×
29.12.2017
217.015.f603

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение представляет собой способ переработки жидких радиоактивных отходов и относится к области охраны окружающей среды. Cпособ переработки жидких радиоактивных отходов, содержащих дисперсную фазу, заключается в выделении дисперсной фазы. Перед выделением дисперсной фазы в исходные жидкие радиоактивные отходы добавляют жидкость, нерастворимую в исходных жидких радиоактивных отходах и превышающую их по плотности. Выделение дисперсной фазы проводят центрифугированием. Технический результат – повышение уровня безопасности проведения переработки жидких радиоактивных отходов.

Изобретение относится к области охраны окружающей среды, в частности к способам переработки и кондиционирования жидких радиоактивных отходов.

На производствах и в исследовательских лабораториях, где проводятся работы с радиоактивными материалами, нарабатываются жидкие радиоактивные отходы (ЖРО), Согласно действующим санитарным правилам (ОСПОРБ 99/2010 пункт 3.12.10), ЖРО следует концентрировать и переводить в твердые радиоактивные отходы (ТРО) на объекте, где они образуются, или в организациях по обращению с радиоактивными отходами. В ряде случаев ЖРО содержат нерастворимые мелкодисперсные твердые компоненты, находящиеся во взвешенном состоянии. При этом радиационную опасность могут представлять как дисперсионная среда, так и находящаяся в ней нерастворимая дисперсная фаза. В ряде случаев требуется проведение предварительного разделения компонентов ЖРО для проведения последующей утилизации. Необходимость разделения фаз становится особенно очевидной в случаях, когда твердая фаза содержит радиоактивные элементы, обладающие высокоэнергетичным излучением, вызывающим значительный радиолиз жидкой фазы, сопровождающийся выделением водорода при хранении. Основными способами разделения жидкости и распределенных в ней нерастворимых примесей являются фильтрование и химическое связывание дисперсной фазы с последующим отделением образовавшегося осадка. Одним из часто встречающихся случаев рассматриваемых ЖРО являются отходы минеральных масел или водно-масляных эмульсин, содержащих в своем составе нерастворимые механические примеси. ЖРО минеральных масел часто образуются в вакуумных насосах при работе на технологическом оборудовании с порошками радиоактивных материалов. ЖРО эмульсий образуются при механической обработке радиоактивных материалов.

Существует много способов переработки и кондиционирования ЖРО минеральных масел. Можно выделить целое направление способов, при реализации которых для отверждения масла используются смеси, содержащие в различных пропорциях сорбенты и связующие материалы: гипс, цемент, и др. Например, авторы [Knieper J., Printz Н., Wolfe R. A contribution to the problem of solidification of medium and low radioactive liquid wastes. - Atomkernenegrie. 1977, Bd 30, N 1. S. 11] предлагают использовать смесь гипса и пемзы в объемном соотношении 1:1 как в чистом виде, так и с добавлением воды в различных пропорциях. Существенным недостатком данного способа является то, что вакуумное масло не растворяется в отвердителе, а заполняет поры сорбента, в которых по-прежнему будет находиться в жидком состоянии. Наличие в масле мелкодисперсных радиоактивных частиц будет определять выделение из конечного блока водорода, образующегося при радиолизе масла в процессе хранения.

При реализации другого подхода переработки и кондиционирования ЖРО минеральных масел проводится отделение твердой фазы. Например, авторы работы (патент RU 2560407, G21F 9/04, опубл. 20.08.2015) предлагают способ, заключающейся в том, что в жидкие радиоактивные отходы добавляют сорбент, в качестве которого используют слоистый титанат гидразина и/или синтетический титаносиликат иванюкит, перемешивают, отстаивают до образования стабильного осадка и прозрачного раствора, фильтруют или декантируют, контролируют гамма- и/или бета-активность полученного раствора, проводят термическую обработку осадка, насыщенного радионуклидами, с получением керамической матрицы.

Сущность другого способа дезактивации эксплуатационных масел от радиоактивных загрязнений (патент RU 2125745, G21F 9/12, опубл. 27.01.1999) состоит в последовательном введении в нагретое до 80°С масло щелочного перманганата калия и ферроцианидного коллектора при объемном соотношении последнего и масла 0,5:5,0 с образованием коагулянта и последующем отделении радиоактивного осадка декантацией. Обработанное данным способом масло можно возвращать в производственный цикл.

Авторы (патент RU 2069394, G21F 9/12, опубл. 20.11.1996) предлагают способ очистки эксплуатационных масел от радионуклидов, заключающийся в том, что в масло вводят раствор щелочного перманганата, затем добавляют к нему раствор ферроцианидной смеси. Ферроцианидную смесь готовят путем смешивания 0,5-1% раствора K4[Fe(CN)6]⋅3H2O и 0,5-1% раствора Ni(NO3)2⋅6H2O, с последующим отделением осадка.

Недостатки известных способов:

- предложенные в известных способах химические реагенты для связывания и осаждения дисперсной фазы из ЖРО возможно использовать только для кондиционирования конкретных видов ЖРО;

- при реализации данных способов не происходит полного выделения дисперсной фазы из ЖРО, а осуществляется концентрирование;

- использование фильтров ограничено их пропускной способностью и появляются проблемы с дальнейшей утилизацией этих фильтров, содержащих помимо отфильтрованных твердых частиц и жидкую фазу первоначальных ЖРО.

Наиболее близким по назначению к заявляемому является способ, описанный в патенте [JP 3129841 В2, G21F 9/14, опубл. 31.01.2001]. Авторы предлагают высокоактивную смазочно-охлаждающую жидкость для шлифования или высокоактивное минеральное масло, например масло из роторного насоса, пропускать сквозь стеклянный фильтр, задерживающий радиоактивные вещества. Полученное низкоактивное отработанное масло отверждают по методу отверждения пищевых жиров, например с использованием 1,2-гидроксистеарина в качестве отвердителя. Масло, отвержденное таким методом, устойчиво при комнатной температуре и при температурных колебаниях как во время транспортировки вне помещения, так и при длительном хранении в открытом помещении. Как полагают авторы, отвержденное масло можно сжигать в печи, чтобы сократить его объем, без образования вредных газов и без повреждения печи.

Предлагаемый способ имеет ряд недостатков:

- при его реализации не удается полностью выделить мелкодисперсные частицы радиоактивных материалов из ЖРО - размер удаляемых частиц определяется пропускной способностью используемого фильтра;

- при проведении работ образуются ЖРО, которые не всегда можно сжигать, следовательно, возникает необходимость их отверждения для последующей утилизации;

- возникает потребность в дополнительной утилизации отработанных стеклянных фильтров, пропитанных маслом, при этом необходимо учитывать образование водорода в результате процесса радиолиза масла;

- фильтры имеют ограниченный ресурс работы и не подлежат регенерации;

- процесс проводится на технологической установке, обеспечивающей перепад давления на фильтре, после проведения работ требуется дезактивация элементов установки, при этом дополнительно образуются РАО и увеличиваются радиационные риски для персонала.

Задачей заявляемого изобретения является повышение безопасности проведения способа отверждения ЖРО, содержащих дисперсную фазу, сокращение времени, уменьшение затрат и упрощение технологии его реализации.

При использовании изобретения достигается следующий технический результат:

- кондиционирование ЖРО по заявленному способу может проводиться в любых лабораторных или производственных условиях без использования высокотехнологичного специализированного оборудования;

- исключается необходимость хранения жидких радиоактивных отходов на местах их образования и транспортировки к месту переработки и/или захоронения, что повышает радиационную безопасность производства;

- после отделения твердой фазы жидкая фаза ЖРО может быть возвращена в технологический цикл, в результате чего уменьшаются объемы отходов производства, подлежащих захоронению;

при реализации заявленного способа объемы водорода, образующегося в результате радиолиза при хранении отходов, сводятся к минимуму, что освобождает от необходимости принятия дополнительных мер безопасности;

- процесс проводится в герметичных емкостях, после разделения жидкая фаза, содержащая твердые радиоактивные частицы, отверждается непосредственно в рабочей емкости, что сводит к минимуму образование вторичных ЖРО.

Для решения указанной задачи и достижения технического результата предлагается способ переработки ЖРО, содержащих дисперсную фазу, заключающийся в выделении дисперсной фазы, отличающийся тем, что перед выделением дисперсной фазы в исходные жидкие радиоактивные отходы добавляют жидкость, нерастворимую в исходных жидких радиоактивных отходах и превышающую их по плотности, а выделение дисперсной фазы проводят центрифугированием.

После добавления в исходные жидкие радиоактивные отходы нерастворимой в них жидкости и превышающей их по плотности осуществляют центрифугирование, в результате происходит разделение жидкостей (исходной и добавленной) из-за разности плотностей, а дисперсные частицы радиоактивных материалов из исходной жидкой фазы перемещаются в добавленную жидкость и происходит их концентрирование в жидкости с большей плотностью. Жидкость, добавляемую в исходные ЖРО, выбирают таким образом, чтобы из нее можно было легко выделить радиоактивную компоненту, например, выпариванием жидкости или отвердить для перевода в ТРО с использованием доступных технологий. Жидкую фазу исходных ЖРО, очищенную от дисперсных частиц, при сохранении ей эксплуатационных характеристик возвращают в технологический цикл. В противном случае по результатам радиационного контроля утилизируют или кондиционируют и переводят в ТРО согласно заранее выбранной схеме.

Предлагаемый способ можно применять при переработке широкой номенклатуры различных РАО. Для реализации предлагаемого способа не требуется специализированное высокотехнологичное оборудование (специальные сепараторы, многоступенчатые фильтры и т.д.). Переработку ЖРО по предлагаемому способу можно проводить в герметичных емкостях, что позволяет полностью исключить контакт ЖРО с окружающей средой и существенно повысить уровень безопасности проводимых работ. В ходе проведения работ по переработке не происходит радиационного загрязнения основного технологического оборудования, а значит, отпадает необходимость периодической дезактивации или замены всего технологического оборудования или отдельных элементов. Компоненты, получаемые в результате переработки РАО по предлагаемому способу, можно безопасно утилизировать с использованием известных технологий. Реализация предлагаемого способа возможна в лабораторных условиях на месте образования ЖРО. В результате не требуются затраты на перевозку ЖРО в специализированные предприятия по переработке ЖРО. Процесс проводится с соблюдением всех норм радиационной безопасности и не требует значительных капитальных вложений и больших затрат на эксплуатацию и обслуживание.

Практическая отработка способа

Для проведения модельных испытаний по отработке технологии, предназначенной для обращения с радиоактивными отходами, согласно [Федеральные нормы и правила в области использования атомной энергии «Критерии приемлемости радиоактивных отходов для захоронения» НП 093-14.] использовались нерадиоактивные материалы. Для проведения модельных испытаний использовали вакуумное масло ВМ-1С (ТУ 38.1011187-88). В качестве добавляемой жидкости была выбрана дистиллированная вода, как материал, удовлетворяющий предъявляемым требованиям (имеет большую, чем масло плотность и практически не растворяется в ней). Далее, в пробу масла массой 50 г добавили 0,1 г порошка гидрида титана и тщательно перемешали. Полученная смесь имела темно-серый цвет и являлась визуально непрозрачной при толщине слоя ~1 см. От полученной пробы отобрали две пробы массой по 3 г и поместили их в пластиковые пробирки объемом 10 cм3. Далее в пробирки добавили по 3 мл дистиллированной воды и перемешали встряхиванием. Пробирки с полученной смесью центр и фугировали в центрифуге ЦЛС - 3 при 5000 об/мин в течение 5 мин. После этого при визуальном осмотре было выявлено, что произошло разделение масла и воды, а порошок гидрида титана перешел из масла в воду и сконцентрировался в донной части пробирок. Следует отметить, что масло приобрело прозрачность, визуально сопоставимую с первоначальной. Далее, из каждой пробирки отобрали по 2/3 частей масла в отдельную емкость, добавляли новую порцию масла, смешанного с порошком гидрида титана, и проводили центрифугирование по описанной ранее схеме. После перевода порошка гидрида гитана в воду из всей предварительно подготовленной масляной пробы были проведены работы по финальному разделению воды и масла. Для этой цели пробирки, в которых находилась вода с порошком гидрида титана и остатки очищенного масла, выдерживали при температуре минус 15°С в течение 20 мин до полного перехода воды в состояние льда и иммобилизации в нем выделенного из масляной смеси порошка. Масло, оставшееся в жидком состоянии, было удалено из пробирок. После нагрева до комнатной температуры водная фракция, полученная в результате разделения, была отверждена непосредственно в пробирке. Воду отвердили с использованием порошков MgO и KН2РО4, взятых в соотношении, необходимом для образования кристаллогидрата состава KMgPO4×6H2O. Очищенное масло отвердили с помощью парафина (ГОСТ 23683-89) в соответствий с [патент РФ 2589040, G21F 9/16, опубл. 10.07.2016].

Способ переработки жидких радиоактивных отходов, содержащих дисперсную фазу, заключающийся в выделении дисперсной фазы, отличающийся тем, что перед выделением дисперсной фазы в исходные жидкие радиоактивные отходы добавляют жидкость, нерастворимую в исходных жидких радиоактивных отходах и превышающую их по плотности, а выделение дисперсной фазы проводят центрифугированием.
Источник поступления информации: Роспатент

Показаны записи 501-510 из 819.
24.05.2019
№219.017.5df5

Параметрический генератор света

Изобретение относится к лазерной технике. Параметрический генератор света содержит положительный нелинейный оптический кристалл, установленный с возможностью вращения относительно направления накачки в держателе из теплопроводного материала и связанный со средством его термостабилизации....
Тип: Изобретение
Номер охранного документа: 0002688860
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.5dfc

Установка для моделирования ударной механической нагрузки с регулируемыми характеристиками

Изобретение относится к испытательной технике. Установка содержит устройство формирования внешнего ударного воздействия и контейнер, снабженный держателем объекта исследования, позволяющим изменять положение объекта исследования для регулирования характеристик ударной нагрузки, при этом...
Тип: Изобретение
Номер охранного документа: 0002688875
Дата охранного документа: 22.05.2019
29.05.2019
№219.017.6213

Приемная магнитная антенна

Изобретение относится к области радиоэлектроники и может быть использовано в качестве приемных антенн при создании радиоприемных устройств. Техническим результатом предлагаемого изобретения является увеличение действующей высоты магнитной антенны при одновременном расширении полосы частот...
Тип: Изобретение
Номер охранного документа: 0002687849
Дата охранного документа: 16.05.2019
29.05.2019
№219.017.62e2

Устройство перемещения и вращения подложкодержателя

Изобретение относится к устройствам для нанесения покрытий в вакууме и позволяет изменять расположение покрываемой детали относительно источника распыляемого или испаряемого материала с сохранением осевого вращения детали - подложки. Устройство состоит из опорного фланца 1, в котором выполнены...
Тип: Изобретение
Номер охранного документа: 0002688353
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.647f

Способ формирования плазменного слоя в плазменных установках коаксиального типа и устройство для его осуществления

Изобретение относится к сильноточной импульсной технике и может быть использовано в электрофизических установках для получения мощных электромагнитных импульсов. В предлагаемом способе разделяют аксиальный поток плазмы на совокупность цилиндрических плазменных слоев, выводимых радиально в...
Тип: Изобретение
Номер охранного документа: 0002295205
Дата охранного документа: 10.03.2007
29.05.2019
№219.017.65ac

Клистронный генератор

Изобретение относится к технике СВЧ, может быть использовано при разработке мощных источников сверхвысокочастотного излучения для целей радиолокации, навигации и техники ускорителей элементарных частиц. Клистронный генератор содержит систему формирования магнитного поля, подключенные к...
Тип: Изобретение
Номер охранного документа: 0002396632
Дата охранного документа: 10.08.2010
29.05.2019
№219.017.6881

Взрывозащитная камера

Изобретение относится к средствам обеспечения безопасности взрывных работ и может быть использовано при создании взрывных камер и сооружений, предназначенных для герметичной локализации продуктов взрыва при испытательных работах и в аварийных ситуациях. Взрывозащитная камера содержит...
Тип: Изобретение
Номер охранного документа: 0002450243
Дата охранного документа: 10.05.2012
06.06.2019
№219.017.73fe

Устройство для определения чувствительности энергетического материала к трению ударного характера

Изобретение относится к области исследования или анализа энергетических материалов (ЭМ) путем определения их физических свойств, а именно, к устройствам для определения характеристик чувствительности ЭМ к трению ударного характера. Заявляемое устройство содержит расположенные в корпусе напротив...
Тип: Изобретение
Номер охранного документа: 0002690523
Дата охранного документа: 04.06.2019
06.06.2019
№219.017.7436

Коллектор с рекуперацией энергии свч прибора

Изобретение относится к области электронной техники, а именно к коллекторам сверхвысокочастотных (СВЧ) приборов О-типа с рекуперацией остаточной энергии электронного пучка. Коллектор с рекуперацией энергии СВЧ прибора содержит металлический цилиндрический корпус с закрытым торцом, внутренняя...
Тип: Изобретение
Номер охранного документа: 0002690530
Дата охранного документа: 04.06.2019
07.06.2019
№219.017.74d8

Способ получения и обработки изображений, сформированных с помощью протонного излучения

Использование: для протонной радиографии. Сущность изобретения заключается в том, что в камере для размещения объекта исследования сначала размещают тест-объект, который представляет собой подложку с одинаковыми реперными отметками, например стальными шарами, в узлах ортогональной решетки и...
Тип: Изобретение
Номер охранного документа: 0002690713
Дата охранного документа: 05.06.2019
Показаны записи 311-312 из 312.
20.05.2023
№223.018.66d5

Порошковый материал с высокой теплопроводностью

Изобретение относится к области металлургии, а именно к порошковым материалам на основе алюминиевых сплавов, применяемых для изготовления деталей методами аддитивных технологий, в том числе методом селективного лазерного сплавления. Порошковый алюминиевый материал для изготовления деталей с...
Тип: Изобретение
Номер охранного документа: 0002752489
Дата охранного документа: 28.07.2021
16.06.2023
№223.018.7c16

Порошковый алюминиевый материал

Изобретение относится к порошковой металлургии, в частности к порошковым алюминиевым материалам для изготовления деталей с использованием аддитивных технологий, в том числе методом селективного лазерного синтеза. Порошковый алюминиевый материал получен газовым распылением и содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002744075
Дата охранного документа: 02.03.2021
+ добавить свой РИД