×
29.12.2017
217.015.f64c

Результат интеллектуальной деятельности: ЛИНИЯ ДЛЯ ПОЛУЧЕНИЯ ТОНКОДИСПЕРСНОЙ ВОДОУГОЛЬНОЙ СУСПЕНЗИИ

Вид РИД

Изобретение

Аннотация: Изобретение раскрывает линию для получения тонкодисперсной водоугольной суспензии, которая содержит приемный бункер для угольного компонента суспензии, связанный через питатель с измельчителем, к входам которого также подведены линии дозированной подачи воды и разжижителя - стабилизатора, а также аппарат для активации суспензии, выход которого связан с расходной емкостью, предназначенной для хранения и выдачи целевого продукта, при этом линия снабжена вторым измельчителем и гидроциклоном, причем в качестве первого измельчителя использована параболическая виброимпульсная мельница, а в качестве аппарата для активации суспензии - кавитатор гидроударный, выход параболической виброимпульсной мельницы связан с гидроциклоном, первый выход гидроциклона связан с промежуточной емкостью, выход которой подсоединен к входу параболической виброимпульсной мельницы, а второй - к второму измельчителю, связанному своим выходом с входом кавитатора гидроударного. Технический результат заключается в получении водоугольной суспензии высокого качества. 1 ил.

Изобретение относится к оборудованию для получения высококачественных водоугольных топливных смесей, которые могут найти применение для замещения мазутного топлива энергетических агрегатов или могут быть использованы для получения генераторного газа.

Известна технологическая линия для получения водоугольного топлива, содержащая емкости для твердого компонента топлива (угля), для жидкого компонента топлива (воды) и добавок, необходимых для получения водоугольной суспензии.

Емкость (бункер) для твердого компонента топлива связана с измельчителем. Емкости для воды, добавок и выход измельчителя связаны со смесителем, а выход смесителя связан с устройством гидроударного действия, выход которого связан с резервуаром для хранения и раздачи полученного водоугольного топлива (водоугольной суспензии).

Выход устройства гидроударного действия байпасной линией дополнительно связан со смесителем.

В процессе функционирования линии твердый компонент топлива из бункера подается в измельчитель, где осуществляется его предварительное измельчение. Измельченный компонент загружают в смеситель, куда также подаются жидкий компонент топлива (вода) и, в случае необходимости, добавки. В смесителе осуществляется смешивание загруженных в него компонентов с образованием грубой суспензии, которую подают в устройство гидроударного действия. В данном устройстве компоненты топлива диспергируются, нагреваются и активируются до образования тонкодиспергированной суспензии, которую подают в резервуар для хранения и раздачи потребителям. В случае, если необходимо провести повторную обработку полученной тонкодиспергированной суспензии, ее направляют не в резервуар, а рециркулируют по байпасной линии в смеситель для повторной обработки, после чего ее снова подают в устройство гидроударного действия и далее - в резервуар (см. патент РФ, №2185244, кл. В02С 21/00, 2000 г.).

В результате анализа выполнения известной линии необходимо отметить, что смешивание измельченного твердого компонента и жидкого компонента водоугольного топлива и последующее приготовление суспензии в устройстве гидроударного действия не позволяет получить композиционное топливо достаточно высокого качества, так как образование топливной композиции осуществляется при недостаточной активации твердого и жидкого ее компонентов, что не позволяет топливной смеси сохранять свои свойства длительное время. Наличие в полученной топливной смеси минеральных балластных включений также снижает его качество.

Известен технологический комплекс для получения водоугольного топлива, состоящий из молотковой дробилки, предназначенной для измельчения загружаемого в нее угля, грохота, установленного на выходе дробилки и предназначенного для отсортировки угля некондиционных размеров, элеватора, предназначенного для загрузки отсортированного угля от грохота в аккумулирующий бункер дробленого угля. Технологический комплекс оснащен питателем-дозатором, размещенным на выходе бункера и связанного с входом вибромельницы, а также емкостями для реагента - пластификатора и технической воды, связанными с входом вибромельницы. Вибромельница состоит из двух горизонтальных расположенных один над другим барабанов, гидравлически связанных между собой патрубком. В состав технологического комплекса входит аппарат для механической активации суспензии - зумпф, установленный на выходе вибромельницы. Выход зумпфа связан с аккумулирующей емкостью.

В процессе работы комплекса уголь по конвейеру подается в молотковую дробилку, где дробится до класса 0-3. Дробленый уголь из приемного бункера ковшовым элеватором направляется в аккумулирующий бункер, из которого ленточным питателем-дозатором направляется в горизонтальную вибромельницу. В питающую воронку верхнего барабана вибромельницы одновременно дозировано подается вода и реагент-пластификатор. Проходя через вибрирующий верхний барабан с измельчающей загрузкой, как правило, состоящей из набора стержней, дробленый уголь смешивается с водой, с реагентом-пластификатором, и предварительно измельчается. Полученная смесь по патрубку перетекает в нижний барабан, как правило, загруженный шаровой загрузкой или стержнями, диаметр которых меньше диаметра стержней верхнего барабана. Проходя второй барабан и вибрирующую мелющую загрузку, смесь доизмельчается и через разгрузочный патрубок вытекает из мельницы в зумпф. В зумпфе водоугольная суспензия подвергается гидромеханическому воздействию за счет высокоградиентного потока между внутренними поверхностями корпуса и дисками, а также кавитации в зонах, образующихся в полостях перфорации дисков при резкой смене поля давлений в них (от разрежения до повышения давления) за счет высокой относительной частоты вращения. Вследствие указанного гидромеханического воздействия водоугольная суспензия приобретает необходимую стабильность и реологические характеристики. Наличие реагента-пластификатора при мокром измельчении обеспечивает эффективное его использование за счет адсорбции поверхностно-активных веществ на свежераскрытых поверхностях угольных частиц при их разрушении. Полученное водоугольное топливо направляется в аккумулирующую емкость, из которой выдается потребителям или направляется в топки котлов на сжигание (см. патент РФ на полезную модель №45731, кл. C10L 1/32, 2005 г.) - наиболее близкий аналог.

В результате анализа известного решения необходимо отметить, что использование последовательно установленных молотковой дробилки и вибромельницы не позволяет обеспечить гарантированное измельчение твердой фазы до заданных мелкодисперсных размеров ее фрагментов, а использование в качестве аппарата для активации зумпфа не обеспечивает качественной механохимической активации суспензии. Кроме того, полученная на данной линии суспензия характеризуется большим разбросом значений отношений твердой и жидкой фаз. Все это снижает качество получаемой суспензии, в частности, за счет значительного недожога компонентов при получении из нее генераторного газа, невысокой теплотворной способности и низкого срока хранения.

Техническим результатом настоящего изобретения является разработка конструкции линии, обеспечивающей получение водоугольной суспензии высокого качества.

Указанный технический результат обеспечивается тем, что в линии для получения тонкодисперсной водоугольной суспензии, содержащей приемный бункер для угольного компонента суспензии, связанный через питатель с измельчителем, к входам которого также подведены линии дозированной подачи воды и разжижителя - стабилизатора, а также аппарат для активации суспензии, выход которого связан с расходной емкостью, предназначенной для хранения и выдачи целевого продукта, новым является то, что линия снабжена вторым измельчителем и гидроциклоном, причем в качестве первого измельчителя использована параболическая виброимпульсная мельница, а в качестве аппарата для активации суспензии - кавитатор гидроударный, выход параболической виброимпульсной мельницы связан с гидроциклоном, первый выход гидроциклона связан с промежуточной емкостью, выход которой подсоединен к входу параболической виброимпульсной мельницы, а второй - к второму измельчителю, связанному своим выходом с входом кавитатора гидроударного.

Сведений, изложенных в материалах заявки, достаточно для практического осуществления полезной модели.

Сущность заявленного изобретения поясняется графическими материалами, на которых представлена схема линии для получения тонкодисперсной водоугольной суспензии (ТВУС).

Линия для получения ТВУС содержит приемный бункер 1 с питателем 2 (например, шлюзовым) для твердого компонента ТВУС (например, бурого угля). Выход питателя 2 связан с первым входом измельчителя 3 твердого компонента ТВУС. В качестве измельчителя используется стандартная молотковая дробилка или, что наиболее предпочтительно, параболическая виброимпульсная мельница. Конструкция такой мельницы является стандартной.

Второй вход измельчителя 3 связан с линией подачи воды (В), а третий - с линией (С) подачи технологических добавок (как правило, это разжижители-стабилизаторы). Вода и технологические добавки могут подаваться по трубопроводам из накопительных емкостей (позициями не обозначены). Вода может также подаваться непосредственно из системы водоснабжения, а технологические добавки непосредственно с установки их получения (не показана). Четвертый вход измельчителя 3 связан с выходом промежуточной емкости 4. На втором, третьем и четвертом входах измельчителя установлены дозаторы 5. Выход измельчителя 3 через первый насос (например, песковый) 6 связан с гидроциклоном 7.

Первый выход гидроциклона связан с входом промежуточной емкости 4, а второй - с входом второго измельчителя 8. Выход измельчителя 8 через второй насос (например, песковый) 6, связан с первым входом аппарата для активации полученной суспензии - кавитатора гидроударного 9. Выход кавитатора гидроударного может быть связан с одной или несколькими расходными емкостями 10 для сбора и выдачи целевого продукта и/или с линией выдачи целевого продукта - ТВУС, в которой установлен насос 12 (например, винтовой). Линия выдачи суспензии может быть каналом соединена со вторым входом кавитатора гидроударного 9.

В линиях связи гидроциклона с промежуточной емкостью, кавитатора с расходными емкостями, кавитатора с линией выдачи суспензии, установлены регулируемые задвижки 12.

Конкретное конструктивное выполнение агрегатов и узлов линии, а также ее транспортирующие системы являются известными, они не составляют предмета патентной охраны и поэтому в материалах настоящей заявки не раскрыты. Естественно, что для транспортировки компонентов и их смеси в процессе получения ТВУС в установке используются насосы, трубопроводы и прочая арматура, выполнение которых также известно.

Линия для получения тонкодисперсной водоугольной суспензии функционирует следующим образом.

Работа линии может быть осуществлена как в ручном, так и в автоматическом режиме.

В приемный бункер 1 загружают предварительно измельченный до заданной крупности уголь. Весьма перспективным сырьем для получения ТВУС высокого качества является обогащенный термообработанный измельченный бурый уголь.

Из бункера 1 питателем 2 уголь дозировано подается на измельчение в измельчитель 3 - параболическую виброимпульсную мельницу. Одновременно в мельницу 3 по линиям В и С дозированно через дозаторы 5 подаются вода и технологическая добавка, а именно, разжижитель - стабилизатор. В параболической виброимпульсной мельнице осуществляется измельчение твердого компонента и перемешивание его с водой и разжижителем - стабилизатором. В результате на выходе мельницы 3 получается водоугольная суспензия. Кинетика мокрого измельчения угля в параболических вибромипульсных мельницах аналогична процессам дезинтеграции, происходящим в барабанной шаровой мельнице, только со значительным снижением затрат электроэнергии (до 10 раз) и сокращением износа (в 20-30 раз) мелющих тел. Использование в качестве измельчителя именно параболической виброимпульсной мельницы предоставляет широкие возможности для управления выходными параметрами измельчаемого материала на основе варьирования амплитуды и частоты колебаний, времени нахождения измельчаемого материала в помольной камере и т.д. Это дает возможность разработки гибких, легко настраиваемых схем мокрого измельчения, обеспечивающих получение ТВУС с заданным гранулометрическим составом. Реализуемый в таких мельницах механизм измельчения твердых материалов обеспечивает высокую вероятность того, что практически все без исключения частицы, за время нахождения в помольной камере, подвергнутся динамическому воздействию со стороны мелющих тел. Как показывают исследования, на выходе виброимпульсной мельницы МВ-0,05 присутствует очень малый процент крупных частиц угля, размер которых соизмерим с их входными размерами. Наличие таких частиц в топливе ТВУС весьма нежелательно, поскольку их присутствие повышает механический недожог угля и снижает эффективность применения данного топлива, то есть, снижает его качество. На параболических виброимпульсных мельницах получают стабильные водоугольные суспензии со средними размерами частиц измельченного угля выше 1 мкм. Введение в водоугольные суспензии разжижающих присадок существенно улучшает их текучесть, что выражается в значительном снижении (более чем, в 10 раз) консистентности. В качестве таковых могут быть использованы стандартные присадки (УЩР, в количестве 1%, ЛСТ, в количестве 1%). Это дает также возможность повысить на 3-5% содержание в суспензии твердой фазы, при сохранении допустимой для ТВУС текучести. Для повышения стабилизирующих характеристик суспензии возможно добавление стабилизирующих компонентов (бентонит, бишофит) в количестве 0,5-1,0%.

Из мельницы 3 полученная в ней водоугольная суспензия первым насосом 6 подается в гидроциклон 7. Гидроциклон 7 - это стандартный агрегат, в котором за счет действия центробежных сил из полученной в мельнице суспензии удаляются частицы угля, имеющие массу, большую, нежели установленную технологическими требованиями. Данные частицы направляются в промежуточную емкость 4, откуда подаются в мельницу 3 на доизмельчение. В гидроциклоне также обеспечивается заданное соотношение твердой и жидкой фаз суспензии (оптимальное соотношение: 60% твердая фаза и 40% жидкая). Использование гидроциклона обеспечивает подачу на гидропомол суспензии, твердая фаза которой гарантированно очищена от фрагментов, размеры которых превышают установленные для измельчения на мельнице.

Очищенная от некондиционных твердых частиц и имеющая оптимальное соотношение твердой и жидкой фаз суспензия подается на второй измельчитель 8, в котором осуществляется гидропомол полученного в мельнице 3 и очищенного в гидроциклоне 7 полуфабриката. В измельчителе 8 твердая фаза суспензии дополнительно измельчается и качественно перемешивается с водой и разжижителем - стабилизатором. В качестве измельчителя 8 может быть использован измельчитель ИГП5.

Из измельчитея 8 суспензия вторым насосом 6 подается в кавитатор гидроударный 9, в котором происходит тонкодисперсное доизмельчение твердой фазы и ее механохимическая активация.

В кавитаторе измельчение осуществляется посредством ударно-скалывающих воздействий на частицы угля, которые разбиваются на осколки с одновременной их деформацией. Деформация обуславливает появление на этих частицах механических и термических напряжений, электростатических полей и приводит к увеличению химической активности на наружной поверхности и в порах твердых частиц. Увеличение внутренней энергии частиц за счет этих явлений, вызванных спецификой их измельчения, составляют от 10 до 30% от энергии удара. При таком измельчении в суспензии образуется большое количество высокореакционноспособных радикальных частиц.

При обработке водоугольной суспензии в кавитаторе гидроударном можно выделить три фазы, отличающиеся характером изменения физико-химических параметров водоугольной суспензии и свойствами дисперсной фазы:

- кавитационное разрушение до размеров 100 мкм, гомогенизация и первичное диспергирование дисперсной фазы (средняя продолжительность фазы 5-10 мин.);

- основная фаза диспергирования - активация поверхностных физико-химических свойств дисперсной фазы, увеличение выхода ультрадисперсной фазы и, соответственно, увеличение объема осадка, возрастание структурно-механического барьера, седиментационной устойчивости суспензии (средняя продолжительность фазы 20-30 мин.);

- уменьшение агрегативной и седиментационной устойчивости ТВУС при достижении критического значения степени диспергирования и концентрации дисперсной фазы (средняя продолжительность фазы 10-20 мин.).

Таким образом, при кавитационной обработке суспензии получаем активированную метастабильную мелкодисперсную среду. Кроме того, кавитацитонные аппараты обладают малой металлоемкостью, высокой производительностью и низким энергопотреблением. На выходе кавитатора гидроударного получаем целевой продукт - ТВУС, который подается в зависимости от положения задвижек 12 в накопительные емкости 10 и/или на винтовой насос 11, которым ТВУС направляется, например, в прямоточно-вихревой газогенератор для получения генераторного газа.

В случае длительного хранения в накопительных емкостях, ТВУС может подаваться на второй вход кавитатора гидроударного 9 для ее активации и возращения в накопительные емкости 10.

Разработанная технологическая линия для производства ТВУС по принципу конструирования является линейной, что очень удобно для автоматизации технологического процесса получения ТВУС. Вместе с тем, эта схема позволяет достаточно гибко организовать производство высококачественной ТВУС в зависимости от исходных компонентов. Использование линии позволяет получить ТВУС со следующими характеристиками:

- высокой калорийностью (до 6000 ккал/кг);

- низкой зольностью (от 1 до 1,5%);

- удовлетворительной текучестью с показателем вязкости 144 сСт при t=30°C (для справки-вязкость мазута при такой температуре составляет 70-98 сСт);

- высокой стабильностью (сохраняет структуру при хранении не менее года и при транспортировке автомобильным транспортом на расстояние не менее 500 км).

Линия для получения тонкодисперсной водоугольной суспензии, содержащая приемный бункер для угольного компонента суспензии, связанный через питатель с измельчителем, к входам которого также подведены линии дозированной подачи воды и разжижителя - стабилизатора, а также аппарат для активации суспензии, выход которого связан с расходной емкостью, предназначенной для хранения и выдачи целевого продукта, отличающаяся тем, что линия снабжена вторым измельчителем и гидроциклоном, причем в качестве первого измельчителя использована параболическая виброимпульсная мельница, а в качестве аппарата для активации суспензии - кавитатор гидроударный, выход параболической виброимпульсной мельницы связан с гидроциклоном, первый выход гидроциклона связан с промежуточной емкостью, выход которой подсоединен к входу параболической виброимпульсной мельницы, а второй - к второму измельчителю, связанному своим выходом с входом кавитатора гидроударного.
ЛИНИЯ ДЛЯ ПОЛУЧЕНИЯ ТОНКОДИСПЕРСНОЙ ВОДОУГОЛЬНОЙ СУСПЕНЗИИ
ЛИНИЯ ДЛЯ ПОЛУЧЕНИЯ ТОНКОДИСПЕРСНОЙ ВОДОУГОЛЬНОЙ СУСПЕНЗИИ
Источник поступления информации: Роспатент

Показаны записи 151-160 из 262.
09.06.2018
№218.016.5c98

Способ определения коэффициента турбулентной диффузии в приземном слое атмосферы

Изобретение относится к области метеорологии и может быть использовано для определения коэффициента турбулентной диффузии в приземном слое атмосферы. Сущность: измеряют объемную активность радона одновременно на двух высотах: 0,5-2 м от поверхности земли и не менее 10 м от поверхности земли. С...
Тип: Изобретение
Номер охранного документа: 0002656114
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5ca4

Способ определения расстояния до границ объекта

Способ определения расстояния до границ объекта включает измерение размера изображения в плоскости изображений оптического прибора со светочувствительной матрицей, осуществление перемещения прибора вдоль его линии визирования по направлению к объекту или от него на фиксированное расстояние,...
Тип: Изобретение
Номер охранного документа: 0002656130
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5cb5

Способ вихретокового контроля толщины стенки металлических немагнитных труб

Изобретение относится к методам неразрушающего контроля немагнитных металлических изделий и может быть использовано для контроля толщины металлического изделия и толщины диэлектрического покрытия его поверхности. Сущность заявленного изобретения заключается в том, что способ вихретокового...
Тип: Изобретение
Номер охранного документа: 0002656115
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5cc2

Устройство неразрушающего контроля неисправностей в электрической сети

Изобретение относится к области неразрушающего контроля и может быть использовано для предупреждения пожара при неисправности в электрической сети. Устройство неразрушающего контроля неисправностей в электрической сети содержит вводной щит, к которому через электрическую сеть и переходное...
Тип: Изобретение
Номер охранного документа: 0002656117
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5cc8

Способ послойного анализа тонких пленок

Изобретение относится к исследованию материалов путем определения их физических свойств, а именно к определению элементного состава методом вторично-ионной масс-спектрометрии и может быть использовано для определения распределения материала тонкой пленки по глубине при изготовлении многослойных...
Тип: Изобретение
Номер охранного документа: 0002656129
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5cd3

Способ определения интенсивности дождевых осадков в приземном слое атмосферы

Изобретение относится к способам контроля за состоянием и динамикой атмосферы, интегральных характеристик осадков, а именно к определению интенсивности дождевых осадков в приземном слое атмосферы по измеренной мощности дозы гамма-излучения. Способ определения интенсивности дождевых осадков в...
Тип: Изобретение
Номер охранного документа: 0002656118
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d04

Способ неразрушающего контроля неисправностей в электрической сети

Изобретение относится к области неразрушающего контроля и может быть использовано для предупреждения пожара при неисправности в электрической сети. Способ неразрушающего контроля неисправностей в электрической сети включает соединение вводного щита через переходное сопротивление с...
Тип: Изобретение
Номер охранного документа: 0002656128
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d1d

Микромеханический гироскоп

Изобретение относится к гироскопам вибрационного типа, в частности к микромеханическим гироскопам, которые предназначены для измерения угловой скорости движения основания. Микромеханический гироскоп содержит подвижную массу на двухосном резонансном подвесе, неподвижное основание, подвижные и...
Тип: Изобретение
Номер охранного документа: 0002656119
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d35

Способ определения концентрации кремния в воде

Изобретение относится к определению концентрации кремния в воде, а именно к определению кремния в присутствии гуминовых веществ, и может быть использовано в технологии очистки подземных и поверхностных вод от кремния как для технических, так и для питьевых целей. Заявленный способ определения...
Тип: Изобретение
Номер охранного документа: 0002656121
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d3d

Способ оценки радоноопасности участков застройки

Изобретение относится к измерению интенсивности альфа-излучения радона с поверхности грунтов и может быть использовано для оценки радоноопасности территорий застройки. Способ оценки радоноопасности участков застройки заключается в том, что в основании фундамента строящегося здания на дне...
Тип: Изобретение
Номер охранного документа: 0002656131
Дата охранного документа: 31.05.2018
Показаны записи 151-151 из 151.
05.02.2020
№220.017.fe44

Интегрированный реабилитационный комплекс

Изобретение относится к медицинской технике, а именно к реабилитационным кроватям и к транспортным средствам для самостоятельного перемещения лиц с ограниченными возможностями, и направлено на упрощение процесса самостоятельного перемещения лиц с ограниченными возможностями из инвалидной...
Тип: Изобретение
Номер охранного документа: 0002713076
Дата охранного документа: 03.02.2020
+ добавить свой РИД