×
29.12.2017
217.015.f4d5

Результат интеллектуальной деятельности: Способ определения диэлектрической проницаемости диэлектрических материалов

Вид РИД

Изобретение

Аннотация: Изобретение способ определения диэлектрической проницаемости диэлектрических материалов относится к технике измерения диэлектрической проницаемости диэлектрических материалов. Способ определения диэлектрической проницаемости в объемном волноводном резонаторе включает настройку резонатора на резонансную частоту без образца испытуемого материала, помещение образца испытуемого материала в резонатор, настройку резонатора на частоту резонанса перемещением подвижного поршня, фиксацию показания датчика перемещения подвижного поршня и вычисление диэлектрической проницаемости, отличается тем, что после настройки резонатора с образцом в резонанс фиксируют частоту, на которую настроен резонатор с образцом, по которому вычисляют диэлектрическую проницаемость. Способ определения диэлектрической проницаемости ε материала заключается на измерении геометрической разности длин на фиксированной частоте резонатора без образца и с образцом испытуемого материала Δ=L-L, а на основе расчета разности электрических длин резонатора без образца и с образцом испытуемого материала . Техническим результатом использования изобретения является более высокая точность определения диэлектрической проницаемости диэлектрических материалов. 3 ил.

Изобретение относится к технике определения диэлектрической проницаемости материалов методом объемного резонатора.

Известен способ определения диэлектрической проницаемости (ε) в объемном резонаторе при фиксированной резонансной длине, ГОСТ Р 8.623-2006 (в новой редакции ГОСТ Р 8.623-2015). Измерения по этому способу выполняют следующим образом:

- настраивают резонатор длиной LT на частоту , соответствующую - постоянной распространения в пустой части резонатора без образца для , λкр=С⋅R - критическая длина волны в цилиндрическом волноводе для волны типа H01, , ν01=3,832 - численное значение корня уравнения для функции Бесселя при рассмотрении распространения волны H01 в круглом волноводе;

- отводят подвижный поршень вниз и помещают образец материала толщиной d в резонатор;

- возвращают подвижный поршень в исходное положение, восстанавливая длину LT;

- перестраивают частоту в сторону уменьшения до появления резонанса на частоте , соответствующей - постоянной распространения ;

- измеряют и записывают частоту ƒ2 резонатора с образцом испытуемого материала;

- вычисляют диэлектрическую проницаемость по формуле:

где - постоянная распространения в области расположения образца, преобразуют окончательно:

Достоинством метода определения ε при фиксированной длине резонатора является высокая точностью определения резонансных частот, а недостатком является то, что в методе реализуются неидентичные условия возбуждения резонансных колебаний из-за различия величин частот измерения пустого резонатора и резонатора с помещенным в него образцом материала. Определение длины пустого резонатора происходит на частоте ƒ1, соответствующей βV1, а измерение резонатора с образцом испытуемого материала происходит на частоте ƒ2, соответствующей βV2, поэтому погрешности измерений частоты ƒ1 соответствующей ей длины LT, как видно из формулы (1), также влияют на точность определения диэлектрической проницаемости. Кроме того, при проведении операции по перестройке частоты в сторону уменьшения сдвиг по частоте происходит по диапазону на значительную величину частот, до появления резонанса, при этом изменяются условия возникновения резонансных колебаний и нет однозначности при определении нужного резонанса по типу колебаний и соответствии его диэлектрической проницаемости образца испытуемого материала.

Наиболее близким к заявляемому является способ определения диэлектрической проницаемости (ε) в объемном резонаторе при фиксированной резонансной частоте, ГОСТ Р 8.623-2006 (в новой редакции ГОСТ Р 8.623-2015). Измерения по этому способу выполняют следующим образом:

- настраивают резонатор изменением длины LT на частоту , соответствующую - постоянной распространения в пустой части резонатора без образца для , λкр=С⋅R - критическая длина волны в цилиндрическом волноводе для волны типа H01, , ν01=3,832 - численное значение корня уравнения для функции Бесселя при рассмотрении распространения волны H01 в круглом волноводе;

- отводят подвижный поршень вниз и помещают образец материала толщиной d в резонатор;

- перемещают подвижный поршень вверх, настраивая резонатор в резонанс на частоту ƒ01, соответствующую βV1;

- фиксируют показания датчика перемещения подвижного поршня LTS;

- вычисляют диэлектрическую проницаемость по формуле

где - постоянная распространения в области расположения образца.

Достоинством в методе определения ε на фиксированной частоте является реализация идентичных условий возбуждения резонансных колебаний в месте расположения отверстий связи при проведении измерений резонатора без образца и резонатора с образцом, а недостатком является то, что для настройки резонатора на резонансную частоту требуется высокая точность механизма перемещения подвижного поршня для настройки на фиксированную частоту измерения. Для реализации точной настройки резонатора на фиксированную частоту с высокой точностью требуется очень высокая точность измерения длины резонатора. Но точную настройку положения подвижного поршня, соответствующую заранее выбранной частоте с помощью механических систем, обеспечить с высокой точностью невозможно из-за неизбежных люфтов в механизме перемещения, в результате чего возникают погрешности измерения диэлектрической проницаемости.

Целью изобретения является повышение точности определения диэлектрической проницаемости.

Способ определения диэлектрической проницаемости диэлектрических материалов в объемном волноводном резонаторе с помощью анализатора цепей, включающий настройку резонатора без образца испытуемого материала на резонансную частоту перемещением подвижного поршня, помещение образца испытуемого материала в резонатор, настройку резонатора на резонансную частоту резонатора перемещением подвижного поршня, фиксацию показания датчика перемещения подвижного поршня и вычисление диэлектрической проницаемости, отличается тем, что после настройки резонатора с образцом на резонансную частоту фиксируют частоту, на которую настроен резонатор с образцом.

Для предлагаемого способа определения диэлектрической проницаемости в объемном волноводном резонаторе авторы разработали алгоритм расчета диэлектрической проницаемости (ε), заключающийся в решении уравнения:

,

где LT - длина резонатора без образца, настроенного на частоту , соответствующую - постоянной распространения в пустой части резонатора без образца испытуемого материала для ;

λкр=С⋅R - критическая длина волны в цилиндрическом волноводе для волны типа H01, , ν01=3,832 - численное значение корня уравнения для функции Бесселя при рассмотрении распространения волны H01 в круглом волноводе;

d - толщина образца испытуемого материала;

LTS - длина резонатора с помещенным в него образцом испытуемого материала, настроенного на частоту , соответствующую - постоянной распространения для ;

- постоянная распространения в области расположения образца для , а .

На приведенной Фиг. 1 изображен общий вид устройства, реализующего заявляемый способ.

Устройство для определения диэлектрической проницаемости включает объемный резонатор 1, в верхней части корпуса которого размещены устройства ввода и вывода СВЧ-энергии. Внутри объемного цилиндрического резонатора с минимальным зазором установлен подвижный поршень, показанный на чертеже в двух положениях: в положении 2 - для настроенного в резонанс резонатора без образца, и в положении 3 для настроенного в резонанс резонатора с образцом 4. Измерение положения резонансной кривой на частотной оси осуществляется анализатором цепей 5. Перемещение подвижного поршня осуществляется с помощью механизма перемещения 6, а измерение положения подвижного поршня осуществляются измерителем 7. Управление, сбор информации, обработка и отображение информации осуществляется процессорным устройством 8.

Устройство, реализующее заявленный способ определения диэлектрической проницаемости, работает следующим образом.

На анализаторе цепей устанавливают заданную частоту , соответствующую - постоянной распространения в пустой части резонатора без образца испытуемого материала для , λкр=С⋅R - критическая длина волны в цилиндрическом волноводе для волны типа H01, , ν01=3,832 - численное значение корня уравнения для функции Бесселя при рассмотрении распространения волны H01 в круглом волноводе. Устанавливают необходимую для наблюдения резонанса полосу обзора.

Настраивают резонатор без образца в резонанс перемещением подвижного поршня с помощью механизма 6 и фиксируют показания датчика перемещения подвижного поршня 7 LT в устройстве 8.

Толщину образца испытуемого материала d вводят в устройство 8.

С помощью механизма 6 подвижный поршень резонатора выводят из резонатора, помещают на него образец испытуемого материала 4 и вводят поршень в резонатор и настраивают резонатор с образцом в резонанс на резонансную частоту, перемещая подвижный поршень и наблюдая резонансную кривую на анализаторе цепей 5.

В устройстве 8 фиксируют показание датчика перемещения подвижного поршня 7 LTS и частоту , соответствующую - постоянной распространения для , с помощью анализатора цепей 5.

В устройстве 8 после сбора информации об измерении производят расчет диэлектрической проницаемости (ε) по формуле:

,

- постоянная распространения в области расположения образца для , а .

Авторами проведена экспериментальная проверка предложенного способа на установке для измерения диэлектрической проницаемости в объемном цилиндрическом резонаторе с волной H01n диаметром 50 мм, настроенным на частоту f1=9,45 ГГц, с добротностью Q=27000, при измерении стандартного образца из стекла диоксида кремния с диэлектрической проницаемостью ε=3,815 и тангенсом угла диэлектрических потерь tgδ=9⋅10-5.

При проведении измерений настройка резонатора с образцом в резонанс подвижным поршнем производилась с отклонениями от начальной длины LTS, соответствующей частоте резонанса ƒ2, и фиксировались величина отклонения по длине ΔL и отклонение по частоте Δƒ.

Предложенный способ измерения диэлектрической проницаемости предполагает, что при введении образца в резонатор произошло изменение длины резонатора и частоты измерения, которые фиксируются и используются в расчете. Вместо операции настройки на резонансную частоту вводится операция фиксации частоты, на которую настроен резонатор с образцом, что позволяет снизить требования к точности установки резонансной частоты, но повысить точность измерения диэлектрической проницаемости.

На фиг. 2 показаны относительные отклонения от величины диэлектрической проницаемости Δε в процентах от величин Δƒ. Из фиг. 2 видно, что при значительных отклонениях по частоте Δƒ, более 1 МГц, изменения диэлектрической проницаемости составили не более 0,01%.

На фиг. 3 показаны относительные отклонения от величины диэлектрической проницаемости Δε в процентах от величин ΔL при проведении измерений по предлагаемому способу и для сравнения приведены измерения, проведенные по существующему способу измерения вариации длины резонатора на фиксированной частоте измерения. Из фиг. 3 видно, что при возрастании отклонений по длине ΔL изменения диэлектрической проницаемости для существующего способа измерения на фиксированной частоте значительно возрастают до 0,146%, а для измерений по предлагаемому способу при максимальном отклонении равному 0,028 мм составили не более 0,01%.

Заявляемый способ заключается в определении диэлектрической проницаемости е материала на основе уточнения расчета разности электрических длин резонатора без образца и с образцом испытуемого материала , реализованной за счет фиксации частоты, на которую настроен резонатор с образцом, в отличии от известного способа, основанного на определении диэлектрической проницаемости ε материала по разности геометрических длин на фиксированной частоте резонатора без образца и с образцом испытуемого материала ΔL=LT-LTS.

Внесенные, в заявляемом способе определения диэлектрической проницаемости изменения в измерительную процедуру позволяют повысить точность определения диэлектрической проницаемости образца испытуемого материала в объемном цилиндрическом резонаторе.

Способ определения диэлектрической проницаемости в объемном волноводном резонаторе с помощью анализатора цепей, включающий настройку резонатора без образца испытуемого материала на резонансную частоту перемещением подвижного поршня, помещение образца испытуемого материала в резонатор, настройку резонатора на резонансную частоту резонатора перемещением подвижного поршня, фиксацию показания датчика перемещения подвижного поршня и вычисление диэлектрической проницаемости, отличающийся тем, что после настройки резонатора с образцом на резонансную частоту фиксируют частоту, на которую настроен резонатор с образцом, а затем её используют при вычислении диэлектрической проницаемости.
Способ определения диэлектрической проницаемости диэлектрических материалов
Способ определения диэлектрической проницаемости диэлектрических материалов
Способ определения диэлектрической проницаемости диэлектрических материалов
Способ определения диэлектрической проницаемости диэлектрических материалов
Способ определения диэлектрической проницаемости диэлектрических материалов
Источник поступления информации: Роспатент

Показаны записи 71-80 из 150.
10.05.2018
№218.016.40e2

Способ тепловых испытаний керамических оболочек

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях. Способ тепловых испытаний керамических оболочек заключается в том, что керамическая оболочка монтируется...
Тип: Изобретение
Номер охранного документа: 0002649248
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.4131

Способ тепловых испытаний металлических шпангоутов керамических обтекателей

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях. Предложен способ тепловых испытаний металлических шпангоутов керамических обтекателей, включающий нагрев...
Тип: Изобретение
Номер охранного документа: 0002649245
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.41ad

Способ анализа результатов активного теплового неразрушающего контроля изделий из полимерных композиционных материалов

Изобретение относится к области неразрушающего контроля материалов и изделий методом теплового контроля и может быть использовано для повышения надежности диагностики при ручном и автоматизированном активном тепловом контроле изделий из полимерных композиционных материалов. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002649247
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.4511

Обтекатель

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет класса «поверхность - поверхность». Обтекатель включает керамическую оболочку, соединенную с переходником эластичным адгезивом,...
Тип: Изобретение
Номер охранного документа: 0002650085
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.459f

Способ изготовления футеровки шаровых мельниц для получения водного шликера кварцевого стекла

Изобретение относится к керамической промышленности и может быть использовано при изготовлении футеровки для шаровых мельниц. Способ заключается в том, что приготавливают шликер кварцевого стекла с плотностью 1,86÷1,91 г/см, тониной с остатком на сите 63 мкм 4÷10%, формуют керамическую...
Тип: Изобретение
Номер охранного документа: 0002650308
Дата охранного документа: 11.04.2018
10.05.2018
№218.016.47c4

Обтекатель

Изобретение относится к области авиационной и ракетной техники и преимущественно может быть использовано при изготовлении антенных обтекателей высокоскоростных ракет различных классов. Обтекатель включает керамическую оболочку, внутренняя поверхность которой соединена слоем эластичного...
Тип: Изобретение
Номер охранного документа: 0002650723
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4857

Способ изготовления сотового заполнителя

Изобретение относится к способу изготовления сотового заполнителя из стеклоткани и может быть использовано в ракето-, самолето- и судостроении, строительной, мебельной и упаковочной промышленности при изготовлении трехслойных конструкций сложной кривизны. Способ включает нанесение клеевых полос...
Тип: Изобретение
Номер охранного документа: 0002651012
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4afc

Способ изготовления формообразующего пуансона

Изобретение относится к технологии формования крупногабаритных, сложнопрофильных керамических изделий из водных шликеров. Способ изготовления формообразующего пуансона включает нанесение слоя пластичного материала, например гипса, на металлический каркас, его обработку до заданного профиля и...
Тип: Изобретение
Номер охранного документа: 0002651731
Дата охранного документа: 23.04.2018
18.05.2018
№218.016.515f

Способ оптимизации радиотехнических характеристик антенного обтекателя со стенкой из многокомпонентного материала

Способ оптимизации радиотехнических характеристик антенного обтекателя со стенкой из многокомпонентного материала, включающий определение толщины стенки, настроенной на рабочий частотный диапазон обтекателя, его изготовление и измерение радиотехнических характеристик на стенде, отличающийся...
Тип: Изобретение
Номер охранного документа: 0002653185
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.5557

Способ испытания на прочность обтекателей из хрупких материалов

Изобретение относится к испытательной технике и может быть использовано при проверке прочности оболочек антенных обтекателей из хрупких материалов, преимущественно керамических, при статических испытаниях. Сущность: осуществляют нагружение обтекателя контрольной нагрузкой в виде поперечной...
Тип: Изобретение
Номер охранного документа: 0002654320
Дата охранного документа: 17.05.2018
Показаны записи 71-80 из 98.
18.05.2018
№218.016.515f

Способ оптимизации радиотехнических характеристик антенного обтекателя со стенкой из многокомпонентного материала

Способ оптимизации радиотехнических характеристик антенного обтекателя со стенкой из многокомпонентного материала, включающий определение толщины стенки, настроенной на рабочий частотный диапазон обтекателя, его изготовление и измерение радиотехнических характеристик на стенде, отличающийся...
Тип: Изобретение
Номер охранного документа: 0002653185
Дата охранного документа: 07.05.2018
26.07.2018
№218.016.7538

Способ оценки предела прочности керамики при растяжении

Изобретение относится к методам определения механических характеристик керамики и может быть использовано для оценки предела прочности при растяжении керамических материалов, используемых в изделиях, требующих индивидуального контроля прочностных свойств. Сущность: осуществляют диаметральное...
Тип: Изобретение
Номер охранного документа: 0002662251
Дата охранного документа: 25.07.2018
01.09.2018
№218.016.81ac

Способ измерения диэлектрических свойств материала и устройство для его осуществления

Изобретение относится к измерению диэлектрической проницаемости и тангенса угла диэлектрических потерь материалов. В свободном пространстве образец материала располагают под углом Брюстера, в диапазоне частот измеряют мощность и фазу прошедшей волны и по изменению фазы прошедшей волны в полосе...
Тип: Изобретение
Номер охранного документа: 0002665593
Дата охранного документа: 31.08.2018
29.12.2018
№218.016.aca0

Проволочный нагреватель для цилиндрической печи

Изобретение относится к области электротермии, в частности к конструкциям нагревателей для нагрева цилиндрических печей. Техническим результатом является повышение равномерности теплового потока и снижение тепловых потерь для достижения высоких температур нагрева при оптимальной токовой...
Тип: Изобретение
Номер охранного документа: 0002676293
Дата охранного документа: 27.12.2018
01.03.2019
№219.016.cd4a

Широкополосный обтекатель

Изобретение относится к антенно-фидерным устройствам, преимущественно к широкополосным антенным обтекателям. Задачей изобретения является снижение искажений, вносимых обтекателем, в поле падающей волны в рабочем диапазоне частот. В широкополосном обтекателе, содержащем стенку из...
Тип: Изобретение
Номер охранного документа: 0002364998
Дата охранного документа: 20.08.2009
01.03.2019
№219.016.ce98

Устройство для определения диэлектрической проницаемости образца материала при воздействии внешних факторов

Изобретение относится к измерениям диэлектрической проницаемости материалов при воздействии внешних факторов, преимущественно к устройствам измерения диэлектрической проницаемости при нагреве. Устройство, содержащее излучающий генератор, передающую линейно поляризованную антенну, камеру для...
Тип: Изобретение
Номер охранного документа: 0002453856
Дата охранного документа: 20.06.2012
01.03.2019
№219.016.cefb

Широкополосная система "антенна-обтекатель"

Изобретение относится к антенно-фидерным устройствам преимущественно к широкополосным системам «антенна-обтекатель» для работы в совмещенных диапазонах. Техническим результатом является снижение пеленгационных ошибок в системе «антенна-обтекатель», работающей в совмещенных диапазонах....
Тип: Изобретение
Номер охранного документа: 0002459324
Дата охранного документа: 20.08.2012
20.05.2019
№219.017.5cf1

Широкополосная система "антенна-обтекатель"

Изобретение относится к антенно-фидерным устройствам, преимущественно к широкополосным системам «антенна-обтекатель». Широкополосная система «антенна-обтекатель» содержит пеленгующую антенну и обтекатель со стенкой из диэлектрического материала, снабженный узлом крепления к летательному...
Тип: Изобретение
Номер охранного документа: 0002688034
Дата охранного документа: 17.05.2019
24.05.2019
№219.017.5e22

Устройство для испытания колец на растяжение и способ испытания

Изобретение относится к испытательной технике и может использоваться для оценки прочностных и деформационных характеристик материала кольца из хрупких материалов, преимущественно керамических, при испытании на растяжение путем последовательного создания в двенадцати зонах растягивающих...
Тип: Изобретение
Номер охранного документа: 0002688590
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.5e7a

Способ определения распределения по размерам и концентрации включений в частично прозрачных сильно рассеивающих материалах

Изобретение относится к области контрольно-измерительной техники и касается способа определения распределения по размерам и концентрации включений в частично прозрачных сильно рассеивающих материалах. Способ включает в себя получение в качестве экспериментальных данных спектральных...
Тип: Изобретение
Номер охранного документа: 0002688587
Дата охранного документа: 21.05.2019
+ добавить свой РИД