого компонента в газовой смеси.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить задачу определения концентрации компонента в двухкомпонентной газовой смеси на основе измерения объема второго компонента через теплопроводность газовой смеси с желаемым техническим результатом, т.е. повышением точности измерения.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ определения концентрации.

Устройство содержит измерительную камеру 1, проволоку 2, термопару 3, усилитель 4, измеритель напряжения 5, блок преобразования 6 и блок ввода 7. Способ работает следующим образом. Наличие в измерительной камере двухкомпонентной газовой смеси и разогретой проволоки обусловливает теплообмен в камере. В рассматриваемом случае теплообмен осуществляется путем теплопроводности самой газовой среды. Как известно при теплообмене в зависимости от теплоотдачи температура проволоки изменяется. В соответствии с этим, если теплопроводность данной газовой смеси будет меняться, то будет меняться температура разогретой проволоки. Следовательно, при изменении теплопроводности газовой смеси по величине изменения температуры проволоки при постоянном значении тока, протекающего через проволоку, можно судить о теплопроводности газовой среды. Для теплопроводности двухкомпонентной газовой смеси, состоящей из двух газов, например, не вступающих в реакцию друг с другом, можно записать

где λсм12, λсм1, λсм2 - соответственно теплопроводности смеси и компонентов; a - и b - процентное содержание компонентов смеси.

Из приведенной выше формулы видно, что если измерить теплопроводность данной двухкомпонентной газовой смеси λсм12, то при известных значениях теплопроводностей компонентов можно вычислить процентное содержание одного (при известном процентном содержании второго компонента) из компонентов газовой смеси. В силу этого формулу (1) можно переписать как

Зная процентное содержание одного компонента в газовой смеси, можно вычислить объем, занимаемый этим компонентом в измерительной камере. Пусть объем измерительной камеры Vк, а объем, занимаемый искомым компонентом в измерительной камере, например кислородом, Vкис. Тогда для процентного содержания кислорода а в измерительной камере с учетом объемов Vк и Vкис можно записать, что

a=(Vкис/Vк)100.

Если значение а из последней формулы подставить в формулу (2), то получим Vкис=Vксм1см2см12)/λсм2.

Из полученной формулы видно, что при известных значениях теплопроводностей компонентов и объема измерительной камеры измерением электропроводности газовой смеси можно вычислить объем искомого компонента в камере.

Согласно предлагаемому способу измерение объема искомого компонента через электропроводность газовой смеси дает возможность далее вычислить массу искомого компонента в газовой смеси. Для этого необходимо знать плотность контролируемого компонента. После этого по известной плотности материала (компонента) и известному объему данного материала можно вычислить массу материала. Следовательно, зная массу одной молекулы материала (из таблиц, например, для кислорода) и общую массу кислорода в объеме Vкис, можно рассчитать концентрацию материала в измерительной камере.

В данном способе определение массы материала через электропроводность газовой смеси можно осуществить измерением температуры разогретой проволоки.

Устройство, реализующий предлагаемый способ, работает следующим образом. Помещенная двухкомпонентная газовая смесь в измерительную камеру 1 посредством проволоки 2 разогревается. При теплообмене за счет электропроводности газовой смеси температура проволоки изменятся (значение тока, прошедшего через проволоку, остается постоянным) в зависимости от изменения электропроводности смеси. Так как электропроводность данной смеси напрямую зависит от концентрации (массы) одного компонента (при постоянной величине концентрации (массы) второго компонента), то измерив температуру проволоки, можно получить информацию об искомом параметре. В рассматриваемом способе для измерения температуры проволоки используется термопара 3. Выходной сигнал термопары (термоЭДС) далее усиливается в усилителе 4 и поступает на вход измерителя напряжения 5. После этого напряжение последнего подается на первый вход блока преобразования 6. Одновременно на второй вход блока преобразования с выхода блока ввода 7 подается сигнал, соответствующий массе одной молекулы, определяется концентрация контролируемого вещества (компонента) в двухкомпонентной газовой смеси.

Таким образом, согласно предлагаемому способу измерение массы одного компонента в двухкомпонентной газовой смеси с дальнейшей поправкой массы одной молекулы контролируемого вещества можно определить концентрацию искомого компонента в двухкомпонентной газовой смеси.

Предлагаемый способ успешно может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности.


Способ определения концентрации компонента в двухкомпонентной газовой смеси
Способ определения концентрации компонента в двухкомпонентной газовой смеси
Источник поступления информации: Роспатент

Показаны записи 121-130 из 282.
13.01.2017
№217.015.7e50

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости, в частности оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др. Предлагается бесконтактный...
Тип: Изобретение
Номер охранного документа: 0002601283
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e51

Устройство для измерения концентрации сыпучего материала

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Техническим результатом заявляемого технического решения является упрощение процедуры измерения концентрации и повышение точности измерения. Устройство...
Тип: Изобретение
Номер охранного документа: 0002601275
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7eb9

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению...
Тип: Изобретение
Номер охранного документа: 0002601273
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7eea

Способ пневматического частотного измерения ускорения движения тела

Изобретение относится к устройствам, использующимся при навигации летательных аппаратов, при измерении ускорения. Техническим результатом является повышение достоверности (уменьшения погрешности) за счет включения в прямую цепь интегратора, линеаризующего выходную характеристику системы...
Тип: Изобретение
Номер охранного документа: 0002601271
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f1b

Оптоструйный преобразователь

Изобретение относится к области автоматики и может быть использовано для преобразования светового сигнала в струйный. Оптоструйный преобразователь содержит бистабильный струйный элемент с каналом питания, с первым и вторым выходными каналами, с первым управляющим каналом, который соединен...
Тип: Изобретение
Номер охранного документа: 0002601276
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8347

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидкостей в трубопроводах, в частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких сред содержит первый...
Тип: Изобретение
Номер охранного документа: 0002601538
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.a80f

Способ измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в т.ч. химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002611336
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8cf

Радиоволновый расходомер

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в том числе химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002611255
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8f2

Способ измерения векторов гармонических сигналов с постоянной составляющей

Изобретение относится к области электроизмерительной техники. Сигналы , где , имеют известные некратные друг к другу периоды T и действуют вместе с постоянной составляющей W, при этом амплитуды A и начальные фазовые сдвиги ϕ сигналов G(t) определяют по соотношениям и , где p и p - проекции...
Тип: Изобретение
Номер охранного документа: 0002611256
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a902

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат заключается в повышении точности измерений. В предлагаемом способе измерения уровня жидкости в емкости технический результат достигается тем,...
Тип: Изобретение
Номер охранного документа: 0002611333
Дата охранного документа: 21.02.2017
Показаны записи 121-130 из 191.
13.01.2017
№217.015.7e50

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости, в частности оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, охлаждающей жидкости в ядерных реакторах и др. Предлагается бесконтактный...
Тип: Изобретение
Номер охранного документа: 0002601283
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e51

Устройство для измерения концентрации сыпучего материала

Предлагаемое изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами. Техническим результатом заявляемого технического решения является упрощение процедуры измерения концентрации и повышение точности измерения. Устройство...
Тип: Изобретение
Номер охранного документа: 0002601275
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7eb9

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения расхода жидких сред в трубопроводах. Устройство содержит генератор СВЧ, циркулятор, приемо-передающую антенну, направленную через радиопрозрачное окно в трубопроводе под углом к направлению...
Тип: Изобретение
Номер охранного документа: 0002601273
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7eea

Способ пневматического частотного измерения ускорения движения тела

Изобретение относится к устройствам, использующимся при навигации летательных аппаратов, при измерении ускорения. Техническим результатом является повышение достоверности (уменьшения погрешности) за счет включения в прямую цепь интегратора, линеаризующего выходную характеристику системы...
Тип: Изобретение
Номер охранного документа: 0002601271
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7f1b

Оптоструйный преобразователь

Изобретение относится к области автоматики и может быть использовано для преобразования светового сигнала в струйный. Оптоструйный преобразователь содержит бистабильный струйный элемент с каналом питания, с первым и вторым выходными каналами, с первым управляющим каналом, который соединен...
Тип: Изобретение
Номер охранного документа: 0002601276
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8347

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидкостей в трубопроводах, в частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких сред содержит первый...
Тип: Изобретение
Номер охранного документа: 0002601538
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.a80f

Способ измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в т.ч. химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002611336
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8cf

Радиоволновый расходомер

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения массового расхода жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов, продуктов химического производства, в том числе химически агрессивных...
Тип: Изобретение
Номер охранного документа: 0002611255
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8f2

Способ измерения векторов гармонических сигналов с постоянной составляющей

Изобретение относится к области электроизмерительной техники. Сигналы , где , имеют известные некратные друг к другу периоды T и действуют вместе с постоянной составляющей W, при этом амплитуды A и начальные фазовые сдвиги ϕ сигналов G(t) определяют по соотношениям и , где p и p - проекции...
Тип: Изобретение
Номер охранного документа: 0002611256
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a902

Бесконтактный радиоволновый способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат заключается в повышении точности измерений. В предлагаемом способе измерения уровня жидкости в емкости технический результат достигается тем,...
Тип: Изобретение
Номер охранного документа: 0002611333
Дата охранного документа: 21.02.2017
+ добавить свой РИД