×
29.12.2017
217.015.f43c

Результат интеллектуальной деятельности: КОМПОЗИЦИОННАЯ СМЕСЬ ДЛЯ ОСАЖДЕНИЯ ОКСИДОВ ДЕЛЯЩИХСЯ И ОСКОЛОЧНЫХ НУКЛИДОВ ИЗ РАСПЛАВА ЭВТЕКТИЧЕСКОЙ СМЕСИ LiF-NaF-KF

Вид РИД

Изобретение

Аннотация: Изобретение относится к области переработки отработавшей топливной композиции жидкосолевого реактора. Композиционная смесь для осаждения оксидов делящихся и осколочных нуклидов из расплава эвтектической смеси LiF-NaF-KF без изменения состава эвтектической смеси, содержащая LiO, NaF, KF при следующем соотношении компонентов, мол. %: LiO - 30,3, NaF - 15,0, KF - 54,7. Изобретение обеспечивает эффективное осаждение делящихся и осколочных нуклидов из расплава эвтектической смеси фторидов FLiNaK без изменения состава эвтектики. 2 пр.

Изобретение относится к области переработки отработавшей топливной композиции жидкосолевого реактора (ЖСР) с топливной солью на основе эвтектики FLiNaK (LiF-NaF-KF).

Известно, что растворы фторидов урана и плутония (UF4, PuF3) в эвтектике FLiNaK [LiF-NaF-KF (46.5-11.5-42 мол. %)] отвечают основным требованиям, предъявляемым к уран-плутониевой топливной композиции жидкосолевого реактора (ЖСР) (М.Б. Серегин, А.В. Паршин, А.Ю. Кузнецов и др., Радиохимия, 2011, т. 53, No. 5, с. 416-418); (А.А. Лизин, С.В. Томилин, О.Е. Гневашов и др., Атомная энергия, 2013, т. 115, No. 1, с. 11-16).

Эвтектическая смесь FLiNaK имеет температуру плавления (tпл=454°С), почти в два раза более низкую, чем температура плавления образующих ее фторидов щелочных металлов и существенно более низкую, чем температура топлива работающего ЖСР (600-700°С). Благодаря хорошей растворимости делящихся нуклидов и осколков деления, использование FLiNaK в качестве топливной соли обеспечивает гомогенность топливной композиции ЖСР в широком температурном интервале.

Неотъемлемым условием непрерывного функционирования замкнутого ядерного топливного цикла жидкосолевого реактора является рециклирование топливной композиции, включающее очистку топливной композиции от накопившихся осколков деления без изменения состава топливной соли, компенсацию выгоревшей части топлива и возвращение регенерированного топлива в реактор. Согласно концепции замкнутого ядерного топливного цикла ЖСР эти задачи должны решаться на приреакторном радиохимическом узле без остановки реактора.

Известно извлечение осколочных нуклидов из расплава топливной соли LiF-BeF2 с помощью расплава висмута (W.R. Grimes, Oak Ridge National Laboratory, Molten-salt reactor chemistry. Nuclear Applications and Technology, vol. 8, pp. 137-155, 1970). Показано, что расплав висмута достаточно эффективно экстрагирует редкоземельные элементы. Недостатком экстракции висмутом является загрязнение топливной композиции фторидом висмута, образующимся при экстракции, что существенно затрудняет регенерацию топливной соли при рециклировании отработавшего топлива ЖСР.

Известно осаждение оксидов урана, плутония и осколочных элементов из расплава их фторидов в топливной соли LiF-NaF при введении в расплав окиси кальция. После осаждения содержание урана и плутония в надосадочном расплаве составляет ~0.1 вес. %, а лантана и церия ~0.05 вес. %. (Горбунов В.Ф., Г.П. Новоселов, С.А. Уланов и др., Исследование взаимодействия фторидов плутония, урана и редкоземельных элементов с окислами некоторых металлов в расплавах фтористых солей, "Радиохимия", 1976, т. XVIII, No. 1, с. 109-114). Основным недостатком осаждения окисью кальция является образование фторида кальция, удаление которого из топливной соли для сохранения ее состава при рециклировании является сложной задачей.

Таким образом, известные реагенты, предложенные для регенерации топливной композиции ЖСР, не обеспечивают проведение регенерации без изменения состава топливной соли.

Задачей изобретения является разработка композиционной смеси, обеспечивающей эффективное осаждение делящихся и осколочных нуклидов в форме оксидов из расплава эвтектической смеси фторидов FLiNaK без изменения состава эвтектической смеси.

Решение поставленной задачи достигается тем, что для осаждения оксидов делящихся и осколочных нуклидов из расплава FLiNaK используют композиционную смесь, полученную замещением фторида лития в эвтектической смеси FLiNaK на его оксид при сохранении в смеси исходного отношения атомных процентов Li : Na : K = 1:0.25:0.90.

Полученная композиционная смесь содержит Li2O, NaF, KF при следующем их соотношении, мол. %:

Li2O - 30,3

NaF - 15,0

KF - 54,7.

По аналогии с аббревиатурой FLiNaK, для предлагаемой композиционной смеси удобно использовать аббревиатуру FOLiNaK(Li2O), которая отражает кислород-фторидный состав анионной части реагента, его генетическую связь с эвтектикой FLiNaK и содержит формулу замещающего оксида щелочного металла.

При взаимодействии оксида лития, входящего в состав FOLINaK(Li2O), с фторидами нуклидов, растворенными в расплаве FLiNaK, образуются выпадающие в осадок труднорастворимые оксиды делящихся и осколочных нуклидов по фтор-кислородным обменным реакциям:

в то время как оксид лития, содержащийся в FOLINaK(Li2O), превращается в LiF и остается в расплаве. Поскольку согласно предлагаемому решению отношение атомных процентов Li : Na : K в осаждающей смеси FOLiNaK(Li2O) берется таким же, как в эвтектике FLiNaK (1:0.25:0.90), и реакции осаждения (1) сильно смещены вправо, при осаждении нуклидов композиционной смесью FOLiNaK(Li2O) оксидные анионы практически полностью замещаются фторидными анионами, и композиционная смесь FOLiNaK(Li2O) превращается в эвтектику FLiNaK.

При этом, как будет показано в примерах, полнота осаждения нуклидов предлагаемой композиционной смесью не уступает полноте осаждения окисью кальция (смотри цитированную выше статью Горбунов В.Ф., Г.П. Новоселов, С.А. Уланов и др., "Радиохимия", 1976, т. XVIII, No. 1, с. 109-114).

Таким образом, в предлагаемом решении выполнена основная задача изобретения - разработана композиционная смесь, обеспечивающая эффективное осаждение делящихся и осколочных нуклидов в форме оксидов из расплава эвтектической смеси фторидов FLiNaK без изменения состава эвтектики.

Очевидно, что FOLiNaK(Li2O) будет осаждать нуклиды из расплава эвтектической смеси фторидов FLiNaK без изменения состава эвтектики лишь до тех пор, пока оксидные анионы, содержащиеся в композиционной смеси FOLiNaK(Li2O), расходуются на превращение фторидных форм нуклидов в оксиды. Завершение осаждения нуклидов фиксируется по скачку окислительно-восстановительного потенциала расплава, свидетельствующему о появлении в расплаве сверхэквивалентного количества оксидных анионов.

Композиционную смесь FOLiNaK(Li2O) готовят из безводных препаратов Li2O, NaF и KF. Все операции проводят в боксе, заполненном и продуваемом сухим аргоном, очищенным от кислорода. Исходные соединения идентифицировали методом РФА, наличие воды в реагентах контролировали ИК-спектроскопически. Перед использованием все реагенты измельчали. Навески порошков Li2O (8.96 г), NaF (6.30 г), KF (31.32 г) насыпают в никелевый тигель, который помещают в реактор, снабженный герметичной крышкой с мешалкой и патрубками для продувки аргона. Смесь выдерживают при температуре 600°С в течение часа в атмосфере аргона при периодическом перемешивании. Образовавшийся расплав FOLiNaK(Li2O) выливают в форму из никелевой фольги и охлаждают до комнатной температуры. Полученный слиток измельчают и хранят в герметично закрытой емкости. FOLiNaK(Li2O) удобно также использовать в виде прессованных гранул. Полученная композиционная смесь FOLiNaK(Li2O) имеет состав, мол. %: Li2O 30.3, NaF 15.0, KF 54.7. Содержание оксидных анионов в композиционной смеси равняется 0.643 г-атомов кислорода в 100 г смеси (1.28 10-2 г-экв. О в грамме смеси).

Эвтектику FLiNaK состава (мол. %) LiF 46.5, NaF 11.5, KF 42 готовят нагреванием смеси порошков безводных фторидов LiF, NaF и KF [LiF (12.06 г), NaF (4.83 г) и KF (24.40 г)] при 600°С. Полученный прозрачный расплав FLiNaK выливают в форму из никелевой фольги и охлаждают до комнатной температуры. Слиток измельчают и хранят в герметично закрытой емкости. FLiNaK удобно также использовать в виде прессованных гранул.

Пример 1

Навеску FLiNaK (12.024 г) насыпают в никелевый тигель, тигель помещают в реактор и выдерживают при 600°С в течение 30-40 минут в токе аргона при периодическом перемешивании. В полученный расплав вносят навеску UF4 (1.006 г), содержащую 0.762 г урана (3.20 10-3 грамм-атома). Расплаву дают отстояться при 600°С в течение часа. Полученный расплав выдерживают при периодическом перемешивании в течение часа, в расплав погружают электрод, чувствительный к изменению окислительно-восстановительного потенциала расплава, и небольшими порциями добавляют FOLiNaK(Li2O) до скачка показаний электрода, свидетельствующего о завершении осаждения урана. В точке эквивалентности количество добавленной композиционной смеси составило 1.019 г. Осадку дают отстояться при 600°С в течение часа и определяют содержание урана в надосадочном расплаве. Для этого отбирают пробу надосадочного расплава (1-2 мл), выливают на никелевую фольгу, и после охлаждения полученный слиток взвешивают. Слиток растворяют в азотной кислоте и 2-3 раза перепаривают с азотной кислотой для удаления HF. В полученном азотнокислом растворе определяют содержание урана на эмиссионном спектрометре с индуктивно связанной плазмой. После осаждения урана его содержание в расплаве уменьшилась с 5.6 вес. % г до 0.09 вес. %. Полученное значение концентрации урана в надосадочном расплаве при осаждении композиционной смесью FOLiNaK(Li2O) (0.09 вес. %) в пределах ошибки определения (±5%) не отличается от значения ~0.1 вес. %, полученного при осаждении урана в расплаве LiF-NaF при 800°С окисью кальция (смотри цитированную выше статью Горбунов В.Ф., Г.П. Новоселов, С.А. Уланов и др., "Радиохимия", 1976, т. XVIII, No. 1, с. 109-114). Осадок отфильтровывают и очищают от примеси фторидов щелочных металлов путем вакуумной отгонки при 1100°С. Согласно данным рентгенофазового анализа полученный осадок является диоксидом урана UO2.

Из приведенного примера видно, что при осаждении урана композиционной смесью FOLiNaK(Li2O) в осадок перешло 0.751 г урана (3.15 10-3 г-атома урана) в форме UO2.

Учитывая, что атом урана в UO2 связан с двумя атомами кислорода, при стехиометрическом осаждении на образование UO2 должно пойти 6.30 10-3 г-атомов кислорода, содержащихся в композиционной смеси. Поскольку, как показано выше, один грамм FOLiNaK(Li2O) содержит 0.643 10-2 г-атомов кислорода, для осаждения 3.15 10-3 г-атомов урана требуется 0.980 г FOLiNaK. Как было показано выше, на осаждение урана пошло 1.019 г FOLiNaK(Li2O). Эта величина в пределах ошибки определения (±5%) совпадает с количеством FOLiNaK(Li2O), необходимым для стехиометрического осаждения урана. Полученные данные показывают, что в пределах погрешности эксперимента при осаждении урана композиционной смесью FOLiNaK(Li2O) происходит эквивалентное замещение фторидных анионов UF4 оксидными анионами с образованием осадка UO2, а композиционная смесь FOLiNaK(Li2O) превращается в исходную эвтектику FLiNaK.

Пример 2

Навеску FLiNaK (12.024 г) насыпают в никелевый тигель, тигель помещают в реактор и выдерживают при 600°С в течение 30-40 минут в токе аргона при периодическом перемешивании. В полученный расплав эвтектики FLiNaK вносят навески порошков UF4 0.503 г (0.381 г урана) и NdF3 0.051 г (0.036 г Nd). Неодим использовали в качестве модельного аналога Pu(III) и осколочных РЗЭ(Ш). Полученный расплав выдерживают при периодическом перемешивании в течение часа, погружают ред-окс чувствительный электрод и небольшими порциями добавляют FOLiNaK(Li2O) до скачка показаний электрода. В точке эквивалентности количество добавленного реагента FOLiNaK (Li2O) составило 0.572 г. Расплаву дают отстояться при 600°С в течение часа. Для определения содержания урана и неодима отбирают пробу расплава (1-2 мл), выливают на никелевую фольгу, охлаждают и полученный слиток взвешивают. Слиток переносят в стакан и 2-3 раза перепаривают с азотной кислотой для удаления HF. В полученном азотнокислом растворе определяют содержание урана и неодима на эмиссионном спектрометре с индуктивно связанной плазмой. После осаждения содержание урана в надосадочном расплаве уменьшилась с 3.06 вес. % до 0.08 вес. %, а неодима с 0.29 вес. % до 0.04 вес. %. Таким образом, концентрация урана и неодима в надосадочном расплаве при осаждении предлагаемой композиционной смесью находится на том же уровне, что и при осаждении оксидов РЗЭ (Се, La) из раствора их фторидов в расплаве LiF-NaF окисью кальция (смотри цитированную выше статью Горбунов В.Ф., Г.П. Новоселов, С.А. Уланов и др., " Радиохимия", 1976, т. XVIII, No. 1, с. 109-114). Осадок отфильтровывают и очищают от остатков фторидов щелочных металлов путем вакуумной отгонки при 1100°С. Согласно данным рентгенофазового анализа уран и неодим находятся в осадке в форме механической смеси оксидов UO2 и Nd2O3. Как показано выше, на совместное осаждение оксидов урана и неодима пошло 0.572 г FOLiNaK. Эта величина совпадает в пределах ошибки определения (±5%) с количеством FOLiNaK, необходимым для стехиометрического осаждения суммы оксидов урана и неодима (0.555 г), то есть при осаждении происходит эквивалентное замещение фторидных анионов UF4 и NdF3 оксидными анионами FOLiNaK(Li2O), который превращается в исходную эвтектику FLiNaK.

Предлагаемая композиционная смесь может быть использована в схеме приреакторного узла рециклирования отработавшего топлива ЖСР на основе эвтектики FLiNaK путем комбинации процессов осаждения оксидов делящихся и осколочных нуклидов из расплава отработавшей топливной композиции, растворения осадка оксидов в азотной кислоте и последующей их переработки с помощью ПУРЕКС-процесса.

Источник поступления информации: Роспатент

Показаны записи 21-30 из 33.
04.04.2018
№218.016.354b

Экстракционная смесь для выделения америция и европия из карбонатно-щелочных растворов

Изобретение относится к экстракционным системам, предназначенным для извлечения радионуклидов из карбонатно-щелочных растворов, в частности америция и европия, и может найти применение в аналитической химии, а также при переработке жидких радиоактивных отходов. Используется экстракционная...
Тип: Изобретение
Номер охранного документа: 0002645990
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35d3

Способ получения фторсодержащих диалкилкарбонатов

Изобретение относится к способу получения фторсодержащих диалкилкарбонатов, включающему взаимодействие фторированных спиртов с четыреххлористым углеродом в присутствии катализатора - галогенидов металлов. Причем полученную смесь подвергают разгонке, к реакционной массе, оставшейся после...
Тип: Изобретение
Номер охранного документа: 0002646226
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.4ea2

Способ получения тетракис-(трифторфосфина) никеля

Изобретение относится к технологии синтеза тетракис-(трифторфосфина) никеля, используемого для нанесения покрытий из никеля при осаждении из газовой фазы, и в качестве рабочего газа при газоцентрифужном обогащении изотопов никеля для производства бета-вольтаических источников тока. Способ...
Тип: Изобретение
Номер охранного документа: 0002650955
Дата охранного документа: 18.04.2018
09.06.2018
№218.016.5bdb

Герметичный изотопный источник осколков деления на основе калифорния-252 и способ его изготовления

Изобретение относится к устройству и способу изготовления герметичного изотопного источника осколков деления на основе калифорния-252. На алюминиевую подложку осаждают калифорний-252 методом десорбции вещества под действием собственных осколков деления (самораспыления), после чего формируют...
Тип: Изобретение
Номер охранного документа: 0002655668
Дата охранного документа: 29.05.2018
21.11.2018
№218.016.9f05

Способ очистки солевых растворов от радионуклидов и установка для его осуществления

Группа изобретений относится к области химической технологии очистки растворов от радиоактивных элементов. Способ очистки солевых растворов от радионуклидов на основе электрохимического получения селективного сорбента - титано-алюминатных гидроксокомплексов, заключается в том, что после...
Тип: Изобретение
Номер охранного документа: 0002672662
Дата охранного документа: 19.11.2018
29.05.2019
№219.017.6328

Способ получения радиоизотопа молибден-99

Изобретение относится к способу производства радиоизотопа молибден-99, являющегося основой для создания радиоизотопных генераторов Мо-99/Тс-99m, применяемых в ядерной медицине для диагностических целей. Способ включает изготовление мишени из молибдена с обогащением по изотопу молибден-98...
Тип: Изобретение
Номер охранного документа: 0002688196
Дата охранного документа: 21.05.2019
19.06.2019
№219.017.83f3

Топливная композиция для водоохлаждаемых реакторов аэс на тепловых нейтронах

Изобретение относится к топливу АЭС на тепловых нейтронах. Топливная композиция включает смесь регенерированного плутония и обогащенного урана в виде оксидов, причем в качестве обогащенного урана используется обогащенный природный уран и регенерированный плутоний, при соотношении компонентов,...
Тип: Изобретение
Номер охранного документа: 0002691621
Дата охранного документа: 17.06.2019
06.10.2019
№219.017.d2ef

Комплекс для иммобилизации радионуклидов из жидких вао

Группа изобретений относится к комплексу для иммобилизации радионуклидов из жидких ВАО. Комплекс для иммобилизации радионуклидов из жидких ВАО включает последовательно расположенные установку для синтеза неселективного сорбента, средства подачи сорбента, блок сорбции, систему отделения...
Тип: Изобретение
Номер охранного документа: 0002702096
Дата охранного документа: 04.10.2019
06.10.2019
№219.017.d325

Способ получения монофазных солей актинидов и устройство для их получения

Изобретение относится к области ядерной энергетики, в частности к получению монофазных порошков солей актинидов, которые являются прекурсорами при создании таблеток ядерного топлива. Способ получения монофазных порошков солей актинидов включает непрерывное дозирование азотнокислого...
Тип: Изобретение
Номер охранного документа: 0002702095
Дата охранного документа: 04.10.2019
24.10.2019
№219.017.dab8

Способ получения радиоизотопа молибден-99

Изобретение относится к технологии получения радиоизотопов и может быть использовано для производства радиоизотопа молибден-99. Предложенное изобретение основано на эффекте Сцилларда-Чалмерса. Способ получения радиоизотопа молибден-99 включает изготовление мишени из молибдена-98, облучение...
Тип: Изобретение
Номер охранного документа: 0002703994
Дата охранного документа: 23.10.2019
Показаны записи 21-28 из 28.
04.04.2018
№218.016.354b

Экстракционная смесь для выделения америция и европия из карбонатно-щелочных растворов

Изобретение относится к экстракционным системам, предназначенным для извлечения радионуклидов из карбонатно-щелочных растворов, в частности америция и европия, и может найти применение в аналитической химии, а также при переработке жидких радиоактивных отходов. Используется экстракционная...
Тип: Изобретение
Номер охранного документа: 0002645990
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.35d3

Способ получения фторсодержащих диалкилкарбонатов

Изобретение относится к способу получения фторсодержащих диалкилкарбонатов, включающему взаимодействие фторированных спиртов с четыреххлористым углеродом в присутствии катализатора - галогенидов металлов. Причем полученную смесь подвергают разгонке, к реакционной массе, оставшейся после...
Тип: Изобретение
Номер охранного документа: 0002646226
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.4ea2

Способ получения тетракис-(трифторфосфина) никеля

Изобретение относится к технологии синтеза тетракис-(трифторфосфина) никеля, используемого для нанесения покрытий из никеля при осаждении из газовой фазы, и в качестве рабочего газа при газоцентрифужном обогащении изотопов никеля для производства бета-вольтаических источников тока. Способ...
Тип: Изобретение
Номер охранного документа: 0002650955
Дата охранного документа: 18.04.2018
20.03.2019
№219.016.e8c4

Способ иммобилизации жидких рао в керамику

Изобретение относится к области радиохимической технологии и может быть использовано для иммобилизации радиоактивных отходов. Способ иммобилизации жидких РАО в керамику включает концентрирование радиоактивного раствора, смешивание его с фосфатной матрицей и дальнейшую термическую обработку....
Тип: Изобретение
Номер охранного документа: 0002432631
Дата охранного документа: 27.10.2011
10.07.2019
№219.017.ae72

Способ переработки облученного ядерного топлива

Изобретение относится к области радиохимической технологии и может быть использовано для переработки облученного ядерного топлива. Способ переработки ОЯТ включает растворение топлива, экстракцию нитратов урана и актинидов нейтральными фосфорорганическими соединениями, растворенными в...
Тип: Изобретение
Номер охранного документа: 0002366012
Дата охранного документа: 27.08.2009
09.10.2019
№219.017.d3ac

Ремикс - топливо ядерно-топливного цикла

Изобретение относится к оксидному уран-плутониевому ядерному РЕМИКС-топливу АЭС с реакторами на тепловых нейтронах. Топливо характеризуется тем, что содержит плутоний, полученный при переработке ОЯТ реакторов типа ВВЭР, в количестве 1-2 мас%. с содержанием изотопа Pu-239 более 51%, обогащенный...
Тип: Изобретение
Номер охранного документа: 0002702234
Дата охранного документа: 07.10.2019
24.10.2019
№219.017.dab8

Способ получения радиоизотопа молибден-99

Изобретение относится к технологии получения радиоизотопов и может быть использовано для производства радиоизотопа молибден-99. Предложенное изобретение основано на эффекте Сцилларда-Чалмерса. Способ получения радиоизотопа молибден-99 включает изготовление мишени из молибдена-98, облучение...
Тип: Изобретение
Номер охранного документа: 0002703994
Дата охранного документа: 23.10.2019
23.05.2023
№223.018.6e23

Способ термической конверсии диметилглиоксимата ni в оксид nio

Изобретение относится к технологии изотопных материалов, в частности к способу получения оксида никеля NiO путем термической конверсии диметилглиоксимата никеля [Ni(DMGH)]. Способ включает смешивание диметилглиоксимата никеля с дигидратом щавелевой кислоты при весовом отношении...
Тип: Изобретение
Номер охранного документа: 0002750388
Дата охранного документа: 28.06.2021
+ добавить свой РИД