×
29.12.2017
217.015.f6b5

Результат интеллектуальной деятельности: Способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека

Вид РИД

Изобретение

№ охранного документа
0002639238
Дата охранного документа
20.12.2017
Аннотация: Изобретение относится к области медицины. Предложен способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека, включающий инкубацию образца ткани рака легкого человека с дрожжевой РНК и инкубацию с растворами аптамеров, меченых различными флуоресцентными метками в фосфатном буфере, содержащем Са и Mg. Окрашенный образец ткани замораживают и делают срезы с помощью криостата. Полученные срезы исследуют с помощью флуоресцентной и конфокальной микроскопии. Опухолеспецифичные мишени идентифицируют с помощью световой микроскопии, для чего часть срезов образца проинкубированной ткани окрашивают гематоксилином и эозином. Способ позволяет выявить в срезе ткани больного раком легкого человека различные виды присутствующих в ней опухолевых элементов, а именно опухолевых клеток, ядер или ядрышек опухолевых клеток, лимфоцитов, несущих опухолевый антиген и модифицированную в результате опухолевого процесса соединительную ткань. 3 з.п. ф-лы, 4 ил., 3 пр.

Изобретение относится к способам выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека с помощью аптамеров, в частности, к окрашиванию гистологических срезов тканей рака легкого человека аптамерами, меченными флуоресцентной меткой.

Известно, что детекция биомаркеров в опухолевой ткани является важным аспектом для подтверждения диагноза и анализа злокачественности раковой опухоли. В настоящее время для детекции биомаркеров в срезах ткани чаще всего используют метод иммуногистохимии (Zeng, Zihua. Using oligonucleotide aptamer probes for immunostaining of formalin-fixed and paraffin-embedded tissues/ Zihua Zeng, Peng Zhang, Nianxi Zhao, Andrea M Sheehan, Ching-Hsuan Tung, Chung-Che Chang, Youli Zu// Modern Pathology. - 2010. - №23. P. 1553-1558), т.е. окрашивания срезов моноклональными антителами. Однако, несмотря на эффективность использования антител для анализа опухолевой ткани, применение иммуногистохимических методов исследования для клинической диагностики зачастую является затруднительным из-за высокой стоимости моноклональных антител.

Также для выявления опухолеспецифичных мишеней в гистологических срезах тканей применяют аптамеры - синтетические ДНК- или РНК-олигонуклеотиды, способные к специфическому связыванию с заданными мишенями. В отличие от моноклональных антител аптамеры имеют гораздо более низкую стоимость, поскольку могут быть синтезированы химически, кроме того, они легко модифицируются и обладают низкой иммуногенностью. Различными исследователями было показано, что аптамеры могут быть использованы для эффективного анализа опухолей наряду с коммерчески используемыми моноклональными антителами (Zeng, Zihua. Using oligonucleotide aptamer probes for immunostaining of formalin-fixed and paraffin-embedded tissues/ Zihua Zeng, Peng Zhang, Nianxi Zhao, Andrea M Sheehan, Ching-Hsuan Tung, Chung-Che Chang, Youli Zu// Modern Pathology. - 2010. - №23. P. 1553-1558; Ying Pu/ Using DNA Aptamer Probe for Immunostaining of Cancer Frozen Tissues/ Ying Pu, Zhenxu Liu, Yi Lu, Peng Yuan, Jun Liu, Bo Yu, Guodong Wang, Chaoyong James Yang, Huixia Liu, Weihong Tan / Analytical Chemistry .- 2015. - V.87 (3). - P. 1919-1924; Zeng, Zihua. Using oligonucleotide aptamer probes for immunostaining of formalin-fixed and paraffin-embedded tissues/ Zihua Zeng, Peng Zhang, Nianxi Zhao, Andrea M Sheehan, Ching-Hsuan Tung, Chung-Che Chang, Youli Zu// Modern Pathology. - 2010. - №23. P. 1553-1558).

Так, например, известно применение РНК-аптамеров для детекции клеток, экспрессирующих белок CD30 для гистохимических исследований фиксированных тканей лимфомы Ходжкина и анапластической крупноклеточной лимфомы (Zeng, Zihua. Using oligonucleotide aptamer probes for immunostaining of formalin-fixed and paraffin-embedded tissues/ Zihua Zeng, Peng Zhang, Nianxi Zhao, Andrea M Sheehan, Ching-Hsuan Tung, Chung-Che Chang, Youli Zu// Modern Pathology. - 2010. - №23. P. 1553-1558). Данный способ гистохимических исследований, основанный на использовании аптамеров к белку CD30, имеет ряд преимуществ по сравнению со стандартно используемым иммуногистохимическим методом, поскольку: время инкубации лиганда с мишенью составляет 20 мин, тогда как стандартно для моноклональных антител необходимо 90 мин инкубации; связывание лигандов с клетками ткани можно проводить при 37°С (с антителами - только 95°С), что упрощает условия, необходимые для проведения гистохимических исследований; аптамеры, описанные в статье, не связываются с тканями, которые не экспрессируют белок CD30, и клеточными обломками некротических тканей, в отличие от моноклональных антител к CD30, которые могут неспецифично связываться с некоторыми клетками или их обломками. Срезы анализировались с помощью световой микроскопии.

При этом описанный способ предусматривает использование вторичных антител, коньюгированных с пероксидазой хрена для окраски клеток, связавшихся с аптамерами к белку CD30.

Недостатком способа является его высокая стоимость, поскольку использование вторичных антител делает процедуру описанного исследования более дорогой, по сравнению с методами, в которых используются непосредственно аптамеры.

Известны исследования свойств ДНК-аптамеров, подобранных к клеточной линии HepG2 для диагностики парафинизированных срезов гепатоцеллюлярной карциномы человека (Bin Lu/ Screening and verification of ssDNA aptamers targeting human hepatocellular carcinoma / Jiucun Wang, Jun Zhang, Xiaojiao Zhang, Dongqin Yang, Lijun Wu, Zhongguang Luo, Yanyun Ma, Qi Zhang, Yunfang Ma, Xiaoyu Pei, Hua Yu, Jie Liu/ Acta Biochim Biophys Sin (2013), doi: 10.1093/abbs/gmtl30). Окрашивание срезов осуществляли следующим образом. Фиксированные в формалине и заключенные в парафин срезы ткани депарафинизировались путем нагрева в цитратном буфере (рН 6.0). Неспецифические сайты связывания на срезах блокировали путем инкубации срезов в фосфатном буфере, содержащем 10% бычий сывороточный альбумин, дрожжевую РНК и маскирующую ДНК в конечных концентрациях 1 мг/мл в течении 60 минут при 4°С. После этого срезы окрашивались флуоресцентно меченным аптамером в концентрации 500 нМ и инкубировались 2 часа при 4°С. Срезы анализировались с помощью флуоресцентной микроскопии.

Описанный способ исследования срезов является достаточно трудоемким из-за использования фиксированных в формалине и заключенных в парафин срезов для окрашивания аптамерами, поскольку процедура фикации, парафинизации и депарафинизации срезов занимает несколько дней и является сложной и многоэтапной.

Известен также способ, предусматривающий применение ДНК-аптамера SYL3C к эпителиальному фактору роста (Ying Pu/ Using DNA Aptamer Probe for Immunostaining of Cancer Frozen Tissues/ Ying Pu, Zhenxu Liu, Yi Lu, Peng Yuan, Jun Liu, Bo Yu, Guodong Wang, Chaoyong James Yang, Huixia Liu, Weihong Tan / Analytical Chemistry. - 2015. - V.87 (3). - P. 1919-1924). ДНК-аптамер SYL3C в данном способе использовали для окрашивания замороженных срезов, или срезов, заключенных в парафин. Срезы ткани подвергали депарафинизации с помощью ксилена и последовательных промываний в 100%, 95% и 75% этаноле; кипятили в Трис-EDTA буфере (рН 8.0) и инкубировали в фосфатном буфере, содержащем 20% телячью сыворотку и 1 мМ натриевую соль ДНК из тимуса теленка в течение 15 минут для восстановления антигенов. Для окрашивания замороженных срезов ткани, срезы инкубировали с 1 мкМ различных случайных последовательностей ДНК 5 минут для блокировки неспецифических сайтов связывания, а затем с 250 нМ SYL3C в течение 1 часа. Затем ткани промывали фосфатным буфером, содержащим 25 мМ MgCl2 и 0.045% глюкозу. Ядра клеток окрашивали красителем DAPI. Срезы ткани дополнительно окрашивали красителем Романовского-Гимза для идентификации мишеней с помощью световой микроскопии.

Использованный авторами протокол предусматривает применение только одного аптамера для окрашивания эпителиальных клеток в гистологических срезах ткани опухоли. Достоверность результатов анализа опухоли при окрашивании одной опухолевой структуры с применением одного аптамера недостаточно высока, поскольку у разных пациентов концентрация различных онкомаркеров часто варьируется от нуля до сотен нг/мкл (Mumbarkar, Р.Р. / Significance of tumor markers in lung cancer / P.P. Mumbarkar, A.S. Raste, M.S. Ghadge // Indian Journal of Clinical Biochemistry. - 2006. - V. 21 - №1. - P. 173-176). Поэтому использование аптамеров, специфичных для различных онкобелков, может повысить чувствительность метода диагностики. Кроме того, применение для анализа мишеней с помощью световой микроскопии красителя Романовского-Гимза, окрашивающего все клеточные и тканевые структуры в один цвет, не позволяет получить детальную идентификацию мишеней.

Таким образом, вследствие всех вышеприведенных факторов известный способ не позволяет с достаточной достоверностью выявлять опухолеспецифичные мишени в гистологических срезах опухолей больных раком легкого.

В качестве наиболее близкого аналога к заявляемому способу выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека выбран способ проведения анализа гистологических срезов с помощью аптамеров (Замай Г.С. Экспериментальные подходы к обнаружению опухолеспецифичных молекул в крови онкологических больных с использованием ДНК-аптамеров (на примере рака легкого человека). Автореферат диссертации на соискание ученой степени кандидата биологических наук, Новосибирск. - 2014. с. 12-13), по которому образцы ткани рака легкого и хондрогемартомы легкого фиксировали в 4% параформальдегиде, после чего помещали в фосфатный буфер, содержащий Са2+ и Mg2+, и резали на микротоме с шагом 40 мкм. Полученные срезы промывали раствором TRITON-X100 (0,2%) и фосфатным буфером, содержащим Са2+ и Mg2+. Для маскировки неспецифических сайтов связывания срезы инкубировали с маскирующей ДНК (Salmon sperm DNA) и с аптамерами, меченными флуоресцентной меткой Су'3, и антителами к цитокератинам 4, 5, 6, 8, 10, 13 и 18, меченными флуоресцентной меткой FITC (Sigma Aldrich, USA). Полученные образцы исследовали с помощью конфокального микроскопа Olympus Fluoview 10vi (Olympus Optical Co., Япония).

Недостатком данного способа также является его недостаточная специфичность для выявления опухолеспецифичных мишеней, вследствие того, что для окрашивания ткани был использован один аптамер, а не их комбинация и, кроме того, в способе отсутствует дополнительное окрашивание срезов красителями, позволяющими осуществлять анализ среза с помощью световой микроскопии для более детальной идентификации мишеней.

Задачей настоящего изобретения является повышение специфичности способа выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого.

Технический результат изобретения выражается в увеличении числа, выявленных в опухолевых тканях видов присутствующих в ней опухолевых элементов, а именно собственно опухолевых клеток, ядер или ядрышек опухолевых клеток, лимфоцитов, несущих опухолевый антиген и модифицированную в результате опухолевого процесса соединительную ткань.

Поставленная задача решается тем, что в способе выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека образец ткани рака легкого человека инкубируют с маскирующей нуклеиновой кислотой и с аптамерами, меченными флуоресцентной меткой, при этом, согласно заявляемому изобретению образец ткани после инкубации с нуклеиновой кислотой последовательно инкубируют с растворами аптамеров в фосфатном буфере, содержащем Са2+ и Mg2+, при этом используют аптамеры, меченные различными флуоресцентными метками, инкубацию осуществляют в следующей последовательности - первоначально образец ткани инкубируют с раствором аптамера, меченного флуоресцентной меткой I, затем с раствором второго аптамера, меченного флуоресцентной меткой II, и затем с раствором третьего аптамера, меченого флуоресцентной меткой III, после каждого этапа инкубации, осуществляют трехкратное промывание образца с помощью фосфатного буфера, содержащего Са2+ и Mg2+, после чего, окрашенный таким образом, образец ткани замораживают и делают срезы с помощью криостата, полученные срезы исследуют с помощью флуоресцентной и конфокальной микроскопии, при этом, для инкубации используют аптамеры, специфичные к разным видам опухолевых элементов рака легкого человека, полученные в процессе селекции, и выбранные из установленной нуклеотидной последовательности, отраженной как SEQ ID NO 1 - SEQ ID NO 8, выявленные с помощью флуоресцентной и конфокальной микроскопии опухолеспецифичные мишени, идентифицируют с помощью световой микроскопии, для чего часть срезов образца проинкубированной ткани окрашивают гематоксилином и эозином.

В способе могут быть использованы флуоресцентные метки, связанные с аптамерами, применяемыми для последовательной инкубации, имеющие спектры возбуждения и испускания, лежащие в области разных длин волн.

Образец ткани инкубируют с аптамерами в лунках планшета.

Одновременно осуществляют инкубацию нескольких разных образцов ткани рака легкого человека с использованием аптамеров, выбранных из нуклеотидной последовательности SEQ ID NO 1 - SEQ ID NO 8.

Заявляемый способ позволяет одновременно окрашивать различные опухолеспецифичные мишени в образцах ткани рака легкого человека с помощью аптамеров, специфичных к разным видам опухолевых элементов рака легкого человека, и осуществлять визуализацию опухолевых элементов в гистологических срезах ткани рака легкого человека с помощью флуоресцентной и конфокальной микроскопии, позволяющей идентифицировать флуоресцентные метки. Применение пула (смеси) аптамеров для окрашивания образцов тканей может быть неспецифичным из-за взаимодействия комплементарных цепей разных последовательностей ДНК-аптамеров. В заявляемом же способе применены аптамеры, специфичные к разным опухолеспецифичным мишеням, меченные отличающимися друг от друга флуоресцентными метками, при этом образец ткани инкубируют с аптамерами последовательно, что позволяет выявлять различные онкомаркеры или опухолевые элементы в образце ткани, в зависимости от выбора используемых аптамеров.

При этом точность и достоверность способа может быть повышена за счет использования для окрашивания образца ткани трех аптамеров, меченных различными флуоресцентными метками, спектры возбуждения и испускания которых лежат в области разных длин волн.

Замораживание проинкубированного образца ткани позволяет упростить технологию приготовления срезов с использованием криостата.

Применение стандартного окрашивания срезов гематоксилином и эозином позволяет уточнить и подтвердить выявленные опухолеспецифичные мишени с помощью световой микроскопии и провести детальный анализ структур клеток и тканей.

Инкубирование образца ткани в лунках планшета позволяет сократить расход реагентов.

Способ иллюстрируется схемой, представляющей способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека и фотографиями микроскопии, сделанными при исследовании образцов, полученных при реализации способа.

На фиг. 1 представлена схема, иллюстрирующая способ выявления опухолеспецифичных мишеней в гистологических срезах рака легкого человека.

На фиг. 2 представлены результаты конфокальной и световой микроскопии гистологического среза ткани больного аденокарциномой легкого, окрашенного аптамерами LC-29, LC-2114, LC-2107, имеющими установленные нуклеотидные последовательности SEQ ID NO 7, SEQ ID NO 5, SEQ ID NO 6, специфичными к ядрам, внутреннему содержимому опухолевых клеток, внутриклеточным компонентам опухолевых клеток и модифицированной в результате опухолевого процесса соединительной ткани альвеол.

На фиг. 3 представлены результаты конфокальной и световой микроскопии гистологического среза ткани больного аденокарциномой легкого, окрашенного аптамерами LC-29, LC-224, LC-2018, имеющими установленные нуклеотидные последовательности SEQ ID NO 7, SEQ ID NO 4, SEQ ID NO 8, специфичными к опухолевым клеткам, ядрам или ядрышкам опухолевых клеток, лимфоцитам, несущим опухолевый антиген, и эластическим волокнам опухолевой ткани.

На фиг. 4 представлены результаты конфокальной и световой микроскопии гистологического среза ткани больного аденокарциномой легкого, окрашенного аптамерами LC-118, LC-17, LC-18, имеющими установленные нуклеотидные последовательности SEQ ID NO 1, SEQ ID NO 2, SEQ ID NO 3, специфичными к опухолевым клеткам, лимфоцитам, несущим опухолевый антиген, и ядрам опухолевых клеток.

Способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека осуществляют следующим образом.

Для осуществления способа используют следующие расходные материалы и реактивы:

1. Фосфатный буфер, содержащий Са2+ и Mg2+.

2. Дрожжевую РНК.

3. ДНК-аптамеры к раку легкого человека.

4. Полистирол.

5. Предметные и покровные стекла.

6. Планшет.

Образец ткани размером приблизительно 5×5 мм трижды промывают в фосфатном буфере, содержащем Са2+ и Mg2+, в лунке планшета с помощью шейкера, таким образом, что каждый цикл отмывки длится в течение 5 минут.

После этого ткань инкубируют с нуклеиновой кислотой в конечной концентрации 1 нг/мкл в течение 2 часов при температуре 6°С на шейкере. Затем образец ткани трижды промывают фосфатным буфером, содержащим Са2+ и Mg2+, для того чтобы убрать излишки дрожжевой РНК.

Далее образец инкубируют в лунке планшета с первым аптамером меченным флуоресцентной меткой I, разведенным в фосфатном буфере, содержащем Са2+ и Mg2+ в конечной концентрации 50 нМ в течение 2 часов при температуре 60С на шейкере. После чего не связавшиеся последовательности удаляют путем трехкратного промывания с помощью фосфатного буфера, содержащего Са2+ и Mg2+. Далее образец снова инкубируют в лунке планшета со вторым аптамером, разведенным в фосфатном буфере, содержащем Са2+ и Mg2+ в конечной концентрации 50 нМ в течение 2 часов при температуре 6°С на шейкере, меченным флуоресцентной меткой II. Затем не связавшиеся последовательности также удаляют путем трехкратного промывания с помощью фосфатного буфера, содержащего Са2+ и Mg2+. В итоге образец инкубируют с третьим аптамером, меченным флуоресцентной меткой III, разведенным в фосфатном буфере, содержащем Са2+ и Mg2+ в конечной концентрации 50 нМ в течение 2 часов при температуре 6°С на шейкере. Далее образец снова трижды промывают с помощью фосфатного буфера, содержащего Са2+ и Mg2+.

Для получения срезов окрашенный образец ткани фиксируют с помощью охлаждающего геля на металлических пластинах, замораживают с помощью жидкого азота и режут с помощью криостата. Полученные срезы аккуратно помещают на предметные стекла и фиксируют под покровными стеклами с помощью полистирола. Часть полученных срезов окрашивают с помощью гематоксилина и эозина и также фиксируют на предметных стеклах с помощью полистирола, накрывают покровными стеклами.

Полученные образцы исследуют с помощью методов микроскопии, позволяющих регистрировать флуоресцентные метки, в частности флуоресцентной и конфокальной, часть срезов, окрашенных гематоксилином и эозином, исследуют с помощью световой микроскопии для визуализации и идентификации опухолеспецифичных мишеней с помощью световой микроскопии.

Способ выявления опухолеспецифичных мишеней в гистологических срезах рака легкого человека иллюстрируется следующими примерами.

Пример 1

Для осуществления примера использовали послеоперационную ткань больного аденокарциномой легкого человека (с подтвержденным диагнозом).

Образец послеоперационной ткани был предоставлен Красноярским краевым клиническим онкологическим диспансером имени А.И. Крыжановского.

Образец ткани размером приблизительно 5×5 мм трижды промывали в фосфатном буфере, содержащем Са2+ и Mg2+ в лунке планшета с помощью шейкера, таким образом, что каждый цикл отмывки длился в течение 5 минут.

После этого ткань инкубировали с нуклеиновой кислотой, в качестве которой использовали дрожжевую РНК в конечной концентрации 1 нг/мкл, в течение 2 часов при температуре 6°С на шейкере. Затем образец ткани трижды промывали фосфатным буфером, содержащим Са2+ и Mg2+ для того, чтобы убрать излишки дрожжевой РНК.

Далее образец инкубировали в лунке планшета с аптамером LC-29, имеющим установленную последовательность SEQ ID NO 7, меченным флуоресцентной меткой I (FAM), разведенным в фосфатном буфере, содержащем Са2+ и Mg2+ в конечной концентрации 50 нМ в течение 2 часов при температуре 6°С на шейкере. После чего не связавшиеся последовательности удаляли путем трехкратного промывания с помощью фосфатного буфера, содержащего Са2+ и Mg2+. Далее образец снова инкубировали в лунке планшета с аптамером LC-2114, имеющим установленную последовательность SEQ ID NO 5, меченным флуоресцентной меткой II (Су3), разведенным в фосфатном буфере, содержащем Са2+ и Mg2+ в конечной концентрации 50 нМ в течение 2 часов при температуре 6°С на шейкере. Затем не связавшиеся последовательности также удаляли путем трехкратного промывания с помощью фосфатного буфера, содержащего Са2+ и Mg2+. В итоге образец инкубировали с аптамером LC-2107, имеющим установленную последовательность SEQ ID NO 6, меченным флуоресцентной меткой III (Су5), разведенным в фосфатном буфере, содержащем Са2+ и Mg2+ в конечной концентрации 50 нМ в течение 2 часов при температуре 6°С на шейкере. Далее образец снова трижды промывали с помощью фосфатного буфера, содержащего Са2+ и Mg2+.

Для получения срезов окрашенный образец ткани фиксировали с помощью охлаждающего геля на металлических пластинах, замораживали с помощью жидкого азота и резали с помощью криостата. Полученные срезы толщиной 5 мкм помещали на предметные стекла и фиксировали под покровными стеклами с помощью полистирола. Часть полученных срезов окрашивали с помощью гематоксилина и эозина и также фиксировали на предметных стеклах с помощью полистирола и накрывали покровными стеклами.

Полученные срезы исследовали с помощью конфокальной, флуоресцентной и световой микроскопии.

Результаты, полученные с помощью световой микроскопии (квадраты E1, Е2) и конфокальной микроскопии (квадраты A1-D1, A2-D2), представлены на фотографиях, приведенных на фиг. 2. Как видно из фиг. 2, ДНК-аптамеры LC-29, LC-2114, LC-2107 с установленными последовательностями SEQ ID NO 7, SEQ ID NO 5, SEQ ID NO 6 флуоресцировали с разной интенсивностью в разных опухолеспецифиных компонентах ткани рака легкого человека. Световая микроскопия ткани аденокарциномы легкого (фиг. 2, D1) показывает опухолевые клетки, некоторые из которых не имеют внутреннего содержимого, это видно благодаря тому, что цитоплазма вытекла из клеток, поскольку внеклеточное пространство зернистое, что является результатом окрашивания цитоплазмы гематоксилином и эозином. Из фотографий видно, что аптамер LC-2114, имеющий установленную последовательность SEQ ID NO 5, окрасил внутреннее содержимое опухолевых клеток - 2 (фотографиии В1, E1) и также окрасил ядро опухолевой клетки - 1 (фотографии В1, E1, В2, Е2). Аптамер LC-29, имеющий установленную нуклеотидную последовательность SEQ ID NO 7, также окрасил ядро опухолевой клетки - 1 (фотографии A1, E1, А2, Е2) и соединительные ткани альвеол - 4 (фотографии А2, Е2). Аптамер LC-2107, имеющий установленную нуклеотидную последовательность SEQ ID NO 6, окрасил внутриклеточные компоненты опухолевых клеток - 3 (фотографии C1, E1, С2, Е2). Таким образом, аптамеры позволили выявить в срезе ткани больного аденокарциномой легкого человека следующие виды присутствующих в ней опухолевых элементов, а именно ядро - 1 и внутреннее содержимое опухолевой клетки - 2, внутриклеточные компоненты опухолевых клеток - 3, модифицированную в результате опухолевого процесса соединительную ткань альвеол - 4. Данные, полученные с помощью микроскопии, показали, что применение заявляемого способа позволяет идентифицировать опухолеспецифичные элементы в срезах больных раком легкого.

Пример 2

Для осуществления примера использовали послеоперационную ткань больного аденокарциномой легкого человека (с подтвержденным диагнозом).

Образец послеоперационной ткани был предоставлен Красноярским краевым клиническим онкологическим диспансером имени А.И. Крыжановского.

Образец ткани размером приблизительно 5×5 мм трижды промывали в фосфатном буфере, содержащем Са2+ и Mg2+ в лунке планшета с помощью шейкера, таким образом, что каждый цикл отмывки длился в течение 5 минут.

После этого ткань инкубировали с дрожжевой РНК в конечной концентрации 1 нг/мкл в течение 2 часов при температуре 6°С на шейкере. Затем образец ткани трижды промывали фосфатным буфером, содержащим Са2+ и Mg2+, для того чтобы убрать излишки дрожжевой РНК.

Далее образец инкубировали в лунке планшета с аптамером LC-29, имеющим установленную последовательность SEQ ID NO 7, меченным флуоресцентной меткой I (FAM), разведенным в фосфатном буфере, содержащем Са2+ и Mg2+ в конечной концентрации 50 нМ в течение 2 часов при температуре 6°С на шейкере. После чего не связавшиеся последовательности удаляли путем трехкратного промывания с помощью фосфатного буфера, содержащего Са2+ и Mg2+. Далее образец снова инкубировали в лунке планшета с аптамером 224, имеющим установленную последовательность SEQ ID NO 4, меченным флуоресцентной меткой II (Су3), разведенным в фосфатном буфере, содержащем Са2+ и Mg2+ в конечной концентрации 50 нМ в течение 2 часов при температуре 6°С на шейкере. Затем не связавшиеся последовательности также удаляли путем трехкратного промывания с помощью фосфатного буфера, содержащего Са2+ и Mg2+. В итоге образец инкубировали с аптамером LC-2108, имеющим установленную последовательность SEQ ID NO 8, меченным флуоресцентной меткой III (Су5), разведенным в фосфатном буфере, содержащем Са2+ и Mg2+ в конечной концентрации 50 нМ в течение 2 часов при температуре 6°С на шейкере. Далее образец снова трижды промывали с помощью фосфатного буфера, содержащего Са2+ и Mg2+.

Для получения срезов окрашенный образец ткани фиксировали с помощью охлаждающего геля на металлических пластинах, замораживали с помощью жидкого азота и резали с помощью криостата. Полученные срезы толщиной 5 мкм помещали на предметные стекла и фиксировали под покровными стеклами с помощью полистирола. Часть полученных срезов окрашивали с помощью гематоксилина и также фиксировали на предметных стеклах с помощью полистирола и накрывали покровными стеклами.

Полученные срезы исследовали с помощью конфокальной, флуоресцентной и световой микроскопии.

Результаты, полученные с помощью световой микроскопии (квадраты E1, Е2) и конфокальной микроскопии (квадраты A1-D1, A2-D2), представлены на фотографиях, приведенных на фиг. 3.

Как видно из фотографий, представленных на фиг. 3, аптамеры LC-29, LC-224 и LC-2108 SEQ ID NO 7, SEQ ID NO 4, SEQ ID NO 8 связались с эластическими волокнами в срезе ткани - 5 (фотографии Al, В1, C1, E1, А2, В2, Е2). И, кроме того, окрасили некоторые лимфоциты, по всей видимости несущие опухолевые антигены, поскольку они связались с аптамерами, специфичными для ткани рака легкого - 6 (фотографии A1, В1, C1, E1). Аптамеры LC-224 и LC-2108 окрасили также ядра или ядрышки опухолевых клеток - 1 (фотографии В1, C1, E1, В2, С2, Е2). Аптамеры LC-29, LC-224 окрасили также опухолевую клетку в срезе ткани - 7 (фотографии А2, В2, Е2). Таким образом, аптамеры позволили выявить в срезе ткани больного аденокарциномой легкого человека следующие виды присутствующих в ней опухолевых элементов, а именно опухолевую клетку - 7, ядра или ядрышки опухолевых клеток - 1, лимфоциты, несущие опухолевый антиген, - 6 и эластические волокна опухолевой ткани - 6. Данные, полученные с помощью микроскопии, показали, что применение заявляемого способа позволяет идентифицировать опухолеспецифичные элементы в срезах больных раком легкого.

Пример 3

Для осуществления примера использовали послеоперационную ткань больного аденокарциномой легкого человека (с подтвержденным диагнозом).

Образец послеоперационной ткани был предоставлен Красноярским краевым клиническим онкологическим диспансером имени А.И. Крыжановского.

Образец ткани размером приблизительно 5×5 мм трижды промывали в фосфатном буфере, содержащем Са2+ и Mg2+ в лунке планшета с помощью шейкера, таким образом, что каждый цикл отмывки длился в течение 5 минут.

После этого ткань инкубировали с дрожжевой РНК в конечной концентрации 1 нг/мкл в течение 2 часов при температуре 6°С на шейкере. Затем образец ткани трижды промывали фосфатным буфером, содержащим Са2+ и Mg2+, для того чтобы убрать излишки дрожжевой РНК.

Далее образец инкубировали в лунке планшета с аптамером LC-118, имеющим установленную последовательность SEQ ID NO 3, меченным флуоресцентной меткой I (FAM), разведенным в фосфатном буфере, содержащем Са2+ и Mg2+ в конечной концентрации 50 нМ в течение 2 часов при температуре 6°С на шейкере. После чего не связавшиеся последовательности удаляли путем трехкратного промывания с помощью фосфатного буфера, содержащего Са2+ и Mg2+. Далее образец снова инкубировали в лунке планшета с аптамером LC-18, имеющим установленную последовательность SEQ ID NO 2, меченным флуоресцентной меткой II (Су3), разведенным в фосфатном буфере, содержащем Са2+ и Mg2+ в конечной концентрации 50 нМ в течение 2 часов при температуре 6°С на шейкере. Затем не связавшиеся последовательности также удаляли путем трехкратного промывания с помощью фосфатного буфера, содержащего Са2+ и Mg2+. В итоге образец инкубировали с аптамером LC-17, имеющим установленную последовательность SEQ ID NO 1, меченным флуоресцентной меткой III (Су5), разведенным в фосфатном буфере, содержащем Са2+ и Mg2+ в конечной концентрации 50 нМ в течение 2 часов при температуре 6°С на шейкере. Далее образец снова трижды промывали с помощью фосфатного буфера, содержащего Са2+ и Mg2+.

Для получения срезов окрашенный образец ткани фиксировали с помощью охлаждающего геля на металлических пластинах, замораживали с помощью жидкого азота и резали с помощью криостата. Полученные срезы толщиной 5 мкм помещали на предметные стекла и фиксировали под покровными стеклами с помощью полистирола. Часть полученных срезов окрашивали с помощью гематоксилина и также фиксировали на предметных стеклах с помощью полистирола и накрывали покровными стеклами.

Результаты, полученные с помощью световой микроскопии (квадраты E1, Е2) и конфокальной микроскопии (квадраты A1-D1, A2-D2), представлены на фотографиях, приведенных на фиг. 4.

На фиг. 4 A1-E1 позицией 1 обозначены ядра опухолевых клеток, окрасившихся аптамерами LC-118, LC-18, LC-17. Позицией 6 обозначены лимфоциты, несущие опухолевый антиген, окрасившиеся аптамерами LC-118, LC-18, LC-17 (фотографии А1-Е1). Позицией 7 обозначены опухолевые клетки, окрасившиеся аптамерами LC-18, LC-17.

Таким образом, заявляемый способ позволяет выявить в срезе ткани больного аденокарциномой легкого человека следующие виды присутствующих в ней опухолевых элементов, а именно опухолевые клетки - 7, лимфоциты, несущие опухолевый антиген, - 6 и ядра опухолевых клеток - 1, то есть увидеть и идентифицировать все опухолеспецифичные элементы, присутствующие в срезах образцов ткани больных раком легкого.


Способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека
Способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека
Способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека
Способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека
Способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека
Способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека
Способ выявления опухолеспецифичных мишеней в гистологических срезах тканей больных раком легкого человека
Источник поступления информации: Роспатент

Показаны записи 51-60 из 76.
05.09.2019
№219.017.c72d

Способ извлечения серебра из солянокислых растворов

Изобретение относится к гидрометаллургии серебра и может быть использовано при выделении серебра из солянокислых растворов при переработке растворов выщелачивания сульфидных цинковых и медных руд, концентратов, а также других промпродуктов цветной металлургии. Способ осуществляют экстракцией...
Тип: Изобретение
Номер охранного документа: 0002699142
Дата охранного документа: 03.09.2019
12.09.2019
№219.017.ca2a

Устройство для измерения температурных полей

Изобретение относится к устройствам для измерения температуры и может быть использовано при определении температурных полей в различных средах и на поверхности твердых тел. В устройстве для измерения температурных полей, состоящем из последовательно включенных резистивно-диодных цепочек,...
Тип: Изобретение
Номер охранного документа: 0002699931
Дата охранного документа: 11.09.2019
12.09.2019
№219.017.ca4b

Способ получения наноразмерных порошков феррита меди (ii)

Изобретение относится к получению наноразмерного порошка феррита меди(II). Способ включает приготовление реакционного раствора, получение осадка в виде порошка, его отделение, сушку и обжиг. Реакционный раствор готовят путем растворения смеси солей нитратов меди(II) и железа(III), взятых в...
Тип: Изобретение
Номер охранного документа: 0002699891
Дата охранного документа: 11.09.2019
12.10.2019
№219.017.d4bf

Способ сульфатирования органосольвентного лигнина

Изобретение относится к области химической технологии и предназначено для получения водорастворимых аммониевых или натриевых солей сернокислых эфиров лигнинов, которые могут быть использованы в качестве химических добавок для регулирования свойств промывочных жидкостей при бурении нефтяных и...
Тип: Изобретение
Номер охранного документа: 0002702582
Дата охранного документа: 08.10.2019
12.10.2019
№219.017.d562

Кормовая добавка "хвойная"

Изобретение относится к животноводству, в частности к кормовой добавке для коров. Добавка характеризуется тем, что содержит хвойную муку и измельченную скорлупу кедрового ореха, причем исходные компоненты берут в определенном соотношении. Использование изобретения позволит повысить молочную...
Тип: Изобретение
Номер охранного документа: 0002702720
Дата охранного документа: 09.10.2019
22.12.2019
№219.017.f11f

Способ обработки поверхности туш и субпродуктов северного оленя для хранения

Изобретение относится к мясной промышленности, в частности к технологии продления сроков качественного хранения мяса и субпродуктов северного оленя. Обработку поверхности предварительно охлажденного до температуры (-1)-(-3)°С продукта проводят посредством мелкодисперсного аэрозольного...
Тип: Изобретение
Номер охранного документа: 0002709768
Дата охранного документа: 19.12.2019
24.01.2020
№220.017.f951

Способ получения композиционного высокоанизотропного материала copt-alo с вращательной анизотропией

Изобретение относится к области технологических процессов, связанных с получением высокоанизотропных композиционных материалов с помощью твердотельных реакций по методу алюмотермии и формированию в них магнитной вращательной анизотропии. Получаемый материал может быть использован в качестве...
Тип: Изобретение
Номер охранного документа: 0002711700
Дата охранного документа: 21.01.2020
08.02.2020
№220.018.00cb

Способ получения суперпарамагнитных наночастиц на основе силицида железа fesi с модифицированной поверхностью

Изобретение относится к области нанотехнологии и может быть использовано для производства наноструктурированных материалов биомедицинского назначения. Способ получения суперпарамагнитных наночастиц на основе силицида железа FеSi с модифицированной поверхностью включает синтез силицида железа...
Тип: Изобретение
Номер охранного документа: 0002713598
Дата охранного документа: 05.02.2020
13.03.2020
№220.018.0b3c

Днк аптамеры, связывающие сердечный тропонин i человека

Изобретение относится к области биотехнологии и медицины, а именно к области ДНК аптамеров, способных специфично и с высоким сродством связываться с сердечным тропонином I человека. Основными областями применения ДНК-аптамеров к сердечному тропонину I являются клинические исследования,...
Тип: Изобретение
Номер охранного документа: 0002716409
Дата охранного документа: 11.03.2020
12.07.2020
№220.018.31f1

Держатель образца для сквид-магнитометра типа mpms

Изобретение относится к устройствам для измерения переменных магнитных величин. Держатель образца для СКВИД-магнитометра типа MPMS содержит цилиндрическую трубку из органического материала, внутри которой вертикально помещен немагнитный цилиндр, при этом дополнительно содержит второй цилиндр,...
Тип: Изобретение
Номер охранного документа: 0002726268
Дата охранного документа: 10.07.2020
Показаны записи 31-31 из 31.
02.05.2023
№223.018.52b4

Нарика и серая пыль

Литературное произведение в жанре фэнтези для подростков от 9 до 12 лет
Тип: Произведениe литературы
+ добавить свой РИД