×
29.12.2017
217.015.f502

Результат интеллектуальной деятельности: Порошковая полимерная композиция и способ её изготовления

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к порошковым термопластичным материалам на основе полиамидов, которые могут быть использованы в качестве расходного материала для аддитивного синтеза изделий методом селективного лазерного сплавления, порошкового связующего и компонента порошковых покрытий. Порошковую полимерную композицию получают растворением полиамида-12 в присутствии неорганического наполнителя, последующей кристаллизацией порошковой полимерной композиции из полученного раствора и отгонкой растворителя при пониженном давлении. Перед растворением полиамид-12 и неорганический наполнитель смешивают посредством экструзии. Полученный гранулят растворяют в системе полярный апротонный растворитель/спирт, содержащей 70-95 мас.% полярного апротонного растворителя и 5-30 мас.% спирта, с температурой кипения компонентов системы не менее 150°C. Композиция, полученная данным способом, содержит 60-99.9 мас.% полиамида-12 и 0,1-40 неорганического оксида. Способ обеспечивает снижение времени растворения полиамида-12 до менее 2 часов при получении полимерной композиции со средним размером частиц 60-72 мкм, насыпной плотностью 0,34-0,42 г/см и с максимумом интенсивности (пиком) температуры плавления не менее 180°C, а также исключение технологических стадий при повышенном давлении. 2 н. и 2 з.п. ф-лы, 3 табл., 5 пр.

Группа изобретений относится к области порошковых термопластичных материалов на основе полиамидов. Порошковая композиция может быть использована в качестве расходного материала для аддитивного синтеза изделий методом селективного лазерного сплавления (СЛС), порошкового связующего и компонента порошковых покрытий.

Известна порошковая полимерная композиция, содержащая 40-50% оксида алюминия и 60-50% полиамида-12 для СЛС марки Duraform. Способ получения данной композиции заключается в растворении порошкового полиамида-12 для СЛС марки Duraform в присутствии порошка Al2O3 с размером частиц ≈0,3 мкм при температуре 140°C в течение 15 минут в 9-кратном массовом избытке диметилсульфоксида (ДМСО) с последующим охлаждением раствора. При охлаждении раствора в осадок выпадает композиция, которую фильтруют, промывают этанолом и сушат в течение 24 часов при 80°C. Полученную композицию можно использовать в технологии СЛС. Порошковая композиция имеет размеры частиц от 2 до 105 мкм, имеющих разницу между пиками плавления и кристаллизации 26,6-27,3°C (статья «Preparation and indirect selective laser sintering of alumina/PA microspheres» K. Shahzad, J. Deckers, S. Boury, B. Neirinck, J.-P. Kruth, J. Vleugels // Ceramics International, 38, 2012, c. 1241-1247).

Недостатком описанной композиции и способа ее изготовления является использование в качестве исходного сырья дорогостоящего порошкового полиамида-12 марки Duraform.

Известна порошковая композиция на основе алифатических полиамидов, в структуре которых содержатся фрагменты, содержащие более 8 углеродных атомов между амидными группами в цепи: нейлон-6/12, нейлон-11, нейлон-12. В качестве наполнителя композиция содержит от 0,01 до 30 мас.% TiO2. Способ получения порошковой композиции основан на растворении полиамидов или их смесей в этаноле, содержащем бутанон-2 и 1% воды, в течение 5 часов при температуре 145°C с последующим осаждением композиции при температуре 109°C. Способ обеспечивает получение порошков для аддитивного синтеза изделий методом СЛС с насыпной плотностью 0,433-0,463 г/см3 и количеством частиц с размером в диапазоне 32-100 мкм не менее 92% (US 7148286 B2, 12.12.2006).

Наиболее близким аналогом предложенной полимерной порошковой композиции является композиция, применяемая в технологии СЛС, содержащая полиамид-12 или полиамид-1010, или полиамид-1212 и неорганические наполнители, представляющие собой порошки соединений, таких как: Al2O3, TiO2, ZrO2, SiO2, ZnO, CeO2, BN, B12C3 в количестве 1-60% от массы композиции. Способ получения порошковой композиции-прототипа заключается в растворении полиамида в присутствии неорганического наполнителя в пятикратном массовом избытке раствора этанола, содержащего бутанон-2 и воду, в течение 5 часов при температуре 145-155°C, кристаллизации порошковой композиции при температуре 130-110°C в течение 40-120 минут и дальнейшей отгонке растворителя при пониженном давлении. Способ позволяет получать порошки с насыпной плотностью 0,3-0,5 г/см3 и размером частиц в диапазоне 12-90 мкм (US 8232333 B2, 31.07.2012).

К недостаткам описанных выше методов можно отнести сложность аппаратурного оформления процесса. Температура кипения этанола при нормальном давлении составляет ≈78°C. Таким образом, для нагрева его в конденсированном состоянии до температур 145-155°C требуется повышенное давление. На основании литературных данных (А. Гордон, Р. Форд // Спутник химика. - М.: Мир, 1976 г.), нагрев этилового спирта до температуры 145-155°C возможен при давлении не менее 10 атм. Таким образом, для осуществления процессов, описанных в патентах US 8232333 B2 и US 7148286 B2, необходимо использовать оборудование, выдерживающее рабочее давление более 10 атм. Долгий цикл растворения полиамида (до 5 часов) влечет за собой большие энергозатраты. Кроме того, денатурированный этиловый спирт относится к категории легковоспламеняющихся жидкостей (ЛВЖ), а применение его на производстве может привести к социально опасным последствиям.

Технической задачей предложенной группы изобретений является получение порошковой полимерной композиции упрощенным способом со сниженной себестоимостью при сохранении ее физических и технологических свойств.

Техническим результатом предложенной группы изобретений является исключение технологических стадий при повышенном давлении, снижение времени растворения полиамида-12 до менее 2 часов при получении порошковой полимерной композиции со средним размером частиц 60-72 мкм, насыпной плотностью 0,34-0,42 г/см3 и с максимумом интенсивности (пиком) температуры плавления не менее 180°С.

Технический результат достигается предложенным способом получения порошковой полимерной композиции, включающим растворение полиамида-12 в присутствии неорганического наполнителя, кристаллизацию порошковой полимерной композиции из полученного раствора и отгонку растворителя при пониженном давлении, при этом перед растворением полиамид-12 и неорганический наполнитель, в качестве которого используют частицы неорганического оксида с размером не более 20 мкм, смешивают посредством экструзии, полученный гранулят растворяют в системе полярный апротонный растворитель диметилформамид (ДМФА), или диметилсульфоксид (ДМСО)/спирт этиленгликоль, или циклогексанол, содержащей 70-95 мас.% полярного апротонного растворителя и 5-30 мас.% спирта.

Предпочтительное содержание неорганического оксида в грануляте 0,1-40 мас.%.

Кристаллизацию порошковой полимерной композиции предпочтительно проводить при охлаждении раствора со скоростью не более 1,5°С/мин.

Также предложена порошковая полимерная композиция, изготовленная вышеописанным способом, содержащая 60-99,9 мас.% полиамида-12 и 0,1-40 мас.% неорганического оксида.

Использование в качестве основного компонента полиамида-12 обеспечивает температуру плавления порошковой композиции на уровне 181-200°С и достаточный температурный интервал - не менее 20°С между пиками плавления Тпл и кристаллизации Ткр, что способствует снижению усадки и сохранению стабильности размеров изделия, синтезируемого селективным лазерным сплавлением. Как правило, СЛС полимерных порошков проводят в интервале температур между точками кристаллизации и плавления полимера. Соблюдение этого требования обеспечивает размерную стабильность синтезируемого изделия.

Использование в качестве растворителя системы полярный апротонный растворитель/спирт с температурой кипения компонентов системы не менее 150°С вместо этанола, во-первых, ускоряет растворение полиамида-12 за счет наличия полярного апротонного растворителя, во-вторых, позволяет проводить процессы растворения полиамида-12 и кристаллизации композиции при нормальном давлении за счет выбранной температуры кипения компонентов, в-третьих, за счет наличия плохого растворителя, а именно спирта с температурой кипения не менее 150°С, наблюдается повышение насыпной плотности порошковой композиции до уровня 0,36-0,42 г/см3. Известно, что использование плохих растворителей имеет неоднозначное влияние на изменение насыпной плотности получаемых порошковых полимерных композиций: с одной стороны, в отличие от хороших растворителей они могут способствовать образованию менее эластичных частиц студня и тем самым создавать более рыхлую упаковку, с другой - они вызывают «микровысаживание» полимера из раствора, т.е. агрегацию макромолекул, что приводит к повышению плотности их упаковки (А.А. Тагер // Физикохимия полимеров. - М.: Химия, 1978 г., с. 495). Экспериментально установлено, что в случае растворения полиамида-12 наблюдается положительное влияние спиртов с температурой кипения не менее 150°С, таких как этиленгликоль или циклогексанол, взятых в качестве «плохих» растворителей, на увеличение насыпной плотности получаемой порошковой композиции.

Кроме того, добавление этих спиртов приводит к снижению температуры плавления порошковой композиции, что, возможно, связано с эффектом «холодной» кристаллизации, то есть выпадением частиц в аморфном состоянии вследствие «микровысаживания» и последующей кристаллизацией при более низкой температуре в процессе отгонки растворителя при пониженном давлении. При этом необходимое соотношение компонентов растворителя 70-95 мас.% полярного апротонного растворителя и 5-30 мас.% спирта объясняется следующим. В случае увеличения количества спирта более 30 мас.% время растворения гранулированного полиамида существенно увеличивается до 2-3 часов, а при дальнейшем увеличении количества спирта (более 50 мас.%) растворение полиамида-12 не наблюдается. При снижении содержания спирта менее 5 мас.% эффект увеличения насыпной плотности от его введения резко снижается.

Порошковый неорганический оксид с размером частиц не более 20 мкм выступает в качестве центра кристаллизации полиамида-12 из раствора. Количество оксида, размеры частиц, форма и природа их поверхности влияют на гранулометрический состав и насыпную плотность полимерной композиции. При увеличении размеров частиц более 20 мкм наблюдается образование полимерной порошковой композиции с размером частиц более 100 мкм, что является нежелательным для селективного лазерного сплавления (снижается точность синтеза изделий, ухудшается качество поверхности).

Снижение времени стадии растворения происходит за счет предварительной соэкструзии полиамида-12 и мелкодисперсного оксида, что облегчает набухание гранулята вследствие увеличения его пористости и облегчения диффузии растворителя в объем гранул. Время растворения композиции после экструзии снижается до 30-90 минут.

Полиамид-12 предпочтительно растворять в присутствии 0,1-40% неорганического оксида от массы композиции. При добавлении меньшего количества снижается количество центров кристаллизации, что отрицательно сказывается на качестве порошка вследствие спонтанной кристаллизации - появляются частицы с неровной поверхностью, увеличивается диапазон их размеров. При добавлении большего количества оксида затрудняется соэкструзия следствие существенного увеличения вязкости расплава.

На упаковку макромолекул в частицы также влияет скорость охлаждения при кристаллизации. При скорости охлаждения более 1,5°C наблюдается быстрый и неравномерный рост частиц, вследствие этого происходит снижение регулярности частиц, их разброс по размеру, возможно снижение насыпной плотности.

Примеры осуществления

Механическую смесь гранулированного полиамида-12 и неорганического оксида в количестве, указанном в таблице 1, перерабатывали на двухшнековом экструдере при температуре 220-240°C. Полученный гранулят и растворитель помещали в двухлитровую трехгорлую стеклянную колбу, оснащенную мешалкой, обратным холодильником и термометром. Колбу помещали в масляную баню и при перемешивании 60-100 оборотов в минуту при нагреве до температуры растворения полиамида-12 145°C смесь выдерживали до полного его растворения. Затем раствор охлаждали до комнатной температуры. По примерам 3-D и 7-D скорость охлаждения задавали 1,0 и 1,5°C в минуту соответственно.

После осаждения композиции растворители отгоняли при пониженном давлении.

Состав порошковых композиций представлен в таблице 1.

Состав растворителей представлен в таблице 2.

Средний диаметр частиц определяли при помощи анализа распределения диаметров Фере, выполненного с использованием сканирующего электронного микроскопа TESCAN VEGA 3XMU.

Насыпную плотность композиции измеряли по ГОСТ 11035.1-93.

Температуру фазовых переходов определяли в соответствии с ГОСТ P 55134-2012.

Свойства полученных порошковых композиций представлены в таблице 3.

Как видно из представленных данных, предложенный способ (примеры 3-E, 3-C, 3-D, 7-D, 3-F) обеспечивает получение порошковой полимерной композиции со средним размером частиц 60-72 мкм, насыпной плотностью 0,34-0,42 г/см3 и с максимумом интенсивности (пиком) температуры плавления не менее 180°C, при этом в процессе ее получения исключаются технологические стадии, связанные с работой при повышенном давлении, и снижается время растворения полиамида-12 (указанное в прототипе время растворения составляет 5 часов).

Отсутствие в растворителе спирта с температурой кипения более 150°C (примеры с составом растворителя A и B) приводит к снижению насыпной плотности.

При отсутствии в композиции мелкодисперсного неорганического оксида (пример 1-C) насыпная плотность остается на удовлетворительном уровне, однако средний диаметр частиц резко повышается.

При заданной скорости охлаждения раствора не более 1,5°C в минуту (примеры 3-D и 7-D) значения насыпной плотности получаются выше, нежели при более высоких скоростях.

Источник поступления информации: Роспатент

Показаны записи 261-270 из 368.
20.03.2019
№219.016.e305

Способ производства жаропрочных сплавов на основе никеля (варианты)

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, и может быть использовано при изготовлении лопаток, дисков, створок и других деталей газотурбинных двигателей. Способ производства жаропрочных сплавов на основе никеля включает...
Тип: Изобретение
Номер охранного документа: 0002682266
Дата охранного документа: 18.03.2019
20.03.2019
№219.016.e398

Припой на основе никеля

Изобретение относится к области машиностроения, а именно к припоям на основе никеля, которые могут найти применение при изготовлении паяных деталей горячего тракта турбин ГТД из монокристаллических никелевых сплавов. Припой на основе никеля для соединения никелевых жаропрочных сплавов содержит...
Тип: Изобретение
Номер охранного документа: 0002283742
Дата охранного документа: 20.09.2006
20.03.2019
№219.016.e399

Жаропрочный сплав на основе кобальта и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных деформируемых свариваемых сплавов на основе кобальта и может быть использовано для изготовления жаровых труб камер сгорания, стабилизаторов пламени и других горячих узлов и двигателей ГТД, работающих при температуре до 1300°С. Предложены...
Тип: Изобретение
Номер охранного документа: 0002283361
Дата охранного документа: 10.09.2006
20.03.2019
№219.016.e3b4

Жаропрочный сплав на основе никеля и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных свариваемых сплавов на основе никеля, предназначенных для изготовления жаровых труб, корпусов, кожухов, экранов и других сварных узлов и деталей, работающих в области температур 20-1000°С. Предложенный жаропрочный свариваемый сплав на...
Тип: Изобретение
Номер охранного документа: 0002285059
Дата охранного документа: 10.10.2006
20.03.2019
№219.016.e6c5

Способ обработки поверхности металлического изделия

Изобретение относится к области машиностроения и может быть использовано для обработки поверхности деталей машин, в особенности для лопаток компрессора. Способ включает предварительную подготовку поверхности изделия, размещение в зоне обработки изделия и токопроводящего материала, в качестве...
Тип: Изобретение
Номер охранного документа: 0002308537
Дата охранного документа: 20.10.2007
20.03.2019
№219.016.e6d1

Эпоксидное связующее, препрег на его основе и изделие, выполненное из препрега

Изобретение относится к эпоксидному связующему, препрегу на его основе и изделию, выполненному из препрега, которое может быть использовано в качестве конструкционного материала в авиационной, космической промышленности, радиоэлектронике и других областях техники. Эпоксидное связующее также...
Тип: Изобретение
Номер охранного документа: 0002307136
Дата охранного документа: 27.09.2007
29.03.2019
№219.016.f0bb

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых сплавов на основе никеля, преимущественно осесимметричных деталей газотурбинных и ракетных двигателей типа дисков, полусфер, оболочек, «стаканов» и изделий других форм, работающих в условиях...
Тип: Изобретение
Номер охранного документа: 0002340702
Дата охранного документа: 10.12.2008
29.03.2019
№219.016.f128

Покрытие для изделий из жаропрочных никелевых сплавов и способ его нанесения

Изобретение относится к области машиностроения и может быть использовано в энергетическом и авиационном турбостроении для защиты от коррозии и высокотемпературного окисления лопаток газовых турбин из жаропрочных никелевых сплавов. Покрытие для изделий из жаропрочных никелевых сплавов содержит...
Тип: Изобретение
Номер охранного документа: 0002398912
Дата охранного документа: 10.09.2010
29.03.2019
№219.016.f12f

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение относится к области машиностроения и может быть использовано при получении отливок, например, деталей горячего тракта ГТД, включая турбинные лопатки, створки. Устройство содержит вертикальную вакуумную камеру, внутри которой размещены индукционная плавильная печь, печь подогрева...
Тип: Изобретение
Номер охранного документа: 0002398653
Дата охранного документа: 10.09.2010
29.03.2019
№219.016.f134

Устройство для получения лопатки из жаропрочного никелевого сплава с монокристаллической структурой

Изобретение относится к области металлургии и может быть использовано при литье монокристаллических лопаток, имеющих замковые бандажные полки с лабиринтными гребешками, преимущественно крупногабаритных лопаток ГТУ. Устройство содержит керамическую форму, в основании которой выполнены...
Тип: Изобретение
Номер охранного документа: 0002392091
Дата охранного документа: 20.06.2010
Показаны записи 261-270 из 335.
20.03.2019
№219.016.e398

Припой на основе никеля

Изобретение относится к области машиностроения, а именно к припоям на основе никеля, которые могут найти применение при изготовлении паяных деталей горячего тракта турбин ГТД из монокристаллических никелевых сплавов. Припой на основе никеля для соединения никелевых жаропрочных сплавов содержит...
Тип: Изобретение
Номер охранного документа: 0002283742
Дата охранного документа: 20.09.2006
20.03.2019
№219.016.e399

Жаропрочный сплав на основе кобальта и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных деформируемых свариваемых сплавов на основе кобальта и может быть использовано для изготовления жаровых труб камер сгорания, стабилизаторов пламени и других горячих узлов и двигателей ГТД, работающих при температуре до 1300°С. Предложены...
Тип: Изобретение
Номер охранного документа: 0002283361
Дата охранного документа: 10.09.2006
20.03.2019
№219.016.e3b4

Жаропрочный сплав на основе никеля и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных свариваемых сплавов на основе никеля, предназначенных для изготовления жаровых труб, корпусов, кожухов, экранов и других сварных узлов и деталей, работающих в области температур 20-1000°С. Предложенный жаропрочный свариваемый сплав на...
Тип: Изобретение
Номер охранного документа: 0002285059
Дата охранного документа: 10.10.2006
20.03.2019
№219.016.e6d1

Эпоксидное связующее, препрег на его основе и изделие, выполненное из препрега

Изобретение относится к эпоксидному связующему, препрегу на его основе и изделию, выполненному из препрега, которое может быть использовано в качестве конструкционного материала в авиационной, космической промышленности, радиоэлектронике и других областях техники. Эпоксидное связующее также...
Тип: Изобретение
Номер охранного документа: 0002307136
Дата охранного документа: 27.09.2007
29.03.2019
№219.016.f0bb

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых сплавов на основе никеля, преимущественно осесимметричных деталей газотурбинных и ракетных двигателей типа дисков, полусфер, оболочек, «стаканов» и изделий других форм, работающих в условиях...
Тип: Изобретение
Номер охранного документа: 0002340702
Дата охранного документа: 10.12.2008
29.03.2019
№219.016.f12f

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение относится к области машиностроения и может быть использовано при получении отливок, например, деталей горячего тракта ГТД, включая турбинные лопатки, створки. Устройство содержит вертикальную вакуумную камеру, внутри которой размещены индукционная плавильная печь, печь подогрева...
Тип: Изобретение
Номер охранного документа: 0002398653
Дата охранного документа: 10.09.2010
29.03.2019
№219.016.f134

Устройство для получения лопатки из жаропрочного никелевого сплава с монокристаллической структурой

Изобретение относится к области металлургии и может быть использовано при литье монокристаллических лопаток, имеющих замковые бандажные полки с лабиринтными гребешками, преимущественно крупногабаритных лопаток ГТУ. Устройство содержит керамическую форму, в основании которой выполнены...
Тип: Изобретение
Номер охранного документа: 0002392091
Дата охранного документа: 20.06.2010
29.03.2019
№219.016.f1e8

Способ получения изделия из деформируемого жаропрочного никелевого сплава

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД. Для снижения напряжения течения металла при деформации заготовок и повышения выхода годного предложен способ...
Тип: Изобретение
Номер охранного документа: 0002387733
Дата охранного документа: 27.04.2010
05.04.2019
№219.016.fd3f

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700-1000°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002684000
Дата охранного документа: 03.04.2019
06.04.2019
№219.016.fe23

Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей, работающих при температурах до 800°С во...
Тип: Изобретение
Номер охранного документа: 0002365657
Дата охранного документа: 27.08.2009
+ добавить свой РИД