×
29.12.2017
217.015.f7d2

Результат интеллектуальной деятельности: СПОСОБ ДВУХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002639309
Дата охранного документа
21.12.2017
Аннотация: Изобретение относится к области электротехники и может быть использовано в системе привода трехфазного вентильного реактивного электродвигателя. Техническим результатом является обеспечение плавного управления выходным крутящим моментом в максимальном диапазоне без учета влияния угла выключения фазы основного переключателя мощности на эффективность управления крутящим моментом. В способе двухуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя первый набор пороговых значений крутящего момента устанавливают в интервале [0°, θ/3] положений ротора; второй набор пороговых значений крутящего момента устанавливают в интервале [θ/3, θ/2] положений ротора; питание подается на смежные фазу А и фазу В для возбуждения. Сигнал питания, подаваемый для возбуждения на фазу А, опережает сигнал питания, подаваемый для возбуждения на фазу В на θ/3. Фаза А выключена, в то время как фаза В включена. Весь процесс коммутации от фазы А к фазе В разделен на два интервала. В интервале [0°, θ] положений ротора фаза А использует второй набор пороговых значений крутящего момента, в то время как фаза В использует первый набор пороговых значений крутящего момента. Критичное положение θ автоматически возникает в процессе коммутации, тем самым устраняя необходимость для дополнительных вычислений. Общий крутящий момент управляется в интервале [T+th2, T+th2]. В интервале [θ, θ/3] положений ротора фаза А продолжает использовать второй набор пороговых значений крутящего момента, фаза В продолжает использовать первый набор пороговых значений крутящего момента, а общий крутящий момент управляется в интервале [T+th1, T+th1]. Это подавляет пульсации крутящего момента трехфазного вентильного реактивного электродвигателя. 1 з.п. ф-лы, 4 ил.

Область техники

Настоящее изобретение относится к способу двухуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя, в частности, применимому к системе привода трехфазного вентильного реактивного электродвигателя.

Уровень техники

При использовании известного метода управления крутящим моментом вентильного реактивного электродвигателя для устранения пульсаций крутящего момента должен быть задан угол выключения фазы основного переключателя преобразователя мощности. Различные углы выключения фазы главного переключателя преобразователя мощности имеют важное влияние на эффективность управления крутящим моментом. Для того чтобы обеспечивать плавный крутящий момент на выходе, угол выключения должен быть определен либо при автономном расчете, либо при регулировании в режиме реального времени. Для того чтобы формировать максимально плавный крутящий момент, возбуждающий ток должен быть быстро установлен. Поэтому в начале интервала проводимости ток должен возрастать с максимальной скоростью. Для того чтобы избежать образования отрицательного крутящего момента, ток должен уменьшаться с максимальной скоростью, а угол выключения фазы основного переключателя преобразователя мощности должен быть в надлежащем положении: когда он находится на переднем фронте импульса, ток не может возрасти до определенного уровня, и крутящий момент оказывается ниже ожидаемого значения; когда он находится на заднем фронте импульса, ток попадает в область отрицательного крутящего момента. Требования являются строгими, поэтому их применимость не желательна. Поэтому требуется новый метод подавления пульсации крутящего момента вентильного реактивного электродвигателя, который может обеспечить плавное управление выходным крутящим моментом в максимальном диапазоне, без учета влияния угла выключения фазы основного переключателя преобразователя мощности на эффективность управления крутящим моментом.

Раскрытие сущности изобретения

Техническая проблема: задачей настоящего изобретения является устранение проблемы, указанной в уровне техники, и разработка способа двухуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя.

Техническая схема: Настоящее изобретение предоставляет способ двухуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя, при этом способ включает в себя следующие этапы:

а. Установка первой группы пороговых значений (fh1low, fh1up) крутящего момента в интервале [0°, θr/3] положений ротора, и второй группы пороговых значений (fh2low, th2up) крутящего момента в интервале [θr/3, θr/2] положений ротора, при этом указанные 4 пороговых значения крутящего момента удовлетворяют следующим условиям:

в которых положение ротора 0° является положением с минимальной индуктивностью фазы, положение ротора θr является угловым шагом, т.е. одним оборотом ротора, а половиной оборота ротора является θr/2;

б. Установка возбужденного состояния SA в качестве возбужденного состояния питания фазы А, при этом возбужденное состояние SA=1 обозначает, что возбуждающее напряжение питания фазы А положительное, а возбужденное состояние SA=-1 обозначает, что возбуждающее напряжение питания фазы А отрицательное; установка возбужденного состояния SB в качестве возбужденного состояния питания фазы В, при этом возбужденное состояние SB=1 обозначает, что возбуждающее напряжение питания фазы В положительное, а возбужденное состояние SB=-1 обозначает, что возбуждающее напряжение питания фазы В отрицательное, а Те - ожидаемый общий плавный крутящий момент;

в. Для смежных сигналов питания фазы А и фазы В сигнал питания фазы А опережает на θr/3 сигнал питания фазы В. В этот момент фаза А выключена, фаза В включена и двухуровневое подавление пульсации крутящего момента трехфазного вентильного реактивного электродвигателя осуществляется путем двухинтервального процесса коммутации от фазы А к фазе В.

2. Способ двухуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя по п. 1, в котором двухинтервальный процесс коммутации от фазы А к фазе В состоит в следующем:

(I) В интервале [0°, θ1] положений ротора фаза А использует вторую группу пороговых значений (fh2low, th2up) крутящего момента, фаза В использует первую группу пороговых значений (fh1low, th1up) крутящего момента, критичное положение θ1 автоматически возникает в процессе коммутации, так что не требуется дополнительных вычислений;

(1.1) Интервал проводимости фазы В начинается в положении 0° ротора, устанавливается изначальное возбужденное состояние SB=1, а ток и крутящий момент фазы В увеличиваются от 0; возбужденное состояние SA остается в исходном состоянии SA=-1, а ток и крутящий момент фазы А уменьшаются; так как скорость изменения индуктивности и ток фазы В относительно малы в этом положении, скорость роста крутящего момента фазы В меньше, чем скорость уменьшения крутящего момента фазы А, и общий крутящий момент уменьшается наряду с фазой А;

(1.2) Когда общий крутящий момент впервые достигает значения Te+fn1low крутящего момента, условия изменения состояния фазы А и фазы В не выполняются, возбужденные состояния SA и SB сохраняют свои исходные состояния и общий крутящий момент продолжает уменьшаться;

(1.3) Когда общий крутящий момент уменьшается до значения Te+th2low крутящего момента, выполняются условия для изменения состояния в фазе А, возбужденное состояние SA переходит из -1 в 1 и крутящий момент фазы А увеличивается; фаза В остается в исходном состоянии и крутящий момент фазы В продолжает увеличиваться, поэтому общий крутящий момент увеличивается;

(1.4) Когда общий крутящий момент увеличивается до значения Te+th1low крутящего момента, условия изменения состояния фазы А и фазы В не выполняются, возбужденные состояния SA и SB сохраняют свои исходные состояния и общий крутящий момент продолжает увеличиваться;

(1.5) Когда общий крутящий момент увеличивается до значения Te+th2up крутящего момента, выполняются условия для изменения состояния в фазе А, возбужденное состояние Sa переходит из 1 в значение -1 и крутящий моменты фазы А уменьшается; но условия для изменения состояния в фазе В не выполняются, возбужденное состояние SB остается в исходном состоянии, а общий крутящий момент начинает уменьшаться;

(1.6) Этапы (1.2)~(1.5) повторяются, возбужденное состояние SB остается равным 1 все время, т.е. фаза В возбуждается положительным напряжением, ток и крутящий момент фазы В увеличиваются с максимальной скоростью; возбужденное состояние SA переключается между значениями -1 и 1, и общий крутящий момент все время управляется в диапазоне [Te+th2low, Te+th2up], тем самым подавляя пульсации крутящего момента трехфазного вентильного реактивного электродвигателя в интервале [0°, θ1] положений ротора;

(2) В интервале [θ1, θr/3] положений ротора фаза А продолжает использовать вторую группу пороговых значений (th2low, th2up) крутящего момента, а фаза В продолжает использовать первую группу пороговых значений (th1low, th1up) крутящего момента;

(2.1) В положении θ1 ротора скорость изменения индуктивности и фазовый ток в фазе В достигли определенного уровня. Когда возбужденное состояние SB=1, а возбужденное состояние SA=-1, скорость увеличения крутящего момента фазы В перестает быть меньше, чем скорость уменьшения крутящего момента фазы А, характер изменения общего крутящего момента определяется фазой В и общий крутящий момент увеличивается;

(2.2) Когда общий крутящий момент увеличивается до значения Te+th1up крутящего момента, выполняются условия изменения состояния фазы В, возбужденное состояние SB переходит из 1 в -1 и крутящий момент фазы В уменьшается; возбужденное состояние SA остается в состоянии -1 и общий крутящий момент уменьшается;

(2.3) Когда общий крутящий момент впервые уменьшается до значения Te+th2up крутящего момента, условия изменения состояния фазы А и фазы В не выполняются, возбужденные состояния SA и SB сохраняют исходные состояния и общий крутящий момент продолжает уменьшаться;

(2.4) Когда общий крутящий момент уменьшается до значения Te+th1low крутящего момента, выполняются условия изменения состояния фазы В, возбужденное состояние SB переходит из -1 в 1 и крутящий момент фазы В увеличивается; возбужденное состояние SA остается в состоянии -1 и общий крутящий момент увеличивается вместе с крутящим моментом фазы В;

(2.5) Когда общий крутящий момент увеличивается до значения Te+th2up крутящего момента, условия изменения состояния фазы А и фазы В не выполняются, возбужденные состояния SA и SB сохраняют исходные состояния и общий крутящий момент продолжает увеличиваться;

(2.6) Когда общий крутящий момент увеличивается до значения Te+th1up крутящего момента, этапы (2.2)~(2.5) повторяются, возбужденное состояние SA остается в состоянии -1, возбужденное состояние SB переключается между значениями -1 и 1 и общий крутящий момент управляется в интервале [Te+th1low, Te+th1up], тем самым подавляя пульсации крутящего момента трехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/3] положения ротора.

Положительный эффект: При использовании указанного выше способа двухуровневого подавления, путем установления двух групп пороговых значений крутящего момента и возбужденных состояний смежных фаз А и В, без учета влияния различных углов выключения фазы основного переключателя преобразователя мощности на эффективность управления крутящим моментом и определения углов выключения фазы либо при автономном расчете, либо при регулировании в режиме реального времени, настоящее изобретение осуществляет переключение фазы А и фазы В между двумя возбужденными состояниями, в которых возбуждающее напряжение источника питания является положительным и отрицательным соответственно, управляет общим крутящим моментом между двумя группами пороговых значений крутящего момента, плавно управляет переходным крутящим моментом трехфазного вентильного реактивного электродвигателя и подавляет пульсации крутящего момента трехфазного вентильного реактивного электродвигателя. Действующий сигнал возбуждающего напряжения, подаваемый на обмотки электродвигателя, и сигнал ожидаемого напряжения обладают совпадающими характеристиками. Действующий сигнал тока фазы идентичен ожидаемому сигналу тока фазы. Настоящее изобретение имеет высокую практичность, подходит к различным типам систем приводов трехфазных вентильных реактивных электродвигателей с различными конструкциями и не требует дополнительных вычислений. В интервале [θ1, θr/3] положений ротора фаза А использует второй набор пороговых значений (th2low, th2up) крутящего момента, фаза В использует первый набор пороговых значений (th1low, th1up) крутящего момента, и общий крутящий момент управляется в интервалах [Te+th2low, Te+th2up] и [Te+th1low, Te+th1up]. Настоящее изобретение обеспечивает подавление пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя и имеет широкие перспективы применения.

Краткое описание чертежей

На фиг. 1 представлена схема установки двухуровневых пороговых значений крутящего момента вентильного реактивного электродвигателя, обеспечиваемого настоящим изобретением;

На фиг. 2(a) представлена схема переключения возбужденного состояния фазы В сигнала питания вентильного реактивного электродвигателя, обеспечиваемого настоящим изобретением;

На фиг. 2(б) представлена схема переключения возбужденного состояния фазы А сигнала питания вентильного реактивного электродвигателя, обеспечиваемого настоящим изобретением;

На фиг. 3 представлен сигнал крутящего момента вентильного реактивного электродвигателя, обеспечиваемого настоящим изобретением.

Осуществление изобретения

Настоящее изобретение описано ниже посредством представленных примеров со ссылками на сопутствующие чертежи.

Согласно фиг. 1, для одного трехфазного вентильного реактивного электродвигателя выполняют: а. установку первой группы пороговых значений (th1low, th1up) крутящего момента в интервале [0°, θr/3] положений ротора, и второй группы пороговых значений (th2low, th2up) крутящего момента в интервале [θr/3, θr/2] положений ротора, при этом указанные 4 пороговых значения крутящего момента удовлетворяют следующим условиям:

в которых положение ротора 0° является положением с минимальной индуктивностью фазы, положение ротора θr является угловым шагом, т.е. одним оборотом ротора, а половиной оборота ротора является θr/2;

б. Согласно фиг. 2 (а, б) установка возбужденного состояния SA в качестве возбужденного состояния питания фазы А, при этом возбужденное состояние SA=1 обозначает, что возбуждающее напряжение питания фазы А положительное, возбужденное состояние SA=-1 обозначает, что возбуждающее напряжение питания фазы А отрицательное; установка возбужденного состояния SB в качестве возбужденного состояния питания фазы В, при этом возбужденное состояние SB=1 обозначает, что возбуждающее напряжение питания фазы В положительное, возбужденное состояние SB=-1 обозначает, что возбуждающее напряжение питания фазы В отрицательное, а Те - ожидаемый общий плавный крутящий момент;

в. Для смежных сигналов питания фазы А и фазы В сигнал питания фазы А опережает на θr/3 сигнал питания фазы В. В этот момент фаза А выключена, фаза В включена. Согласно фиг. 1 процесс коммутации от фазы А к фазе В разделен на два интервала:

(I) В интервале [0°, θ1] положений ротора фаза А использует вторую группу пороговых значений (th2low, th2up) крутящего момента, фаза В использует первую группу пороговых значений (th1low, th1up) крутящего момента, критичное положение θ1 автоматически возникает в процессе коммутации, так что не требуется дополнительных вычислений;

(1.1) Интервал проводимости фазы В начинается в положении 0° ротора, устанавливается начальное возбужденное состояние SB=1, а ток и крутящий момент фазы В увеличиваются от 0; возбужденное состояние SA остается в исходном состоянии SA=-1, а ток и крутящий момент фазы А уменьшаются; так как скорость изменения индуктивности и ток фазы В относительно малы в этом положении, скорость роста крутящего момента фазы В меньше, чем скорость уменьшения крутящего момента фазы А, и общий крутящий момент уменьшается наряду с фазой А;

(1.2) Когда общий крутящий момент впервые достигает значения Te+th1low крутящего момента, условия изменения состояния фазы А и фазы В не выполняются, возбужденные состояния SA и SB сохраняют свои исходные состояния и общий крутящий момент продолжает уменьшаться;

(1.3) Когда общий крутящий момент уменьшается до значения Te+th2low крутящего момента, выполняются условия для изменения состояния в фазе А, возбужденное состояние SA переходит из -1 в 1 и крутящий момент фазы А увеличивается; фаза В остается в исходном состоянии и крутящий момент фазы В продолжает увеличиваться, поэтому общий крутящий момент увеличивается;

(1.4) Когда общий крутящий момент увеличивается до значения Te+th1low крутящего момента, условия изменения состояния фазы А и фазы В не выполняются, возбужденные состояния SA и SB сохраняют свои исходные состояния, и общий крутящий момент продолжает увеличиваться;

(1.5) Когда общий крутящий момент увеличивается до значения Te+th2up крутящего момента, выполняются условия для изменения состояния в фазе А, возбужденное состояние SA переходит из 1 в значение -1 и крутящий моменты фазы А уменьшается; но условия для изменения состояния в фазе В не выполняются, возбужденное состояние SB остается в исходном состоянии, а общий крутящий момент начинает уменьшаться;

(1.6) Этапы (1.2)~(1.5) повторяются, возбужденное состояние SB остается равным 1 все время, т.е. фаза В возбуждается положительным напряжением, ток и крутящий момент фазы В увеличиваются с максимальной скоростью; возбужденное состояние SA переключается между значениями -1 и 1, и общий крутящий момент все время управляется в диапазоне [Te+th2low, Te+th2up], тем самым подавляя пульсации крутящего момента трехфазного вентильного реактивного электродвигателя в интервале [0°, θ1] положений ротора;

(2) В интервале [θ1, θr/3] положений ротора фаза А продолжает использовать вторую группу пороговых значений (th2low, th2up) крутящего момента, а фаза В продолжает использовать первую группу пороговых значений (th1low, th1up) крутящего момента;

(2.1) В положении θ1 ротора скорость изменения индуктивности и фазовый ток в фазе В достигли определенного уровня. Когда возбужденное состояние SB=1, а возбужденное состояние SA=-1, скорость увеличения крутящего момента фазы В перестает быть меньше, чем скорость уменьшения крутящего момента фазы А, характер изменения общего крутящего момента определяется фазой В и общий крутящий момент увеличивается;

(2.2) Когда общий крутящий момент увеличивается до значения Te+th1up крутящего момента, выполняются условия изменения состояния фазы В, возбужденное состояние SB переходит из 1 в -1 и крутящий момент фазы В уменьшается; возбужденное состояние SA остается в состоянии -1 и общий крутящий момент уменьшается;

(2.3) Когда общий крутящий момент впервые уменьшается до значения Te+th2up крутящего момента, условия изменения состояния фазы А и фазы В не выполняются, возбужденные состояния SA и SB сохраняют исходные состояния и общий крутящий момент продолжает уменьшаться;

(2.4) Когда общий крутящий момент уменьшается до значения Te+th1low крутящего момента, выполняются условия изменения состояния фазы В, возбужденное состояние SB переходит из -1 в 1 и крутящий момент фазы В увеличивается; возбужденное состояние SA остается в состоянии -1 и общий крутящий момент увеличивается вместе с крутящим моментом фазы В;

(2.5) Когда общий крутящий момент увеличивается до значения Te+th2up крутящего момента, условия изменения состояния фазы А и фазы В не выполняются, возбужденные состояния SA и SB сохраняют исходные состояния и общий крутящий момент продолжает увеличиваться;

(2.6) Когда общий крутящий момент увеличивается до значения Te+th1up крутящего момента, этапы (2.2)~(2.5) повторяются, возбужденное состояние SA остается в состоянии -1, возбужденное состояние SB переключается между -1 и 1 и общий крутящий момент управляется в интервале [Te+th1low, Te+th1up], тем самым подавляя пульсации крутящего момента трехфазного вентильного реактивного электродвигателя в интервале положения ротора [θ1, θr/3].

Для смежных сигналов питания фазы В и фазы С, когда сигнал питания фазы В опережает на θr/3 сигнал питания фазы С, установка пороговых значений крутящего момента, процесс коммутации, и способы переключения и перехода возбужденных состояний фазы В и фазы С аналогичны предыдущему случаю. Для смежных сигналов питания фазы С и фазы А, когда сигнал питания фазы С опережает на θr/3 сигнал питания фазы А, установка пороговых значений крутящего момента, процесс коммутации, и способы переключения и перехода возбужденных состояний фазы С и фазы А аналогичны предыдущему случаю. Форма полученного сигнала крутящего момента вентильного реактивного электродвигателя представлена на фиг.3.


СПОСОБ ДВУХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ
СПОСОБ ДВУХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ
СПОСОБ ДВУХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ
СПОСОБ ДВУХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ
СПОСОБ ДВУХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ
СПОСОБ ДВУХУРОВНЕВОГО ПОДАВЛЕНИЯ ПУЛЬСАЦИЙ КРУТЯЩЕГО МОМЕНТА ТРЕХФАЗНОГО ВЕНТИЛЬНОГО РЕАКТИВНОГО ЭЛЕКТРОДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 104.
10.11.2019
№219.017.dfe8

Беспроводная система определения положения угольного комбайна и способ вырубки

Изобретение относится к области угледобывающей промышленности и может быть использовано для определения положения угольного комбайна. Система содержит последовательно соединенные модуль датчиков, цифровой сенсорный модуль, модуль беспроводной связи и компьютерную систему дистанционного...
Тип: Изобретение
Номер охранного документа: 0002705295
Дата охранного документа: 07.11.2019
24.12.2019
№219.017.f135

Способ флотации угля, имеющего низкую флотируемость

Предложенное изобретение относится к способу флотации угольного шлама, в частности, имеющего низкую флотируемость. Способ флотации угольного шлама, имеющего низкую флотируемость, включает следующие этапы: подачу раствора, содержащего нанопузырьки, в резервуар для перемешивания минеральной...
Тип: Изобретение
Номер охранного документа: 0002709877
Дата охранного документа: 23.12.2019
27.12.2019
№219.017.f3b6

Трансмиссия подъемника, препятствующая падению

Трансмиссия подъемника, препятствующая падению, содержит барабан (3), планетарную зубчатую передачу, муфту, правый тормоз, левый тормоз, двигатель (25), высокоскоростной вал (28), зубчатый механизм трансмиссии, двухсекционный шестеренный насос (34), масляную камеру (33) и двухпозиционный...
Тип: Изобретение
Номер охранного документа: 0002710461
Дата охранного документа: 26.12.2019
13.01.2020
№220.017.f4dc

Устройство крепления болта с потайной головкой

Изобретение относится к болту с потайной головкой, принадлежит к области техники, связанной с болтами, и направлено на повышение удобства при монтаже болта. Устройство крепления болта с потайной головкой содержит головку резьбового стержня и резьбовой стержень. В пластине для соединения...
Тип: Изобретение
Номер охранного документа: 0002710694
Дата охранного документа: 09.01.2020
27.01.2020
№220.017.facb

Дождевальная машина барабанного типа с постепенным сматыванием, содержащая эксцентрический поворотный механизм

Изобретение относится к области оросительных устройств. Дождевальная машина содержит эксцентрический поворотный механизм, ходовую часть, барабан с блокировкой, устройство для дождевания и устройство для постепенного сматывания. Блокирующий канал расположен в направлении по периферии на барабане...
Тип: Изобретение
Номер охранного документа: 0002711978
Дата охранного документа: 23.01.2020
05.02.2020
№220.017.fde4

Система для регулирования миграции элементов тяжелых металлов в материале для закладки выработанного пространства на основе принципов электрофореза

Изобретение относится к системам контроля миграции элементов тяжелых металлов в материале для закладки выработанного пространства угольных шахт и, в частности, к системе для регулирования миграции элементов тяжелых металлов в материале для закладки выработанного пространства на основе принципов...
Тип: Изобретение
Номер охранного документа: 0002712982
Дата охранного документа: 03.02.2020
13.02.2020
№220.018.01be

Дождевальная машина барабанного типа с постепенным сматыванием, содержащая телескопический подъемный механизм

Изобретение относится к области оросительных устройств. Дождевальная машина содержит ходовую часть, барабан с блокировкой, устройство для дождевания и устройство для постепенного сматывания. Блокирующий канал расположен в направлении по периферии на барабане с блокировкой. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002714050
Дата охранного документа: 11.02.2020
23.02.2020
№220.018.053b

Способ корреляционного моделирования нарушения соединения критических компонентов подъемника для глубокой скважины в условиях неполной информации

Изобретение раскрывает способ корреляционного моделирования нарушения соединения критических компонентов подъемника для глубокой скважины в условиях неполной информации. Технический результат заключается в повышении точности моделирования совместной вероятности множества состояний нарушения...
Тип: Изобретение
Номер охранного документа: 0002714852
Дата охранного документа: 19.02.2020
04.03.2020
№220.018.08a3

Система отбора проб для проверки в отношении ионов тяжелых металлов при закладке пустой угольной породой выработанного пространства угольных шахт

Изобретение относится к системе отбора проб для проверки в отношении ионов тяжелых металлов при закладке пустой угольной породой выработанного пространства угольных шахт. Предлагается система отбора проб воды для проверки в отношении ионов тяжелых металлов при закладке пустой угольной породой...
Тип: Изобретение
Номер охранного документа: 0002715659
Дата охранного документа: 02.03.2020
24.04.2020
№220.018.18a2

Устройство для механического испытания по трем осям и способ моделирования процесса замораживания воды под высоким давлением с получением льда

Изобретение относится к устройству для механического испытания по трем осям и способу моделирования процесса замораживания воды под высоким давлением с получением льда. Устройство содержит основную часть системы нагружения, систему заморозки и систему для проведения испытания образцов; в...
Тип: Изобретение
Номер охранного документа: 0002719732
Дата охранного документа: 22.04.2020
Показаны записи 51-51 из 51.
30.12.2018
№218.016.ad87

Способ управления станцией для автоматической заправочной станции спг

Изобретение относится к способу управления автоматической заправочной станцией сжиженного природного газа. Способ осуществляют посредством следующих этапов. Этап а1: идентификация личности пользователя устройством идентификации и запуск процесса заправки. Этап а2: проверка, выше ли уровень...
Тип: Изобретение
Номер охранного документа: 0002676499
Дата охранного документа: 29.12.2018
+ добавить свой РИД