×
29.12.2017
217.015.f735

Результат интеллектуальной деятельности: ЧУГУН С НИОБИЕМ И КОНСТРУКЦИОННАЯ ДЕТАЛЬ

Вид РИД

Изобретение

№ охранного документа
0002639194
Дата охранного документа
20.12.2017
Аннотация: Изобретение относится к металлургии, а именно к чугунам, и может быть использовано к деталях корпуса турбины. Чугун с шаровидным графитом содержит, вес.%: кремний 2,0-4,5, углерод 2,9-4,0, ниобий 0,05-0,7, молибден 0,5-1,0, кобальт 0,1-2,0, марганец ≤ 0,3, никель ≤ 0,5, магний ≤ 0,07, фосфор ≤ 0,05, сера ≤ 0,012, хром ≤ 0,1, сурьма ≤ 0,004, железо и примеси – остальное. Чугун характеризуется высокой прочностью. 2 н. и 14 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к чугуну с ниобием согласно пункту 1 патентной формулы и к конструкционной детали согласно пункту 16 патентной формулы.

В известных и применяемых чугунных сплавах (так называемых GJS-сплавах: чугун с шаровидным графитом) для повышения сопротивления ползучести, стойкости к образованию окалины и LCF-характеристик (малоцикловой пластической усталости) главным образом используются кремний и молибден. Но при этом данные элементы со временем ведут к заметному снижению ковкости.

Более того, молибден проявляет очень большое возрастание крутизны характеристики.

Поэтому задача изобретения состоит в создании сплава и конструкционной детали, которые преодолевают вышеуказанные недостатки и имеют улучшенные характеристики механической прочности на всем протяжении продолжительности эксплуатации.

Задача решена с помощью сплава согласно пункту 1 патентной формулы, и конструкционной детали согласно пункту 16 патентной формулы.

В зависимых пунктах патентной формулы перечислены дополнительные предпочтительные меры, которые объединяются между собой любым полезным образом.

Изобретение состоит в том, что молибден может быть частично замещен кобальтом и/или ниобием. Тем самым могут быть преодолены ограничения применимости, которые имеют существовавшие до сих пор GJS-сплавы.

Соответствующий изобретению сплав на основе железа имеет высокие характеристики относительного удлинения для области применения в диапазоне температур 450ºС–550ºС и имеет следующий состав (в % по весу):

кремний (Si) 2,0%-4,5%, в частности 2,3%-3,9%

углерод (C) 2,9%-4,0%, в частности 3,2%-3,7%,

ниобий (Nb) 0,05%-0,7%, в частности 0,05%-0,6%, наиболее предпочтительно от 0,1% до 0,7%,

молибден (Mo) 0,3%-1,5%, в частности 0,4%-1,0%, наиболее предпочтительно 0,5%,

необязательно

кобальт (Co) 0,1%-2,0%, в частности 0,1%-1,0%,

марганец (Mn) ≤ 0,3%, в частности 0,15-0,30%,

никель (Ni) ≤ 0,5%, в частности ≤ 0,3%,

магний (Mg) ≤ 0,07%, в частности по меньшей мере 0,03%, наиболее предпочтительно 0,03%-0,06%

фосфор (P) ≤ 0,05%, в частности 0,02%-0,035%,

сера (S) ≤ 0,012%, в частности ≤ 0,005%, наиболее предпочтительно между 0,003% и 0,012%,

хром (Cr) ≤ 0,1%, в частности ≤ 0,05%,

сурьма (Sb) ≤ 0,004%, в частности ≤ 0,003%,

железо (Fe),

в частности, остальное количество составляет железо.

Является предпочтительным, чтобы содержание кремния, кобальта, ниобия и молибдена составляло ≤ 7,5% по весу, в частности ≤ 6,5% по весу.

Даже незначительные уровни содержания кобальта и/или ниобия и молибдена улучшают механические характеристики.

Ниобий повышает сопротивление ползучести при неизменной высокой LCF-прочности и хорошей ударной вязкости.

Ниобий в результате выделения тонкодисперсных карбидов ниобия (Nb) обусловливает повышенную жаропрочность, благодаря чему пределы применимости сдвигаются в область более высоких температур.

Кобальт обеспечивает упрочнение твердого раствора, которое оказывает положительное влияние на свойства сплава при высоких температурах и низких напряжениях.

Совместное легирование молибденом (предпочтительно 0,4% - 1,0%) оказывает положительное влияние на жаропрочность (Rp0,2 (предел текучести 0,2 МПа) и Rm (предел прочности на разрыв) в диапазоне повышенных температур) и сопротивление ползучести (предел ползучести).

Содержание кобальта в сплаве предпочтительно варьирует между 0,5% по весу до 1,5% по весу.

Предпочтительные механические характеристики сплава в каждом случае достигаются, когда содержание кобальта составляет от 0,1% по весу до 1,0% по весу.

Посредством магния обеспечивается формирование сферического графита, и магний предпочтительно присутствует в количестве по меньшей мере 0,03% по весу, максимально 0,07% по весу.

В зависимости от применения хром (Cr) предпочтительно присутствует в количестве по меньшей мере 0,01% по весу, но максимально 0,05% по весу, чем повышается устойчивость к окислению.

Сплав может иметь дополнительные элементы.

По обстоятельствам, в сплаве присутствуют небольшие количества примесей, по меньшей мере:

фосфор (Р) 0,05% по весу

сера (S) 0,001% по весу

магний (Mg) 0,01% по весу

сурьма (Sb)

церий (Се),

которые оказывают положительное влияние на литейные свойства и/или образование шаровидного графита, но также не должны присутствовать в слишком большом количестве, так как в противном случае преобладают негативные влияния.

Кроме того, предпочтительно, чтобы в сплаве не присутствовал хром (Cr).

Примеры осуществления изобретения более подробно разъясняются с помощью следующих фигур.

Как показано:

Фигура 1 представляет паровую турбину,

Фигура 2 представляет газовую турбину.

Конструкционная деталь из сплава проявляет оптимальную ферритную структуру с шаровидным графитом.

Таблица показывает примерные соответствующие изобретению сплавы на основе железа (в % по весу), которые имеют улучшенные механические свойства.

Дополнительными примерами в отношении основных элементов сплавов являются:

Сплав предпочтительно не содержит ванадий (V), и/или титан (Ti), и/или тантал (Та), и/или медь (Cu).

Соотношение между С и Si должно отвечать близкому к эвтектическому составу, то есть углеродный эквивалент СЕ должен соответствовать величине между 4,1% и 4,4%

(СЕ = весовых процентов С + [(весовых процентов Si + весовых процентов Р)/3]).

На фигуре 1 представлена паровая турбина 300, 303 с протяженным вдоль оси 306 вращения валом 309 турбины.

Паровая турбина имеет турбинную секцию 300 высокого давления и турбинную секцию 303 среднего давления, в каждом случае с внутренним корпусом 312 и охватывающим его наружным корпусом 315. Турбинная секция 300 высокого давления, например, выполнена с конструкцией генератора с несущими крышками. Турбинная секция 303 среднего давления, например, сконструирована в двухпоточном исполнении. Также возможно, что турбинная секция 303 среднего давления выполнена в однопоточном варианте.

Вдоль оси 306 вращения между турбинной секцией 300 высокого давления и турбинной секцией 303 среднего давления размещен подшипник 318, причем вал 309 турбины имеет в подшипнике 318 опорный участок 321. Вал 309 турбины опирается на дополнительный подшипник 324 около турбинной секции 300 высокого давления. В области этого подшипника 324 турбинная секция 300 высокого давления имеет уплотнение 345 вала. Вал 309 турбины уплотнен относительно наружного корпуса 315 турбинной секции 303 среднего давления двумя дополнительными уплотнениями 345 вала. Между участком 348 впуска высоконапорного пара и участком 351 выпуска высоконапорного пара вал 309 турбины в турбинной секции 300 высокого давления имеет набор 357 рабочих лопаток высокого давления. Этот набор 357 рабочих лопаток высокого давления с принадлежащими ему, более подробно не показанными, рабочими лопатками представляет собой участок 360 системы лопаток.

Турбинная секция 303 среднего давления имеет центральный участок 333 впуска пара. В сопряжении с участком 333 впуска пара вал 309 турбины имеет радиально-симметричное ограждение 363 вала, защитную пластину с одной стороны для разделения потока пара на оба потока турбинной секции 303 среднего давления, а также для предотвращения непосредственного контакта горячего пара с валом 309 турбины. Вал 309 турбины в турбинной секции 303 среднего давления имеет второй участок 366 системы лопаток с рабочими лопатками 354 среднего давления. Протекающий через второй участок 366 системы лопаток горячий пар проходит из турбинной секции 303 среднего давления через выпускной патрубок 369 в аэрогидродинамически подсоединенную ниже по потоку непоказанную турбинную секцию низкого давления.

Вал 309 турбины, например, состоит из двух секционных валов 309а и 309b турбины, которые в области подшипника 318 прочно соединены друг с другом. Каждый секционный вал 309а и 309b турбины имеет выполненный в виде центрального просверленного отверстия протяженный вдоль оси 306 вращения охлаждающий канал 372. Охлаждающий канал 372 соединен с участком 351 выпуска пара через имеющий радиальное отверстие 375а приточный трубопровод 375. В турбинной секции 303 среднего давления канал 372 для охлаждающей среды соединен с не показанной более подробно полостью внутри ограждения вала. Приточные трубопроводы 375 выполнены как радиальное отверстие 375а, благодаря чему «более холодный» пар из турбинной секции 300 высокого давления может поступать в центральное просверленное отверстие 372а. Через выпускной канал 372, также, в частности, выполненный как радиально направленное отверстие 375а, пар попадает через участок 321 подшипника в турбинную секцию 303 среднего давления, и там - на поверхность 330 оболочки вала 309 турбины на участке 333 впуска пара. Протекающий через охлаждающий канал пар имеет явно более низкую температуру, чем притекающий в участок 333 впуска пара пар промежуточного перегрева, так что обеспечивается эффективное охлаждение первых рядов 342 рабочих лопаток турбинной секции 303 среднего давления, а также поверхности 330 оболочки вала в области этих рядов 342 рабочих лопаток.

Фигура 2 в качестве примера показывает газовую турбину 100 в частичном продольном разрезе.

Внутри газовой турбины 100 имеется ротор 103, который смонтирован вращающимся вокруг оси 102 вращения, с валом 101, который также называется рабочим колесом турбины.

Вдоль ротора 103 один за другим следуют корпус 104 воздухозаборника, компрессор 105, например, тороидальная камера 110 сгорания, в частности кольцевая камера сгорания, с многочисленными коаксиально размещенными форсунками 107, турбина 108 и выпускной корпус 109.

Кольцевая камера 110 сгорания сообщается, например, с кольцеобразным каналом 111 для горячего газа. Там, например, четыре последовательно соединенных ступени 112 турбины образуют турбину 108.

Каждая ступень 112 турбины сформирована, например, из двух лопастных венцов. Если смотреть по направлению течения рабочей среды 113, в канале 111 для горячего газа ряд 125, сформированный из рабочих лопаток 120, следует за рядом 115 направляющих лопаток.

При этом направляющие лопатки 130 закреплены на внутреннем корпусе 138 статора 143, тогда как рабочие лопатки 120 ряда 125 вставлены в ротор 103, например, с помощью турбинного диска 133.

С ротором 103 соединен генератор или рабочая машина (не показаны).

Во время работы газовой турбины 100 компрессор 105 через впускной корпус 104 засасывает воздух 135 и сжимает его. Сжатый воздух, подготовленный на обращенном к турбине конце компрессора 105, поступает к форсункам 107 и там смешивается с топливом. Затем смесь сгорает в камере 110 сгорания с образованием рабочей среды 113. Оттуда рабочая среда 113 протекает вдоль канала 111 для горячего газа на направляющие лопатки 130 и рабочие лопатки 120. На рабочих лопатках 120 рабочая среда 113 расширяется с передачей им импульса силы так, что рабочие лопатки 120 приводят во вращение ротор 103, и он приводит в движение соединенную с ним рабочую машину.

Конструкционные детали, находящиеся в горячей рабочей среде 113 во время работы газовой турбины 100, подвергаются воздействию термических нагрузок. Направляющие лопатки 130 и рабочие лопатки 120 в первой ступени 112 турбины, если смотреть по направлению течения рабочей среды 113, вместе с теплозащитными элементами, облицовывающими кольцеобразную камеру 110 сгорания, испытывают самые высокие термические нагрузки.

Чтобы выдерживать господствующие там температуры, эти детали могут охлаждаться с помощью охлаждающей среды.

Подобным образом, подложки конструкционных деталей могут иметь направленную структуру, то есть они являются монокристаллическими (SX-структура) или включают только продольно направленные зерна (DS-структура). Например, в качестве материала для конструкционных деталей, в частности для турбинных лопаток 120, 130 и конструкционных деталей камеры 110 сгорания, используются жаропрочные сплавы на основе железа, никеля или кобальта.

Такие жаропрочные сплавы известны, например, из патентных документов EP 1204776 В1, EP 1306454, EP 1319729 А1, WO 99/67435 или WO 00/44949.

Лопатки 120, 130 также могут иметь покрытия 7 для защиты от коррозии (MCrAlX; «М» представляет по меньшей мере один элемент из группы железа (Fe), кобальта (Со), никеля (Ni), «Х» является активным элементом и представляет собой иттрий (Y), и/или кремний, скандий (Sc), и/или по меньшей мере один редкоземельный элемент, или соответственно гафний). Такие сплавы известны из патентных документов ЕР 0486489 В1, ЕР 0786017 В1, ЕР 0412397 В1 или ЕР 1306454 А1.

На MCrAlX также может присутствовать еще и термобарьерное покрытие, предпочтительно состоящее из ZrO2, Y2O4-ZrO2, то есть оно является нестабилизированным, частично или полностью стабилизированным оксидом иттрия, и/или оксидом кальция, и/или оксидом магния. С помощью подходящего способа нанесения покрытий, например, такого как физическое осаждение из паровой фазы с испарением электронным пучком (EB-PVD), в термобарьерном покрытии получаются столбчатые зерна.

Направляющая лопатка 130 имеет корень направляющей лопатки (здесь не показан), обращенный к внутреннему корпусу 138 турбины 108, и головку направляющей лопатки на противоположной стороне относительно корня направляющей лопатки. Головка направляющей лопатки обращена к ротору 103 и закреплена на крепежном кольце 140 статора 143.


ЧУГУН С НИОБИЕМ И КОНСТРУКЦИОННАЯ ДЕТАЛЬ
ЧУГУН С НИОБИЕМ И КОНСТРУКЦИОННАЯ ДЕТАЛЬ
Источник поступления информации: Роспатент

Показаны записи 1 011-1 020 из 1 427.
24.07.2018
№218.016.7484

Мониторинг нагрузки на комплектующую деталь в процессе эксплуатации

Изобретение относится к способу определения эксплуатационной нагрузки на комплектующую деталь, в частности деталь тормоза рельсового транспортного средства. Способ отличаетуся следующими этапами: a) запись результатов измерений заданных измеряемых величин при эксплуатации комплектующей детали в...
Тип: Изобретение
Номер охранного документа: 0002662121
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.749a

Способ и устройство обнаружения обрыва провода

Изобретение относится к обнаружению обрыва провода в распределительной системе. Сущность: устройство включает в себя модуль (502) измерения, используемый для измерения, в узле (120-1, 120-2, 120-3) распределительной системы (10), значения напряжения каждого распределительного фидера (110-1,...
Тип: Изобретение
Номер охранного документа: 0002662038
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.749f

Компонент газовой турбины, газотурбинный двигатель, способ изготовления компонента газотурбинного двигателя

Компонент газовой турбины, имеющий теплоизолирующую внешнюю поверхность для воздействия газообразных продуктов сгорания, содержит металлическую подложку, крепящий слой на поверхности подложки, теплозащитное покрытие, структуру выступающих элементов и структуру элементов в виде канавок....
Тип: Изобретение
Номер охранного документа: 0002662003
Дата охранного документа: 23.07.2018
26.07.2018
№218.016.74f2

Проводящая бумага для защиты от тлеющего разряда, в частности для защиты от внешнего тлеющего разряда

Изобретение относится к области электротехники, а именно, к бумаге для защиты от тлеющего разряда, и может быть использовано в системе защиты от тлеющего разряда электрической машины, например машины высокого напряжения. Бумага для защиты от тлеющего разряда в простейшем случае изготавливается...
Тип: Изобретение
Номер охранного документа: 0002662150
Дата охранного документа: 24.07.2018
09.08.2018
№218.016.79d2

Измерение турбулентных потоков

Изобретение относится к измерению потоков текучей среды в установке для сжигания. В частности, данное изобретение касается измерения потоков текучих сред, таких как воздух, при наличии турбулентности. Установка для сжигания для измерения расходов в установке для сжигания содержит боковой канал...
Тип: Изобретение
Номер охранного документа: 0002663082
Дата охранного документа: 01.08.2018
09.08.2018
№218.016.7a28

Способ изготовления рабочего колеса радиального турбогенератора, ступень

Изобретение касается рабочего колеса (IMP) радиального турбогенератора (RTF), содержащего: диск колеса (SW), защитную шайбу (CW), лопатки (BL), ступицу (HB), причём ступица (HB) выполнена таким образом, что её можно монтировать на распространяющемся вдоль оси (X) валу (SH), диск колеса (SW)...
Тип: Изобретение
Номер охранного документа: 0002662989
Дата охранного документа: 31.07.2018
10.08.2018
№218.016.7b39

Система и способ для распределения нагрузки импульсной возобновляемой энергии для электрической сети

Изобретение относится к системе и способу для распределения нагрузки импульсной возобновляемой энергии для электрической сети. Система для обеспечения энергии для энергосети, исходя из энергии, подаваемой возобновляемым источником энергии, содержит: блок для получения водорода и азота, где блок...
Тип: Изобретение
Номер охранного документа: 0002663761
Дата охранного документа: 09.08.2018
13.08.2018
№218.016.7b71

Устройство, имеющее передаточный механизм с муфтой свободного хода со звеном свободного хода

Изобретение относится к устройствам, которые имеют передаточный механизм с первой муфтой (17) свободного хода, и предназначено для обеспечения длительной бесперебойной устойчивой работы. Первая муфта (17) свободного хода служит, в частности, для передачи крутящего момента между первым элементом...
Тип: Изобретение
Номер охранного документа: 0002663824
Дата охранного документа: 10.08.2018
13.08.2018
№218.016.7bab

Способ активирования функций в радиоприемнике

Изобретение относится к технике связи и может использоваться для активирования функций в радиоприемнике (RX). Технический результат состоит в повышении точности приема информации. Для этого радиоприемник (RX) регистрирует фрагмент радиосигнала (RS), при этом он на предопределенном временном...
Тип: Изобретение
Номер охранного документа: 0002663817
Дата охранного документа: 10.08.2018
17.08.2018
№218.016.7c60

Монтажная конструкция для электрического двигателя

Изобретение относится к области машиностроения. Электрический двигатель (20) в сборе содержит электрический двигатель для преобразования электрической энергии в механическую энергию. Электрический двигатель содержит корпус (2) и лапы (4). Корпус двигателя прикреплен к лапам, при этом корпус...
Тип: Изобретение
Номер охранного документа: 0002664035
Дата охранного документа: 14.08.2018
Показаны записи 941-943 из 943.
04.04.2018
№218.016.353f

Узел деталей работающей на текучей среде энергомашины, способ монтажа

Изобретение относится к способу монтажа и узлу (А) деталей работающей на текучей среде энергомашины (FEM), в частности турбокомпрессора (TCO), с продольной осью (X). Для особенно простого и точного монтажа предусмотрено, что узел включает в себя внутренний пучок (IB) для расположения во внешнем...
Тип: Изобретение
Номер охранного документа: 0002645835
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3602

Устройство с ходовой частью

Группа изобретений относится к системам передач для локомотивов и моторных вагонов. Экипажная часть транспортного средства (12), в частности рельсового транспортного средства содержит ходовую часть (10), тяговые двигатели и блок силового питания. Ходовая часть (10) содержит колесные пары (14.1,...
Тип: Изобретение
Номер охранного документа: 0002646203
Дата охранного документа: 01.03.2018
04.04.2018
№218.016.3735

Инжекционное охлаждение роторных лопаток и статорных лопаток газовой турбины

Компонент турбины содержит полый элемент с аэродинамическим профилем и инжекционную трубку, расположенную внутри полого элемента. Полый элемент содержит полость, имеющую противоположные заднюю и переднюю части, образованные внутренними поверхностями соответствующих областей задней и передней...
Тип: Изобретение
Номер охранного документа: 0002646663
Дата охранного документа: 06.03.2018
+ добавить свой РИД