×
29.12.2017
217.015.f4e0

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии оценки качества жидких смазочных материалов. При осуществлении способа испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления. При этом пробы смазочного материала постоянной массы испытывают как с перемешиванием, так и без перемешивания, при фотометрировании определяют оптическую плотность, часть термостатированной пробы используют для измерения кинематической вязкости при температурах 40 и 100°C, определяют индекс вязкости, часть пробы используют для определения противоизносных свойств, а термоокислительную стабильность исследуемого смазочного материала определяют по показателю отношения произведения оптической плотности и десятичного логарифма индекса вязкости к показателю противоизносных свойств, строят графические зависимости показателя термоокислительной стабильности от оптической плотности термостатированного смазочного материала при его испытании с перемешиванием и без перемешивания, по которым определяют влияние продуктов окисления и температурной деструкции на величину показателя термоокислительной стабильности. Достигается повышение информативности способа определения термоокислительной стабильности смазочных материалов за счет учета температуры испытания, изменения оптической плотности, индекса вязкости и триботехнической характеристики.1 табл., 4 ил.

Изобретение относится к технологии оценки качества жидких смазочных материалов.

Известен способ определения термоокислительной стабильности смазочных материалов, который включает испытание пробы смазочного материала в присутствии воздуха с перемешиванием, постоянного объема при оптимальной температуре, выбранной в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока окисленным смазочным материалом, вязкость и коэффициент термоокислительной стабильности КТОС из соотношения КТОСП⋅μОИСХ, где КП - коэффициент поглощения светового потока окисленным смазочным материалом; μО, μИСХ - соответственно вязкость окисленного и исходного смазочного материалов, строят графическую зависимость коэффициента термоокислительной стабильности от коэффициента поглощения светового потока окисленным смазочным материалом и по тангенсу угла наклона этой зависимости к оси абсцисс на участке до точки перегиба определяют скорость образования промежуточных продуктов окисления, по тангенсу угла наклона зависимости к оси абсцисс после точки перегиба определяют скорость образования конечных продуктов окисления и их влияние на увеличение вязкости испытуемого смазочного материала, а по координатам точки перегиба зависимости определяют начало образования конечных продуктов окисления (Патент РФ №2247971 С1, дата приоритета 17.02.2004, дата публикации 10.03.2005, авторы: Ковальский Б.И. и др., RU).

Наиболее близким по технической сущности и достигаемому результату является способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала постоянной массы в присутствии воздуха с перемешиванием, при оптимальных как минимум трех температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, определяют фотометрированием коэффициент поглощения светового потока, вязкость исходного и окисленного материалов, определяют относительную вязкость как отношение вязкости окисленного смазочного материала к вязкости исходного, а термоокислительную стабильность определяют по показателю отношения коэффициента поглощения светового потока к относительной вязкости, строят графические зависимости показателя термоокислительной стабильности от коэффициента поглощения светового потока, по которым определяют однородность состава продуктов окисления и температурную область работоспособности исследуемого смазочного материала (Патент РФ №2334976 С1, дата приоритета 26.12.2006, дата публикации 27.09.2008, авторы: Ковальский Б.И. и др., RU, прототип).

Общим недостатком известного аналога и прототипа является то, что известные способы обладают недостаточной информативностью о качестве товарных смазочных материалов, так как не учитывают изменение противоизносных свойств в процессе их термостатирования и их связь с оптическими свойствами и вязкостно-температурными характеристиками.

Технической проблемой, решаемой изобретением, является повышение информативности способа определения термоокислительной стабильности смазочных материалов путем учета процессов окисления и температурной деструкции и влияния их продуктов на противоизносные свойства и индекс вязкости.

Для решения технической проблемы предложен способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления. Согласно изобретению пробы смазочного материала постоянной массы испытывают как с перемешиванием, так и без перемешивания, при фотометрировании определяют оптическую плотность, часть термостатированной пробы используют для измерения кинематической вязкости при температурах 40 и 100°C, определяют индекс вязкости, часть пробы используют для определения противоизносных свойств, а термоокислительную стабильность исследуемого смазочного материала определяют по показателю отношения произведения оптической плотности и десятичного логарифма индекса вязкости к показателю противоизносных свойств, строят графические зависимости показателя термоокислительной стабильности от оптической плотности термостатированного смазочного материала при его испытании с перемешиванием и без перемешивания, по которым определяют влияние продуктов окисления и температурной деструкции на величину показателя термоокислительной стабильности.

На фиг. 1 приведены зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел различной базовой основы без перемешивания при температуре 180°C: 1 - минеральное Zic HIFLO 10W-40 SL; 2 - частично-синтетическое Castrol Magnatec 10W-40 R SL/CF; 3 - синтетическое ALPHA'S 5W-30 SN; на фиг. 2 - зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел с перемешиванием при температуре 180°C (обозначения те же); на фиг. 3 - зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел без перемешивания при температуре 170°C (обозначения те же); на фиг. 4 - зависимости показателя термоокислительной стабильности от оптической плотности при испытании моторных масел с перемешиванием при температуре 170°C (обозначения те же).

Способ определения термоокислительной стабильности смазочных материалов осуществляется следующим образом. Пробы исследуемого смазочного материала постоянной массы, например 100±0,1 г, нагревают до температуры ниже критической, например 180°C, и испытывают в двух вариантах: первый вариант с перемешиванием механической мешалкой для смешивания с кислородом воздуха и исследованием процессов окисления, а второй вариант - испытание без перемешивания, что позволяет исследовать процессы температурной деструкции. Температура термостатирования и частота вращения мешалки в процессе испытания поддерживались автоматически.

Через равные промежутки времени испытания отбирают часть пробы термостатированного смазочного материала для прямого фотометрирования и определения оптической плотности D, часть пробы используют для определения кинематической вязкости при температурах 40 и 100°C и вычисления индекса вязкости (ГОСТ 25371-97, ИСО 2909-81), а часть пробы используют для определения противоизносных свойств термостатированных масел на трехшариковой машине трения со схемой «шар-цилиндр» с параметрами: нагрузка 13 Н, скорость скольжения 0,68 м/с, температура смазочного материала в объеме 80°C, время испытания 2 часа. Противоизносные свойства термостатированных смазочных материалов оценивались по среднеарифметическому значению диаметра пятна износа на трех шарах с двух параллельных опытов. Термостатирование смазочных масел прекращалось после достижения оптической плотности значений равных 0,4-0,5.

Для выявления влияния температуры на оптическую плотность, индекс вязкости и противоизносные свойства испытания моторных масел проводили также при температуре 170°C с перемешиванием и без перемешивания. По полученным данным оптической плотности, индекса вязкости и противоизносным свойствам вычислялся показатель термоокислительной стабильности ПТОС

где D - оптическая плотность термостатированного смазочного материала; lgИВ - десятичный логарифм индекса вязкости; И - среднеарифметическое значение диаметра пятна износа, мм.

Результаты испытания моторных масел различной базовой основы сведены в таблицу. По полученным экспериментальным данным строились графические зависимости показателя термоокислительной стабильности ПТОС от оптической плотности для минерального масла Zic HIFLO 10W-40 SL (1), частично-синтетического Castrol Magnatec 10W-40 R SL/CF (2) и синтетического ALPHA'S 5W-30 SN (3) для температур 180°C (фиг. 1, фиг. 2) и 170°C (фиг. 3, фиг. 4), причем на фиг. 1 и фиг. 3 моторные масла исследовались без перемешивания, а на фиг. 2 и фиг. 4 - с перемешиванием, что позволило оценить влияние продуктов окисления и температурной деструкции на оптические свойства, индекс вязкости, противоизносные свойства и в целом на значение показателя термоокислительной стабильности.

Согласно данным (фиг. 1-4) зависимости показателя термоокислительной стабильности от оптической плотности независимо от температуры термостатирования и наличия или отсутствия перемешивания пробы испытуемого смазочного материала описываются линейными уравнениями вида

где α - коэффициент, характеризующий скорость изменения показателя термоокислительной стабильности.

Согласно данным таблицы показано, что скорость изменения показателя термоокислительной стабильности зависит от базовой основы смазочного материала, температуры термостатирования и степени перемешивания во время испытания.

Согласно данным (фиг. 1) при температуре испытания 180°C без перемешивания при одном и том же значении оптической плотности самое высокое значение показателя ПТОС установлено для минерального масла (1), а самое низкое для синтетического масла (3), однако при испытании моторных масел при температуре 180°C с перемешиванием установлен обратный результат, самое высокое значение показателя ПТОС установлено для синтетического масла (3), а самое низкое для минерального (1). Таким образом, продукты температурной деструкции (при отсутствии перемешивания масел) оказывают положительное влияние на минеральное масло (фиг. 1), а продукты окисления (фиг. 2) положительное влияние оказывают на синтетическое моторное масло.

При понижении температуры термостатирования до 170°C продукты температурной деструкции и окисление отрицательно влияют на синтетическое моторное масло (3) как с перемешиванием его при испытании, так и без перемешивания (фиг. 3, фиг. 4). Эти продукты оказывают положительное влияние на частично-синтетическое моторное масло (2) (фиг. 3, фиг. 4). Полученная информация имеет практическое значение при выборе моторных масел двигателей внутреннего сгорания.

Предлагаемое техническое решение позволяет повысить информативность способа определения термоокислительной стабильности смазочных материалов за счет учета температуры испытания, изменения оптической плотности, индекса вязкости и триботехнической характеристики и промышленно применимо.

Способ определения термоокислительной стабильности смазочных масел, при котором испытывают пробы смазочного материала постоянной массы в присутствии воздуха, при оптимальных температурах ниже критической, выбранных в зависимости от базовой основы смазочного материала и группы эксплуатационных свойств, в течение времени, характеризующего одинаковую степень окисления, причем через равные промежутки времени отбирают пробу окисленного смазочного материала, фотометрируют ее, определяют параметры термоокислительной стабильности и проводят оценку процесса окисления, отличающийся тем, что пробы смазочного материала постоянной массы испытывают как с перемешиванием, так и без перемешивания, при фотометрировании определяют оптическую плотность, часть термостатированной пробы используют для измерения кинематической вязкости при температурах 40 и 100°C, определяют индекс вязкости, часть пробы используют для определения противоизносных свойств, а термоокислительную стабильность исследуемого смазочного материала определяют по показателю отношения произведения оптической плотности и десятичного логарифма индекса вязкости к показателю противоизносных свойств, строят графические зависимости показателя термоокислительной стабильности от оптической плотности термостатированного смазочного материала при его испытании с перемешиванием и без перемешивания, по которым определяют влияние продуктов окисления и температурной деструкции на величину показателя термоокислительной стабильности.
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТАБИЛЬНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 338.
13.01.2017
№217.015.86c1

Способ оборотного водоснабжения средств гидромеханизации с использованием отстойника

Изобретение относится к способам оборотного водоснабжения средств гидромеханизации горных работ с использованием отстойников, сооруженных на рельефе местности. Способ включает возведение гидроотвала, прием и намыв гидросмеси, формирование отстойника, осветление, накопление и хранение в нем...
Тип: Изобретение
Номер охранного документа: 0002603789
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.89eb

Арболитовая смесь

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении материалов на основе древесных заполнителей. Техническим результатом является создание дешевого строительного материала с обеспечением прочностных характеристик и плотности, снижение...
Тип: Изобретение
Номер охранного документа: 0002602279
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8b5f

Способ получения полимерного сорбента

Изобретение относится к технологии получения полимерных сорбентов, используемых для локализации, ликвидации, сбора и очистки загрязненной среды от нефти и нефтепродуктов. Способ получения сорбента на основе карбамидных смол производят путем воздушно-механического перемешивания исходных...
Тип: Изобретение
Номер охранного документа: 0002604370
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8b9f

Разделительное покрытие для литейных пресс-форм

Изобретение относится к литейному производству и может быть использовано для окрашивания пресс-форм, предназначенных для литья алюминиевых сплавов под низким давлением. Разделительное покрытие содержит наполнитель в виде смеси порошков двуокиси титана с размером частиц до 1 мкм, талька с...
Тип: Изобретение
Номер охранного документа: 0002604163
Дата охранного документа: 10.12.2016
24.08.2017
№217.015.9543

Успокоитель потока воды в стволе гидромонитора

Изобретение относится к области гидравлической добычи полезных ископаемых. Успокоитель потока воды выполнен из двух взаимно перпендикулярных пластин, пересекающихся по оси ствола гидромонитора, оборудованного насадкой. Пластины выполнены двухслойными. Между слоями пластин расположены патрубки,...
Тип: Изобретение
Номер охранного документа: 0002608592
Дата охранного документа: 23.01.2017
24.08.2017
№217.015.956f

Способ формирования струи гидромонитора и устройство для его осуществления

Группа изобретений относится к способу формирования струи жидкости и устройству для его осуществления. Способ заключается в том, что направляют сопутствующий поток энергии вдоль траектории движения струи в виде электрического тока постоянного напряжения, положительный заряд которого подают на...
Тип: Изобретение
Номер охранного документа: 0002608591
Дата охранного документа: 23.01.2017
25.08.2017
№217.015.9b9a

Способ разделения платины (ii, iv) и железа (iii) в солянокислых растворах

Изобретение относится к области аналитической химии платиновых металлов, может быть использовано для разделения платины и железа в солянокислых растворах с использованием селективного ионита комплексообразующего типа Purolite S985. Способ включает сорбцию платины (II, IV) и железа (III) и...
Тип: Изобретение
Номер охранного документа: 0002610185
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.a458

Способ приготовления литых твердеющих закладочных смесей на основе мелкодисперсного заполнителя

Изобретение относится к горной промышленности и может быть использовано при подземной разработке месторождений с закладкой выработанного пространства твердеющими смесями на основе мелкодисперсного заполнителя, например хвостов обогащения. Способ приготовления литых твердеющих закладочных смесей...
Тип: Изобретение
Номер охранного документа: 0002607329
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a720

Тренажер определения направления забуриваемых шпуров относительно плоскости забоя

Изобретение относится к горному делу и предназначено для определения пространственного положения взрывных шпуров. Технический результат - упрощение конструкции устройства, а также снижение трудоемкости работы при обучении навыкам глазомерного определения направления бурения шпуров. Достигается...
Тип: Изобретение
Номер охранного документа: 0002608370
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.a920

Способ получения порошка квазикристаллического сплава al-cu-fe

Изобретение относится к получению порошка квазикристаллического сплава Al-Cu-Fe. Порошки металлов шихтуют в соотношении, соответствующем области существования квазикристаллической фазы сплава системы Al-Cu-Fe. Ведут одновременное плавление шихты в тигле с одновременным диспергированием...
Тип: Изобретение
Номер охранного документа: 0002611253
Дата охранного документа: 21.02.2017
Показаны записи 61-70 из 139.
13.01.2017
№217.015.86c1

Способ оборотного водоснабжения средств гидромеханизации с использованием отстойника

Изобретение относится к способам оборотного водоснабжения средств гидромеханизации горных работ с использованием отстойников, сооруженных на рельефе местности. Способ включает возведение гидроотвала, прием и намыв гидросмеси, формирование отстойника, осветление, накопление и хранение в нем...
Тип: Изобретение
Номер охранного документа: 0002603789
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.89eb

Арболитовая смесь

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении материалов на основе древесных заполнителей. Техническим результатом является создание дешевого строительного материала с обеспечением прочностных характеристик и плотности, снижение...
Тип: Изобретение
Номер охранного документа: 0002602279
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8b5f

Способ получения полимерного сорбента

Изобретение относится к технологии получения полимерных сорбентов, используемых для локализации, ликвидации, сбора и очистки загрязненной среды от нефти и нефтепродуктов. Способ получения сорбента на основе карбамидных смол производят путем воздушно-механического перемешивания исходных...
Тип: Изобретение
Номер охранного документа: 0002604370
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8b9f

Разделительное покрытие для литейных пресс-форм

Изобретение относится к литейному производству и может быть использовано для окрашивания пресс-форм, предназначенных для литья алюминиевых сплавов под низким давлением. Разделительное покрытие содержит наполнитель в виде смеси порошков двуокиси титана с размером частиц до 1 мкм, талька с...
Тип: Изобретение
Номер охранного документа: 0002604163
Дата охранного документа: 10.12.2016
24.08.2017
№217.015.9543

Успокоитель потока воды в стволе гидромонитора

Изобретение относится к области гидравлической добычи полезных ископаемых. Успокоитель потока воды выполнен из двух взаимно перпендикулярных пластин, пересекающихся по оси ствола гидромонитора, оборудованного насадкой. Пластины выполнены двухслойными. Между слоями пластин расположены патрубки,...
Тип: Изобретение
Номер охранного документа: 0002608592
Дата охранного документа: 23.01.2017
24.08.2017
№217.015.956f

Способ формирования струи гидромонитора и устройство для его осуществления

Группа изобретений относится к способу формирования струи жидкости и устройству для его осуществления. Способ заключается в том, что направляют сопутствующий поток энергии вдоль траектории движения струи в виде электрического тока постоянного напряжения, положительный заряд которого подают на...
Тип: Изобретение
Номер охранного документа: 0002608591
Дата охранного документа: 23.01.2017
25.08.2017
№217.015.9b9a

Способ разделения платины (ii, iv) и железа (iii) в солянокислых растворах

Изобретение относится к области аналитической химии платиновых металлов, может быть использовано для разделения платины и железа в солянокислых растворах с использованием селективного ионита комплексообразующего типа Purolite S985. Способ включает сорбцию платины (II, IV) и железа (III) и...
Тип: Изобретение
Номер охранного документа: 0002610185
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.a458

Способ приготовления литых твердеющих закладочных смесей на основе мелкодисперсного заполнителя

Изобретение относится к горной промышленности и может быть использовано при подземной разработке месторождений с закладкой выработанного пространства твердеющими смесями на основе мелкодисперсного заполнителя, например хвостов обогащения. Способ приготовления литых твердеющих закладочных смесей...
Тип: Изобретение
Номер охранного документа: 0002607329
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a720

Тренажер определения направления забуриваемых шпуров относительно плоскости забоя

Изобретение относится к горному делу и предназначено для определения пространственного положения взрывных шпуров. Технический результат - упрощение конструкции устройства, а также снижение трудоемкости работы при обучении навыкам глазомерного определения направления бурения шпуров. Достигается...
Тип: Изобретение
Номер охранного документа: 0002608370
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.a920

Способ получения порошка квазикристаллического сплава al-cu-fe

Изобретение относится к получению порошка квазикристаллического сплава Al-Cu-Fe. Порошки металлов шихтуют в соотношении, соответствующем области существования квазикристаллической фазы сплава системы Al-Cu-Fe. Ведут одновременное плавление шихты в тигле с одновременным диспергированием...
Тип: Изобретение
Номер охранного документа: 0002611253
Дата охранного документа: 21.02.2017
+ добавить свой РИД