×
29.12.2017
217.015.f48f

Результат интеллектуальной деятельности: ТЕПЛОЗАЩИТНЫЙ МАТЕРИАЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплозащитному материалу на основе этиленпропилендиенового каучука, который может использоваться в авиа- и ракетостроении. Теплозащитный материал содержит этиленпропилендиеновый каучук СКЭПТ-40, вулканизующие агенты серу и тиурам Д, ускоритель вулканизации 2-меркаптобензотиазол, активаторы вулканизации оксид цинка и стеарин, технический углерод, модифицирующую добавку, представляющую собой фосфорборазотсодержащий олигомер ФЭДА, и микроуглеродные волокна. Причем модифицирующая добавка предварительно нанесена на микроуглеродные волокна МУВ, посредством их термостатирования при 80°C в 5 мас.% растворе фосфорборазотсодержащего олигомера в ацетоне. Полученный теплозащитный материал обладает повышенной прочностью и увеличенной длительностью теплозащитной эффективности. 2 табл.

Изобретение относится к теплозащитным материалам на основе этиленпропилендиеновых каучуков, которые могут использоваться в авиа- и ракетостроении.

Известен теплозащитный материал АР-998 (ТУ 38.1051211-83), который представляет собой композицию, включающую армирующий теплостойкий наполнитель из асбестовой ткани с двухсторонней обкладкой резиновой смесью на основе синтетического этиленпропилендиенового каучука.

Существенным недостатком этого материала является то, что асбестовая ткань обладает более высоким коэффициентом теплопроводности, чем резиновая смесь, что в свою очередь приводит к увеличению скорости прогрева теплозащитного материала и, как следствие, снижению его теплозащитных характеристик.

Известен теплозащитный материал (Пат. 2404209 РФ, МПК C08L 23/16, В32В 25/10, F16L 59/00, F02K 9/34, - 20.11.2010), выполненный из сформированного слоя арамидного волокна нетканой структуры, проложенного между двумя слоями резиновой смеси марки 51-2110 (ТУ 38.10551177-88) на основе этиленпропилендиенового каучука с последующей вулканизацией в составе изделия.

Недостатком данного теплозащитного материала является то, что в процессе его работы происходит разрушение резинового слоя и унос вещества с поверхности теплозащитного материала, что, в свою очередь, приводит к увеличению скорости прогрева теплозащитного материала, снижению его теплозащитных характеристик и уменьшению ресурса работоспособности изделия или узла в целом.

Известен теплозащитный материал на основе этиленпропилендиенового каучука (Пат. 2486215 РФ, МПК C08L 23/16, 27.06.2013), включающий вулканизующую группу, наполнитель и технологические добавки, дополнительно содержит модифицирующую добавку поливинилиденхлорид или адамантан.

Недостатком данного теплозащитного материала является то, что он не обеспечивает снижение скорости прогрева теплозащитного материала на основе этиленпропилендиенового каучука.

Наиболее близким является теплозащитный материал на основе этиленпропилендиенового каучука СКЭПТ-50, содержащий вулканизующие агенты - серу, дитиодиморфолин, тиурам Д, ускоритель вулканизации 2-меркаптобензотиазол, включая производное бензотиазола, активаторы вулканизации - оксид цинка и стеарин, наполнитель - белую сажу БС-120, технологическую добавку технический углерод П-324 и модифицирующую добавку фосфорборазотсодежащий олигомер, полученный путем взаимодействия бората метилфосфита, эпоксидной смолы ЭД-20 и анилина (Пат. 2600063 РФ, МПК C08L 23/16, C08L 63/00, С08К 3/38, 20.10.2016).

Недостатком данного теплозащитного материала является то, что он не обеспечивает длительного теплозащитного эффекта и имеет невысокие прочностные характеристики.

Задачей предлагаемого изобретения является получение теплозащитных материалов с высокими прочностными характеристиками.

Техническим результатом заявленного изобретения является повышение прочности теплозащитного материала и увеличение длительности теплозащитной эффективности.

Технический результат достигается тем, что теплозащитный материал на основе этиленпропилендиенового каучука содержит вулканизующие агенты серу и тиурам Д, ускоритель вулканизации 2-меркаптобензотиазол, активаторы вулканизации оксид цинка и стеарин, технический углерод и модифицирующую добавку фосфорборазотсодержащий олигомер ФЭДА, при этом в качестве этиленпропилендиенового каучука содержит СКЭПТ-40, а фосфорборазотсодержащий олигомер используют предварительно нанесенный на микроуглеродные волокна МУВ, посредством их термостатирования при 80°C в 5 масс. % растворе фосфорборазотсодержащего олигомера ФЭДА в ацетоне, при следующем соотношении компонентов, масс. ч.: каучук СКЭПТ-40 100,0; сера 2,0; тиурам Д 0,5; 2-меркаптобензотиазол (каптакс) 1,5; оксид цинка 3,0; стеарин 2,0; технический углерод П-234 40,0; микроуглеродные волокна МУВ 5,0-20,0; фосфорборазотсодержащий олигомер ФЭДА 3,0.

В предлагаемом теплозащитном материале используют следующие компоненты:

Этиленпропилендиеновый каучук СКЭПТ-40, содержащий в качестве диенового сомономера дициклопентадиен (ТУ 2294-022-05766801-2002).

Вулканизующая группа, включающая:

вулканизующие агенты - сера (ГОСТ 127-76), тиурам Д (ТУ 6-14-943-79);

ускоритель вулканизации - каптакс (2-меркаптобензотиазол) (ТУ 113-00-05761631-23-91);

активаторы вулканизации - оксид цинка (ГОСТ 202-84), стеарин (ГОСТ 6484-96).

Технический углерод П-234 (ГОСТ 7885-86) используется в составе теплозащитного материала в качестве наполнителя.

В качестве модифицирующей добавки используется фосфорборазотсодержащий олигомер ФЭДА, предварительно нанесенный на поверхность микроуглеродных волокон МУВ.

Нанесение фосфорборазотсодержащего олигомера ФЭДА осуществляют из 5 масс. % раствора фосфорборазотсодержащего олигомера ФЭДА в ацетоне, путем термостатирования микроуглеродных волокон МУВ в данном растворе при 80°C до постоянной массы.

Использование в качестве модифицирующей добавки фосфорборазотсодержащего олигомера ФЭДА, предварительно нанесенного на поверхность микроуглеродных волокон МУВ, придает теплозащитному материалу на основе этиленпропилендиенового каучука повышенную теплостойкость. Образование на поверхности волокон пленки из фосфорборазотсодержащего олигомера ФЭДА препятствует деструкции теплозащитного материала при воздействии высокой температуры за счет образования на поверхности более прочного защитного коксового слоя, а также за счет ингибирования радикально-цепных процессов окисления непосредственно в зоне коксообразования. Указанное также способствует увеличению пенококса, который выполняет теплозащитную функцию, препятствует прогреву и деструкции материала.

Кроме этого, армирование эластомерной матрицы приводит к повышению прочности теплозащитного материала.

Заявленные количества фосфорборазотсодержащего олигомера ФЭДА и микроуглеродных волокон МУВ в сочетании с используемыми ускорителями вулканизации и остальными компонентами резиновой смеси позволяют получить теплозащитный материал, обладающий повышенными теплозащитными характеристиками и прочностью.

Пример

Обработка волокон проводилось следующим образом.

Навеску фосфорборазотсодержащего олигомера в количестве 3,0 масс. % от массы каучука растворяли при периодическом перемешивании в соответствующем количестве ацетона для образования 5 масс. % раствора.

В полученный 5 масс. % раствор фосфорборазотсодержащего олигомера в ацетоне добавляли навеску микроуглеродных волокон в количестве масс. 5,0-20,0% от массы каучука (в соответствии с рецептурой) и перемешивали в течение 5 минут. Затем смесь помещали в термостат при 80°C и сушили до постоянной массы.

Резиновую смесь готовили на вальцах при температуре валков 65-70°C.

Продолжительность смешения 25 минут. Затем проводили вулканизацию резиновой смеси при температуре 155°C в течение 45 минут. Полученные образцы подвергли необходимым испытаниям.

В таблице 1 приведены составы приготовленных смесей и прототипа.

Оценка длительности теплозащитной эффективности образцов теплозащитного материала на основе этиленпропилендиенового каучука при высокотемпературном нагреве проводилась на образцах, изготовленных в виде шайбы диаметром 30 мм и толщиной 6 мм.

Оценка скорости прогрева образцов теплозащитного материала на основе этиленпропилендиенового каучука при высокотемпературном нагреве (теплостойкость) проводилась следующим образом: определялось время прогрева обратной стороны образца, изготовленного в виде шайбы диаметром 30 мм и толщиной 6 мм, до температуры 100°C.

Нагрев образца проводился открытым пламенем газовой горелки (на поверхности создавалась температура 1200°C). Образец закреплялся в штативе под углом 90° к пламени горелки. Для уменьшения стока тепла и уменьшения погрешности опыта образец по краю изолировался асбестом.

Для измерения температуры на необогреваемой поверхности образца использовался пирометр марки С-300.3 «Фотон» (ГОСТ 28243-96 «Пирометры. Общие технические требования»). Принцип работы пирометра основан на измерении мощности теплового излучения объекта измерения преимущественно в диапазонах инфракрасного излучения и видимого света; и контактная хромель-копелевая термопара регулятора «Овен» ТРМ-1.

Для определения коксового числа, предварительно взвешенный образец помещался в муфельную печь на 30 минут при 600°C. Затем образец извлекался, охлаждался при температуре 25°C и снова взвешивался. Коксовое число вычислялось по остаточной массе относительно исходного веса образца.

Теплозащитные свойства предлагаемого теплозащитного материала приведены в табл. 2.

Как видно из представленных данных, предлагаемый теплозащитный материал обладает большей длительностью теплозащитной эффективности и большими показателями прочности.

Таким образом, введение в состав резиновой смеси на основе этиленпропилендиенового каучука СКЭПТ-40 с заявленным составом модифицирующей добавки фосфорборазотсодержащего олигомера, предварительно нанесенного на микроуглеродные волокна МУВ, посредством их термостатирования при 80°C в 5 масс. % растворе фосфорборазотсодержащего олигомера ФЭДА в ацетоне приводит к повышению прочности теплозащитного материала и увеличению длительности его теплозащитной эффективности.

Источник поступления информации: Роспатент

Показаны записи 291-300 из 430.
23.08.2019
№219.017.c30e

Чувствительный элемент

Изобретение относится к измерительной технике, в частности может быть использовано для надежного и точного измерения усилий большой величины в широком диапазоне. Чувствительный элемент содержит упругий цилиндрический стержень, оба конца которого снабжены силовоспринимающими элементами в виде...
Тип: Изобретение
Номер охранного документа: 0002698073
Дата охранного документа: 21.08.2019
24.08.2019
№219.017.c370

Способ получения ароматических амидов 1-адамантанкарбоновой кислоты

Изобретение относится к способу получения ароматических амидов 1-адамантанкарбоновой кислоты, который заключается во взаимодействии карбоновой кислоты с ароматическим первичным амином в среде абсолютного ацетонитрила в присутствии основания и комплекса хлорида фосфора с 4-диметиламинопиридином,...
Тип: Изобретение
Номер охранного документа: 0002698193
Дата охранного документа: 23.08.2019
02.10.2019
№219.017.cae2

Способ получения износостойких покрытий на поверхностях пластин из алюминиевого сплава и меди

Изобретение относится к технологии получения износостойких покрытий на металлах с помощью энергии взрывчатых веществ (ВВ) и может быть использовано, например, при изготовлении пар трения в виде тормозных устройств. Составляют пакет с симметричным размещением между двумя одинаковыми пластинами...
Тип: Изобретение
Номер охранного документа: 0002701699
Дата охранного документа: 30.09.2019
02.10.2019
№219.017.cecc

Способ получения термо- и теплостойких полимеров на основе трис-[(1-галогенметил-2-аллилокси)этокси]фосфинов

Настоящее изобретение относится к области полимеризационных процессов, в частности к разработке реакционноспособных фотополимеризующихся композиций, которые могут быть использованы для ускоренного формирования термо- и теплостойких покрытий с пониженной горючестью. Способ получения термо- и...
Тип: Изобретение
Номер охранного документа: 0002700698
Дата охранного документа: 19.09.2019
02.10.2019
№219.017.cf9c

Способ определения предела выносливости материала при изгибе

Изобретение относится к области определения прочностных свойств конструкционных материалов и может быть использовано для определения предела выносливости при изгибе. Сущность: измеряют радиусы кривизны поверхности испытуемого материала в сечениях двумя плоскостями главных кривизн и радиус...
Тип: Изобретение
Номер охранного документа: 0002700328
Дата охранного документа: 16.09.2019
02.10.2019
№219.017.d024

Способ подачи смазочно-охлаждающих технологических средств

Способ включает подачу в зону резания ионизированного в поле коронного разряда газового потока с температурой 40–80°С, подачу на поверхность обрабатываемой детали потока распыленной жидкости, причем пятно контакта потока распыленной жидкости с поверхностью обрабатываемой детали расположено за...
Тип: Изобретение
Номер охранного документа: 0002700223
Дата охранного документа: 13.09.2019
02.10.2019
№219.017.d08d

Способ предупреждения засыпания водителя транспортного средства

Изобретение относится к области контроля состояния водителя и обеспечения безопасности управления транспортных средств. Способ предупреждения засыпания водителя транспортного средства, включающий формирование эталона зрачка водителя на основе общего для любого человека описания, периодическое...
Тип: Изобретение
Номер охранного документа: 0002700253
Дата охранного документа: 13.09.2019
02.10.2019
№219.017.d0d1

Система защиты гидропривода

Изобретение относится к машиностроению и может быть использовано для защиты от несанкционированного выброса рабочей жидкости из гидросистем строительно-дорожных, сельскохозяйственных, мелиоративных, лесотехнических, промышленных машин и гидрофицированного рабочего оборудования машин. Система...
Тип: Изобретение
Номер охранного документа: 0002700487
Дата охранного документа: 17.09.2019
02.10.2019
№219.017.d0ef

Способ получения 3-иод-1-перфторалкиладамантанов

Изобретение относится к химии производных адамантана, а именно к новому способу получения 3-иод-1-перфторалкиладамантанов, которые могут найти применение в химико-фармацевтической промышленности. Техническим результатом является упрощение способа получения 3-иод-перфторалкиладамантанов....
Тип: Изобретение
Номер охранного документа: 0002700771
Дата охранного документа: 20.09.2019
02.10.2019
№219.017.d12b

Способ получения медно-никелевого покрытия на поверхностях титановой пластины

Изобретение относится к получению износостойких покрытий на титане с помощью энергии взрывчатых веществ и с использованием лазерного излучения, в частности, при изготовлении материалов для пар трения, тормозных устройств и т.п. Составляют симметричный трехслойный пакет из чередующихся пластин...
Тип: Изобретение
Номер охранного документа: 0002700441
Дата охранного документа: 17.09.2019
Показаны записи 161-161 из 161.
02.06.2023
№223.018.756f

Водный раствор для тушения пожаров

Изобретение относится к области пожаротушения, в частности к составам на основе воды, применяемым при тушении лесных пожаров и для защиты древесины, деревянных конструкций и материалов от возгорания. Водный раствор для тушения пожаров содержит воду, жидкое стекло с модулем 2,5-3,2 и...
Тип: Изобретение
Номер охранного документа: 0002764689
Дата охранного документа: 19.01.2022
+ добавить свой РИД