×
29.12.2017
217.015.f54d

Результат интеллектуальной деятельности: Капиллярно-пористый электрод для магнитогидродинамических плазменных устройств

Вид РИД

Изобретение

№ охранного документа
0002637816
Дата охранного документа
07.12.2017
Аннотация: Изобретение относится к энергетике и может использоваться для преобразования энергии в магнитогидродинамических (МГД) плазменных устройствах, к которым относятся МГД генераторы электрической энергии и МГД ускорители плазменных сред. Техническим результатом является создание капиллярно-пористых электродов для магнитогидродинамических плазменных устройств, не подверженных деградации и возобновляемых за счет пополнения жидкого металла из резервного объема, что увеличивает их ресурс. Для этого предложен капиллярно-пористый электрод, состоящий из замкнутого корпуса с расплавом металла, поверхность которого, обращенная к плазме, выполнена из волокнистого материала в виде пористых матов из металлических волокон металла с температурой плавления выше температуры плавления металла расплава, при этом корпус соединен с резервной емкостью с расплавом металла. Капиллярно-пористые маты выполнены из металлического войлока или представляют собой многослойную решетку. Металл расплава, металл пористого мата и эффективные размеры его пор выбирают из условия необходимой подачи расплава к поверхности мата за счет капиллярных сил. 3 з.п. ф-лы, 2 ил.

Использование: в магнитогидродинамических (МГД) плазменных устройствах (далее МГД преобразователь), к которым относятся МГД генераторы электрической энергии (далее МГД генератор) и МГД ускорители плазменных сред (далее МГД ускоритель).

Наибольшему разрушению подвержены огневые стенки магнитогидродинамических плазменных устройств, контактирующие с плазмой, состоящие из изолирующей стенки и токосъемных проводящих электродов. Для стационарных и квазистационарных магнитогидродинамических плазменных преобразователей энергии и ускорителей максимальную эрозию испытывают токосъемные электроды.

Мощность на единицу объема МГД преобразователя пропорциональна проводимости газа α. Проводимость газа обеспечивается за счет ионизации присадок, содержащих щелочные металлы, и для хорошей проводимости нужна как можно более высокая температура. Приэлектродный, более холодный слой плазмы имеет меньшую проводимость, и прохождение тока через приэлектродный слой возможно в следующих режимах: диффузионном, микродуговом с множеством микродуг, и - при достаточно больших токах - в режиме контракции тока и большой дуги, вызывающей эрозию электродов. Для преодоления этого недостатка необходимо повысить температуру электродов и приэлектродного пограничного слоя, и тем самым увеличить проводимость этого слоя. Ведутся поиски жаропрочных материалов, но эти работы направлены на поиск материалов для твердых электродов, которые имеют ограниченный, и при больших мощностях, весьма короткий (десятки минут и меньше) срок работы.

В отличие от твердотельных электродов капиллярно-пористые электроды, наполненные жидким металлом, могут быть возобновляемыми за счет пополнения жидкого металла из резервного объема. При этом свойства электрода не деградируют.

Имеются патенты, в которых предлагается увеличить срок работы электродов с помощью специальной конструкции электрода, содержащей керамику на основе оксидов металла (патенты №1790025, 1376898, 1698941), с помощью перемещения дуги по электроду (патент №799683).

Известен также патент №2522702 «Катод плазменного ускорителя», в котором предлагается конструкция катода для плазменного ускорителя, представляющего собой систему полых катодов, образуемых набором вольфрамовых проволок, внутри которых ионизуется рабочий газ. Капиллярные силы не используются.

Известен патент №2051430 «Дивертор термоядерного реактора токамака», в котором предлагается использовать выполненные из металлических волокон капиллярно-пористые маты, каждый из которых непосредственно соединен с емкостью, заполненной жидким литием. Однако патент №2051430 конструктивно отличается от нашего предложения и предназначен для использования в других целях. В патенте №2051430 в качестве жидкого металла заявлен только литий. Применение лития в качестве наполняющего маты жидкого металла невозможно в МГД преобразователях, использующих газ, содержащий кислород, ввиду быстрого окисления (горения) лития. В случае использования газа, содержащего кислород, необходимо использовать металлы, у которых энтальпия окислов мала, такие как медь или чугун, и которые мало окисляются. В нашем предложении в общем случае возможен широкий выбор жидкого металла, подбор жидкого металла осуществляется конкретно для данного МГД преобразователя и должен опираться на такие требования, как: коррозионная стойкость при воздействии потока данного ионизованного газа, смачивание с материалом пористой матрицы, технологические особенности использования этих металлов и безопасность.

Наиболее близкий (прототип) к нашему патент №1804688 предлагает «электрод МГД генератора, включающий выходящий на огневую поверхность керамический сосуд с металлическим расплавом и электрический контакт, соединяющий металлический расплав с внешней электрической цепью, отличающийся тем, что, с целью повышения эффективности преобразования энергии и увеличения ресурса, в сосуд, частично заполненный металлическим расплавом, введен волокнистый керамический материал, обладающий свойством смачиваемости по отношению к жидкому шлаку и металлическому расплаву, причем свободная поверхность волокнистого материала со стороны канала расположена на одном уровне со стенками сосуда». Этот патент, как и указанные выше, предлагает увеличить срок работы электрода, но не предлагает возобновляемый электрод. В частности, в предложении патента 1804688 наибольшую нагрузку несет электрический контакт, соединяющий металлический расплав с внешней электрической цепью. Расплавленный металл служит для равномерного распределения тока по огневой поверхности.

Техническим результатом, на которое направлено изобретение, является создание капиллярно-пористых электродов для магнитогидродинамических плазменных устройств, не подверженных деградации и возобновляемых за счет пополнения жидкого металла из резервного объема, что увеличивает его ресурс.

Для достижения указанного результата предложен капиллярно-пористый электрод для магнитогидродинамических (МГД) плазменных устройств: МГД генераторов электрической энергии и МГД ускорителей плазменных сред, состоящий из корпуса с расплавом металла с размещенным в нем волокнистым материалом, при этом поверхность замкнутого корпуса, обращенная к плазме, выполнена из волокнистого материала в виде пористых матов из металлических волокон металла с температурой плавления выше температуры плавления металла расплава, при этом корпус соединен с резервной емкостью с расплавом металла.

Кроме того:

- капиллярно-пористые маты выполнены из металлического войлока,

- капиллярно-пористые маты представляют собой многослойную решетку,

- металл расплава, металл пористого мата и эффективные размеры его пор выбирают из условия необходимой подачи расплава к поверхности мата за счет капиллярных сил.

На фиг. 1 показана схема капиллярно-пористого электрода: 1 - корпус электрода, 2 –капиллярно-пористый мат, 3 - жидкий металл, 4 - резервный объем жидкого металла, 5 - отвод тока.

На фиг. 2 показаны варианты возможного выполнения капиллярно-пористых матов: а - металлический войлок, б - многослойная решетка, в - многослойная решетка, заполненная жидким металлом.

Конструкция электрода с капиллярно-пористой системой, заполненной жидким металлом, разрабатывается конкретно для данного МГД преобразователя. Но, в общем, принципиальная схема электрода с капиллярно-пористой системой, заполненной жидким металлом, выглядит следующим образом: замкнутый металлический корпус представляет собой коробку 1, одна сторона которой, обращенная к плазме, сделана из пористого мата 2, заполненного жидким металлом и контактирующего с объемом жидкого металла 3, который пополняется из резервного объема с жидким металлом 4.

Принцип работы электрода следующий. Электрод поддерживается при высокой температуре как за счет независимого внешнего нагрева (источник нагрева на фиг. не показан), так и за счет протекающего через него тока, обеспечивающей хорошую ионизацию и проводимость приэлектродного слоя.

Рабочий интервал температур, между температурой плавления расплава металла и температурой его кипения, должен включать температуры, при которых рабочее вещество плазмы ионизовано согласно формуле Саха. За счет капиллярных сил поверхность мата (фиг. 2) покрыта слоем жидкого металла, который и контактирует с плазмой. Капиллярные силы поднимают жидкий металл к поверхности, контактирующей с плазмой, и компенсируют потери жидкого металла за счет испарения или других видов эрозии.

Работоспособность электрода обеспечивается следующими факторами. Капиллярное давление, поднимающее жидкий металл, равно Рс=2αcosθ/r, где α - поверхностное натяжение жидкого металла; θ - краевой угол смачивания жидкого металла и металла капиллярного мата; r - эффективный радиус пор. Отсюда следует, что жидкий металл должен хорошо смачивать металл капиллярного мата, и диаметр проволоки, из которой изготавливаются маты, и расстояние между проволочками в матах должны быть минимальным возможным, на практике не превышать нескольких десятков микрон.

Для долговечности электрода требуется металлургическая совместимость расплавленного металла и металла, из которого выполнен мат электрода.

Расход жидкого металла определяется его испарением. Для МГД ускорителя испарение жидкого металла с электрода увеличивает плотность ускоряемой плазмы, и является положительным фактором, который при соответствующем выборе режима может быть весьма существенным. Для уменьшения расхода жидкого металла необходима его химическая совместимость с химическими элементами плазмы.

На практике это могут быть легкоплавкие металлы, например, Li, Hg, Cs, или металлы с более высокими температурами плавления и кипения, например, чугун или медь. Материалами для изготовления пористых матов могут быть тугоплавкие металлы, например, вольфрам, молибден.

Выбор конкретных размеров и материалов электрода обусловлен реальными условиями эксплуатации.

Таким образом, предлагаемый электрод является возобновляемым, не подвержен деградации, и тем самым увеличивается ресурс его работы.


Капиллярно-пористый электрод для магнитогидродинамических плазменных устройств
Капиллярно-пористый электрод для магнитогидродинамических плазменных устройств
Источник поступления информации: Роспатент

Показаны записи 241-250 из 261.
05.06.2020
№220.018.247a

Энергетическая установка с топливным элементом для арктической зоны

Изобретение относится к области электротехники, а именно к устройствам для получения электроэнергии прямым преобразованием энергии топлива (водорода), и может быть использовано в условиях арктической зоны эксплуатации при резко отрицательных температурах окружающей среды. Энергетическая...
Тип: Изобретение
Номер охранного документа: 0002722751
Дата охранного документа: 03.06.2020
07.06.2020
№220.018.24e5

Зарядная система для электрического транспорта

Изобретение относится к зарядной системе для электрического транспорта, характеризующейся, по меньшей мере, одним распределительным газопроводом, соединяющим магистральный газопровод, как минимум, с одним топливным элементом, который последовательно соединен посредством токопроводящих линий с...
Тип: Изобретение
Номер охранного документа: 0002722894
Дата охранного документа: 04.06.2020
13.06.2020
№220.018.26b6

Способ пайки втсп лент и устройство для его реализации

Изобретение относится к электротехнике, к области создания сверхпроводящих магнитных систем из ленточных сверхпроводников, особенно из лент высокотемпературных сверхпроводников (ВТСП - 2G). Сущность: способ пайки ВТСП лент заключается в последовательной пайке накладки из ВТСП ленты к концам...
Тип: Изобретение
Номер охранного документа: 0002723142
Дата охранного документа: 09.06.2020
13.06.2020
№220.018.26c5

Способ создания материалов на основе германена euge и srge с высокой подвижностью носителей заряда

Изобретение относится к получению материалов на основе германена EuGe и SrGe с высокой подвижностью носителей заряда, которые могут использоваться при создании наноэлектронных устройств. Атомарный поток европия или стронция с давлением (0,1÷100)⋅10 Торр осаждают на предварительно очищенную...
Тип: Изобретение
Номер охранного документа: 0002723125
Дата охранного документа: 08.06.2020
17.06.2020
№220.018.2750

Устройство загрузки жидкого ядерного топлива в ядерный гомогенный реактор

Изобретение относится к дополнительному оборудованию ядерного гомогенного реактора растворного типа, предназначенного, например, для получения медицинских изотопов. Для достижения этого технического результата предложено устройство загрузки жидкого ядерного топлива, представляющее собой систему...
Тип: Изобретение
Номер охранного документа: 0002723473
Дата охранного документа: 11.06.2020
24.06.2020
№220.018.29a3

Способ регистрации реакторных антинейтрино

Изобретение относится к способам регистрации реакторных антинейтрино сцинтилляционным методом. Сущность изобретения заключается в том, что регистрацию антинейтрино осуществляют по реакции обратного бета-распада на протонах, при котором в слоях сегментированного гадолиний-содержащего...
Тип: Изобретение
Номер охранного документа: 0002724133
Дата охранного документа: 22.06.2020
24.06.2020
№220.018.29f7

Автономная космическая энергетическая установка

Изобретение относится к энергосистемам на основе прямого преобразования тепловой энергии в электрическую и может быть использовано, в частности, для энергоснабжения лунной базы. Установка содержит два замкнутых контура жидкометаллического теплоносителя (ЖМТ). Контур горячего ЖМТ включает в себя...
Тип: Изобретение
Номер охранного документа: 0002724206
Дата охранного документа: 22.06.2020
29.06.2020
№220.018.2c89

Способ косвенного измерения отказоустойчивости облучаемых испытательных цифровых микросхем, построенных различными способами постоянного поэлементного резервирования, и функциональная структура испытательной микросхемы, предназначенной для реализации этого способа

Изобретение относится к способам косвенного измерения отказоустойчивости облучаемых цифровых испытательных микросхем, построенных различными способами постоянного поэлементного резервирования, и к испытательным микросхемам для реализации этих способов измерения. Технический результат - создание...
Тип: Изобретение
Номер охранного документа: 0002724804
Дата охранного документа: 25.06.2020
21.07.2020
№220.018.34cd

Устройство для исследования энергетического спектра ионов плазмы

Изобретение относится к области измерений в физике плазмы и физике заряженных частиц. Технический результат - повышение точности регистрации спектра энергий потока ионов и последующего измерения потока ионов. Устройство для исследования энергетического спектра ионов плазмы содержит вакуумную...
Тип: Изобретение
Номер охранного документа: 0002726954
Дата охранного документа: 17.07.2020
21.07.2020
№220.018.34e1

Вакуумная камера термоядерного реактора

Изобретение относится к термоядерной технике, а именно к конструкциям вакуумной камеры и бланкета, которые являются элементами термоядерного реактора или демонстрационного термоядерного источника нейтронов (ДЕМО-ТИН). Для достижения этого результата предложена вакуумная камера термоядерного...
Тип: Изобретение
Номер охранного документа: 0002726940
Дата охранного документа: 17.07.2020
Показаны записи 151-152 из 152.
17.02.2018
№218.016.2aa3

Устройство для стационарной генерации ионного пучка

Изобретение относится к области создания ионных источников, предназначенных для работы инжекторов быстрых атомов водорода в стационарном режиме (атомные пучки большой мощности - до 2 мегаватт), которые могут использоваться для нагрева плазмы в магнитных ловушках. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002642852
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.3482

Способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей для проведения реакции переэтерификации

Изобретение относится к области биохимии. Предложен способ получения гранулированного биокатализатора на основе иммобилизованных клеток дрожжей. Способ включает наращивание биомассы дрожжей Yarrowia lipolytica ВКПМ Y-3600, отделение биомассы, лиофильную сушку биомассы, приготовление суспензии...
Тип: Изобретение
Номер охранного документа: 0002646104
Дата охранного документа: 01.03.2018
+ добавить свой РИД