×
29.12.2017
217.015.f502

Результат интеллектуальной деятельности: Порошковая полимерная композиция и способ её изготовления

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к порошковым термопластичным материалам на основе полиамидов, которые могут быть использованы в качестве расходного материала для аддитивного синтеза изделий методом селективного лазерного сплавления, порошкового связующего и компонента порошковых покрытий. Порошковую полимерную композицию получают растворением полиамида-12 в присутствии неорганического наполнителя, последующей кристаллизацией порошковой полимерной композиции из полученного раствора и отгонкой растворителя при пониженном давлении. Перед растворением полиамид-12 и неорганический наполнитель смешивают посредством экструзии. Полученный гранулят растворяют в системе полярный апротонный растворитель/спирт, содержащей 70-95 мас.% полярного апротонного растворителя и 5-30 мас.% спирта, с температурой кипения компонентов системы не менее 150°C. Композиция, полученная данным способом, содержит 60-99.9 мас.% полиамида-12 и 0,1-40 неорганического оксида. Способ обеспечивает снижение времени растворения полиамида-12 до менее 2 часов при получении полимерной композиции со средним размером частиц 60-72 мкм, насыпной плотностью 0,34-0,42 г/см и с максимумом интенсивности (пиком) температуры плавления не менее 180°C, а также исключение технологических стадий при повышенном давлении. 2 н. и 2 з.п. ф-лы, 3 табл., 5 пр.

Группа изобретений относится к области порошковых термопластичных материалов на основе полиамидов. Порошковая композиция может быть использована в качестве расходного материала для аддитивного синтеза изделий методом селективного лазерного сплавления (СЛС), порошкового связующего и компонента порошковых покрытий.

Известна порошковая полимерная композиция, содержащая 40-50% оксида алюминия и 60-50% полиамида-12 для СЛС марки Duraform. Способ получения данной композиции заключается в растворении порошкового полиамида-12 для СЛС марки Duraform в присутствии порошка Al2O3 с размером частиц ≈0,3 мкм при температуре 140°C в течение 15 минут в 9-кратном массовом избытке диметилсульфоксида (ДМСО) с последующим охлаждением раствора. При охлаждении раствора в осадок выпадает композиция, которую фильтруют, промывают этанолом и сушат в течение 24 часов при 80°C. Полученную композицию можно использовать в технологии СЛС. Порошковая композиция имеет размеры частиц от 2 до 105 мкм, имеющих разницу между пиками плавления и кристаллизации 26,6-27,3°C (статья «Preparation and indirect selective laser sintering of alumina/PA microspheres» K. Shahzad, J. Deckers, S. Boury, B. Neirinck, J.-P. Kruth, J. Vleugels // Ceramics International, 38, 2012, c. 1241-1247).

Недостатком описанной композиции и способа ее изготовления является использование в качестве исходного сырья дорогостоящего порошкового полиамида-12 марки Duraform.

Известна порошковая композиция на основе алифатических полиамидов, в структуре которых содержатся фрагменты, содержащие более 8 углеродных атомов между амидными группами в цепи: нейлон-6/12, нейлон-11, нейлон-12. В качестве наполнителя композиция содержит от 0,01 до 30 мас.% TiO2. Способ получения порошковой композиции основан на растворении полиамидов или их смесей в этаноле, содержащем бутанон-2 и 1% воды, в течение 5 часов при температуре 145°C с последующим осаждением композиции при температуре 109°C. Способ обеспечивает получение порошков для аддитивного синтеза изделий методом СЛС с насыпной плотностью 0,433-0,463 г/см3 и количеством частиц с размером в диапазоне 32-100 мкм не менее 92% (US 7148286 B2, 12.12.2006).

Наиболее близким аналогом предложенной полимерной порошковой композиции является композиция, применяемая в технологии СЛС, содержащая полиамид-12 или полиамид-1010, или полиамид-1212 и неорганические наполнители, представляющие собой порошки соединений, таких как: Al2O3, TiO2, ZrO2, SiO2, ZnO, CeO2, BN, B12C3 в количестве 1-60% от массы композиции. Способ получения порошковой композиции-прототипа заключается в растворении полиамида в присутствии неорганического наполнителя в пятикратном массовом избытке раствора этанола, содержащего бутанон-2 и воду, в течение 5 часов при температуре 145-155°C, кристаллизации порошковой композиции при температуре 130-110°C в течение 40-120 минут и дальнейшей отгонке растворителя при пониженном давлении. Способ позволяет получать порошки с насыпной плотностью 0,3-0,5 г/см3 и размером частиц в диапазоне 12-90 мкм (US 8232333 B2, 31.07.2012).

К недостаткам описанных выше методов можно отнести сложность аппаратурного оформления процесса. Температура кипения этанола при нормальном давлении составляет ≈78°C. Таким образом, для нагрева его в конденсированном состоянии до температур 145-155°C требуется повышенное давление. На основании литературных данных (А. Гордон, Р. Форд // Спутник химика. - М.: Мир, 1976 г.), нагрев этилового спирта до температуры 145-155°C возможен при давлении не менее 10 атм. Таким образом, для осуществления процессов, описанных в патентах US 8232333 B2 и US 7148286 B2, необходимо использовать оборудование, выдерживающее рабочее давление более 10 атм. Долгий цикл растворения полиамида (до 5 часов) влечет за собой большие энергозатраты. Кроме того, денатурированный этиловый спирт относится к категории легковоспламеняющихся жидкостей (ЛВЖ), а применение его на производстве может привести к социально опасным последствиям.

Технической задачей предложенной группы изобретений является получение порошковой полимерной композиции упрощенным способом со сниженной себестоимостью при сохранении ее физических и технологических свойств.

Техническим результатом предложенной группы изобретений является исключение технологических стадий при повышенном давлении, снижение времени растворения полиамида-12 до менее 2 часов при получении порошковой полимерной композиции со средним размером частиц 60-72 мкм, насыпной плотностью 0,34-0,42 г/см3 и с максимумом интенсивности (пиком) температуры плавления не менее 180°С.

Технический результат достигается предложенным способом получения порошковой полимерной композиции, включающим растворение полиамида-12 в присутствии неорганического наполнителя, кристаллизацию порошковой полимерной композиции из полученного раствора и отгонку растворителя при пониженном давлении, при этом перед растворением полиамид-12 и неорганический наполнитель, в качестве которого используют частицы неорганического оксида с размером не более 20 мкм, смешивают посредством экструзии, полученный гранулят растворяют в системе полярный апротонный растворитель диметилформамид (ДМФА), или диметилсульфоксид (ДМСО)/спирт этиленгликоль, или циклогексанол, содержащей 70-95 мас.% полярного апротонного растворителя и 5-30 мас.% спирта.

Предпочтительное содержание неорганического оксида в грануляте 0,1-40 мас.%.

Кристаллизацию порошковой полимерной композиции предпочтительно проводить при охлаждении раствора со скоростью не более 1,5°С/мин.

Также предложена порошковая полимерная композиция, изготовленная вышеописанным способом, содержащая 60-99,9 мас.% полиамида-12 и 0,1-40 мас.% неорганического оксида.

Использование в качестве основного компонента полиамида-12 обеспечивает температуру плавления порошковой композиции на уровне 181-200°С и достаточный температурный интервал - не менее 20°С между пиками плавления Тпл и кристаллизации Ткр, что способствует снижению усадки и сохранению стабильности размеров изделия, синтезируемого селективным лазерным сплавлением. Как правило, СЛС полимерных порошков проводят в интервале температур между точками кристаллизации и плавления полимера. Соблюдение этого требования обеспечивает размерную стабильность синтезируемого изделия.

Использование в качестве растворителя системы полярный апротонный растворитель/спирт с температурой кипения компонентов системы не менее 150°С вместо этанола, во-первых, ускоряет растворение полиамида-12 за счет наличия полярного апротонного растворителя, во-вторых, позволяет проводить процессы растворения полиамида-12 и кристаллизации композиции при нормальном давлении за счет выбранной температуры кипения компонентов, в-третьих, за счет наличия плохого растворителя, а именно спирта с температурой кипения не менее 150°С, наблюдается повышение насыпной плотности порошковой композиции до уровня 0,36-0,42 г/см3. Известно, что использование плохих растворителей имеет неоднозначное влияние на изменение насыпной плотности получаемых порошковых полимерных композиций: с одной стороны, в отличие от хороших растворителей они могут способствовать образованию менее эластичных частиц студня и тем самым создавать более рыхлую упаковку, с другой - они вызывают «микровысаживание» полимера из раствора, т.е. агрегацию макромолекул, что приводит к повышению плотности их упаковки (А.А. Тагер // Физикохимия полимеров. - М.: Химия, 1978 г., с. 495). Экспериментально установлено, что в случае растворения полиамида-12 наблюдается положительное влияние спиртов с температурой кипения не менее 150°С, таких как этиленгликоль или циклогексанол, взятых в качестве «плохих» растворителей, на увеличение насыпной плотности получаемой порошковой композиции.

Кроме того, добавление этих спиртов приводит к снижению температуры плавления порошковой композиции, что, возможно, связано с эффектом «холодной» кристаллизации, то есть выпадением частиц в аморфном состоянии вследствие «микровысаживания» и последующей кристаллизацией при более низкой температуре в процессе отгонки растворителя при пониженном давлении. При этом необходимое соотношение компонентов растворителя 70-95 мас.% полярного апротонного растворителя и 5-30 мас.% спирта объясняется следующим. В случае увеличения количества спирта более 30 мас.% время растворения гранулированного полиамида существенно увеличивается до 2-3 часов, а при дальнейшем увеличении количества спирта (более 50 мас.%) растворение полиамида-12 не наблюдается. При снижении содержания спирта менее 5 мас.% эффект увеличения насыпной плотности от его введения резко снижается.

Порошковый неорганический оксид с размером частиц не более 20 мкм выступает в качестве центра кристаллизации полиамида-12 из раствора. Количество оксида, размеры частиц, форма и природа их поверхности влияют на гранулометрический состав и насыпную плотность полимерной композиции. При увеличении размеров частиц более 20 мкм наблюдается образование полимерной порошковой композиции с размером частиц более 100 мкм, что является нежелательным для селективного лазерного сплавления (снижается точность синтеза изделий, ухудшается качество поверхности).

Снижение времени стадии растворения происходит за счет предварительной соэкструзии полиамида-12 и мелкодисперсного оксида, что облегчает набухание гранулята вследствие увеличения его пористости и облегчения диффузии растворителя в объем гранул. Время растворения композиции после экструзии снижается до 30-90 минут.

Полиамид-12 предпочтительно растворять в присутствии 0,1-40% неорганического оксида от массы композиции. При добавлении меньшего количества снижается количество центров кристаллизации, что отрицательно сказывается на качестве порошка вследствие спонтанной кристаллизации - появляются частицы с неровной поверхностью, увеличивается диапазон их размеров. При добавлении большего количества оксида затрудняется соэкструзия следствие существенного увеличения вязкости расплава.

На упаковку макромолекул в частицы также влияет скорость охлаждения при кристаллизации. При скорости охлаждения более 1,5°C наблюдается быстрый и неравномерный рост частиц, вследствие этого происходит снижение регулярности частиц, их разброс по размеру, возможно снижение насыпной плотности.

Примеры осуществления

Механическую смесь гранулированного полиамида-12 и неорганического оксида в количестве, указанном в таблице 1, перерабатывали на двухшнековом экструдере при температуре 220-240°C. Полученный гранулят и растворитель помещали в двухлитровую трехгорлую стеклянную колбу, оснащенную мешалкой, обратным холодильником и термометром. Колбу помещали в масляную баню и при перемешивании 60-100 оборотов в минуту при нагреве до температуры растворения полиамида-12 145°C смесь выдерживали до полного его растворения. Затем раствор охлаждали до комнатной температуры. По примерам 3-D и 7-D скорость охлаждения задавали 1,0 и 1,5°C в минуту соответственно.

После осаждения композиции растворители отгоняли при пониженном давлении.

Состав порошковых композиций представлен в таблице 1.

Состав растворителей представлен в таблице 2.

Средний диаметр частиц определяли при помощи анализа распределения диаметров Фере, выполненного с использованием сканирующего электронного микроскопа TESCAN VEGA 3XMU.

Насыпную плотность композиции измеряли по ГОСТ 11035.1-93.

Температуру фазовых переходов определяли в соответствии с ГОСТ P 55134-2012.

Свойства полученных порошковых композиций представлены в таблице 3.

Как видно из представленных данных, предложенный способ (примеры 3-E, 3-C, 3-D, 7-D, 3-F) обеспечивает получение порошковой полимерной композиции со средним размером частиц 60-72 мкм, насыпной плотностью 0,34-0,42 г/см3 и с максимумом интенсивности (пиком) температуры плавления не менее 180°C, при этом в процессе ее получения исключаются технологические стадии, связанные с работой при повышенном давлении, и снижается время растворения полиамида-12 (указанное в прототипе время растворения составляет 5 часов).

Отсутствие в растворителе спирта с температурой кипения более 150°C (примеры с составом растворителя A и B) приводит к снижению насыпной плотности.

При отсутствии в композиции мелкодисперсного неорганического оксида (пример 1-C) насыпная плотность остается на удовлетворительном уровне, однако средний диаметр частиц резко повышается.

При заданной скорости охлаждения раствора не более 1,5°C в минуту (примеры 3-D и 7-D) значения насыпной плотности получаются выше, нежели при более высоких скоростях.

Источник поступления информации: Роспатент

Показаны записи 291-300 из 368.
19.04.2019
№219.017.2dc0

Способ защиты стальных деталей машин от солевой коррозии

Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбиностроении, преимущественно для защиты деталей компрессора газотурбинного двигателя от солевой коррозии. Способ включает последовательное нанесение на поверхность детали...
Тип: Изобретение
Номер охранного документа: 0002344198
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dc6

Способ получения литых трубных изделий из сплавов на основе никеля и/или кобальта

Изобретение относится к области металлургической промышленности. Способ включает плавление шихтовых материалов и заливку расплава в предварительно нагретую литейную форму, осуществляемые в двухкамерной вакуумно-индукционной печи. Заливку литейной формы расплавом осуществляют со скоростью 20-50...
Тип: Изобретение
Номер охранного документа: 0002344019
Дата охранного документа: 20.01.2009
19.04.2019
№219.017.2dce

Способ получения алюминидного покрытия на поверхности изделия из жаропрочного сплава

Изобретение относится к металлургии и может быть использовано в авиационном и энергетическом турбиностроении для защиты лопаток турбин от высокотемпературного окисления и сульфидной коррозии. Размещают изделие и сплав на основе алюминия в зоне обработки. Создают вакуум в зоне обработки, подают...
Тип: Изобретение
Номер охранного документа: 0002348739
Дата охранного документа: 10.03.2009
19.04.2019
№219.017.2de0

Способ защиты от высокотемпературного окисления поверхности внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к способам получения алюминидных покрытий, и может быть использовано в авиационном и энергетическом турбиностроении для защиты от высокотемпературного окисления внутренней полости охлаждаемых лопаток турбин из безуглеродистых жаропрочных...
Тип: Изобретение
Номер охранного документа: 0002349678
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2de1

Состав для получения покрытия

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты деталей из сталей, никелевых и титановых сплавов от солевой и фреттинг-коррозии и контактного износа. Состав для получения покрытия на деталях,...
Тип: Изобретение
Номер охранного документа: 0002349681
Дата охранного документа: 20.03.2009
19.04.2019
№219.017.2e20

Керамический композиционный материал

Изобретение относится к керамическим композиционным материалам и может быть использовано в авиационной технике и машиностроении при изготовлении теплонагруженных деталей газотурбинных установок и двигателей газо-, нефтеперекачивающих, энергетических и транспортных систем и др., эксплуатируемых...
Тип: Изобретение
Номер охранного документа: 0002397969
Дата охранного документа: 27.08.2010
19.04.2019
№219.017.2e2a

Припой на основе никеля

Изобретение может найти применение при изготовлении деталей из деформированных и литых жаропрочных никелевых сплавов, в частности, для горячего тракта газотурбинных двигателей, таких как направляющие аппараты компрессоров и сопловые аппараты турбин. Припой имеет следующий состав, мас.%: Cr...
Тип: Изобретение
Номер охранного документа: 0002393074
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e2f

Способ получения отливок

Изобретение относится к литейному производству. Способ включает заливку расплава в форму с последующим его охлаждением, предварительную механическую обработку отливок. Для создания разрежения отливку подвергают вакуумной обработке в автоклаве. Затем отливку под давлением 0,1-0,8 МПа пропитывают...
Тип: Изобретение
Номер охранного документа: 0002393053
Дата охранного документа: 27.06.2010
19.04.2019
№219.017.2e73

Композиционный материал и изделие, выполненное из него

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стекломатриц, армированных углеродными волокнистыми наполнителями, используемым для изготовления теплонагруженных деталей, например бандажных колец, применяющихся в авиационной, космической технике...
Тип: Изобретение
Номер охранного документа: 0002310628
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.2ebd

Способ нанесения цинковых покрытий

Изобретение относится к области электрохимического нанесения покрытий, в частности к локальному осаждению цинковых покрытий на токопроводящую поверхность деталей, например, для ремонта поврежденных цинковых покрытий. Способ включает электролитическое натирание поверхности анодом, к которому...
Тип: Изобретение
Номер охранного документа: 0002389828
Дата охранного документа: 20.05.2010
Показаны записи 291-300 из 335.
08.05.2019
№219.017.48f9

Металлокерамический композиционный материал на основе интерметаллидной матрицы и способ его получения

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса. Металлокерамический композиционный материал с интерметаллидной матрицей на основе NiAl содержит, масс.%: Al...
Тип: Изобретение
Номер охранного документа: 0002686831
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4a54

Состав для удаления лакокрасочных покрытий с внешних металлических поверхностей

Изобретение относится к области материалов для лакокрасочной промышленности. Описан состав для удаления полимерных лакокрасочных покрытий с внешних металлических поверхностей, включающий растворитель метиленхлорид, загуститель, замедлитель испарения и разрыхлитель, который дополнительно...
Тип: Изобретение
Номер охранного документа: 0002686928
Дата охранного документа: 06.05.2019
18.05.2019
№219.017.5447

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение может быть использовано для получения деталей турбин авиационного и энергетического назначения. Устройство содержит вакуумную камеру, загрузочную шлюзовую камеру, направляющие для перемещения литейных форм, печь подогрева форм и плавильно-заливочную печь, расположенные в вакуумной...
Тип: Изобретение
Номер охранного документа: 0002267380
Дата охранного документа: 10.01.2006
18.05.2019
№219.017.5683

Полиимидное связующее для армированных пластиков, препрег на его основе и изделие, выполненное из него

Изобретение относится к области получения полиимидов, а именно к области получения полиимидного связующего для армированных пластиков. Полиимидное связующее представляет собой продукт взаимодействия диангидрида бензофенон-3,3′-4,4′-тетракарбоновой кислоты и м-фенилендиамина и модифицирующую...
Тип: Изобретение
Номер охранного документа: 0002394857
Дата охранного документа: 20.07.2010
18.05.2019
№219.017.56b8

Способ получения пористо-волокнистого металлического материала

Изобретение относится к способам получения пористых материалов из металлических волокон, а именно к способам получения волокнистых металлических материалов с высокой пористостью (до 95%) из жаростойких сплавов для звукопоглощающих конструкций горячего тракта газотурбинного двигателя на рабочие...
Тип: Изобретение
Номер охранного документа: 0002311262
Дата охранного документа: 27.11.2007
18.05.2019
№219.017.576d

Устройство для получения отливок из жаропрочных сплавов с монокристаллической структурой

Изобретение относится к области литейного производства. Устройство содержит керамическую форму, в основании которой выполнены затравочная полость с размещенной в ней монокристаллической затравкой, полость кристалловода и коническая стартовая полость, соединенная с полостью формы, образующей...
Тип: Изобретение
Номер охранного документа: 0002353471
Дата охранного документа: 27.04.2009
18.05.2019
№219.017.5826

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к созданию титановых сплавов, предназначенных для изготовления деталей и узлов авиакосмической и ракетной техники: баллонов, шпангоутов, лонжеронов, стрингеров, нервюр, деталей крепления и др. Сплав имеет следующий химический состав, мас.%: алюминий 4,3-6,8; ванадий...
Тип: Изобретение
Номер охранного документа: 0002304178
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5828

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой. Изделиями могут быть сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие детали ГТД...
Тип: Изобретение
Номер охранного документа: 0002304179
Дата охранного документа: 10.08.2007
18.05.2019
№219.017.5849

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к литейным интерметаллидным сплавам на основе NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с монокристаллической структурой, таким как рабочие и сопловые лопатки газотурбинных двигателей, используемых в авиационной промышленности. Сплав...
Тип: Изобретение
Номер охранного документа: 0002308499
Дата охранного документа: 20.10.2007
18.05.2019
№219.017.584a

Сплав на основе титана и изделие, выполненное из этого сплава

Изобретение относится к созданию титановых сплавов, предназначенных для использования в качестве конструкционного материала при изготовлении обшивки, лонжеронов, шпангоутов, фюзеляжа, крыльев, агрегатов и двигателей самолетов, работающих при повышенных температурах. Сплав на основе титана...
Тип: Изобретение
Номер охранного документа: 0002308497
Дата охранного документа: 20.10.2007
+ добавить свой РИД