×
29.12.2017
217.015.f40f

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ ИЗ РАСТВОРА

Вид РИД

Изобретение

№ охранного документа
0002637018
Дата охранного документа
29.11.2017
Аннотация: Изобретение относится к скоростному росту кристаллов из раствора. Устройство для выращивания профилированных кристаллов из раствора содержит герметичный кристаллизатор 3, установленную внутри него ростовую камеру 1 прямоугольного сечения с затравочным кристаллом 2 и систему подачи раствора к кристаллу 2, включающую неперемещающийся насос 5 для подачи насыщенного раствора в зону роста кристалла 2 и расположенную над растущей поверхностью кристалла 2 пластину 6, выполненную с возможностью возвратно-поступательного движения в вертикальном направлении и постепенного движения вверх по мере роста кристалла, имеющую ширину и длину меньше ширины и длины ростовой камеры 1, так что между пластиной 6 и стенками камеры 1 есть щели, соединенную с приводом 7 не менее чем одной штангой 8 изменяемой длины с узлом крепления 9 к пластине 6, позволяющим изменять угол между пластиной 6 и штангой 8. Возможно также выполнение пластины 6 с отверстиями для дополнительного прохода раствора. Техническим результатом является упрощение и облегчение конструкции устройства для выращивания профилированных кристаллов из раствора и улучшение условий для выращивания кристаллов в таком устройстве. 1 з.п. ф-лы, 4 ил.

Изобретение относится к скоростному росту кристаллов из раствора в прямоугольной ростовой камере (далее - камере) в кристаллизаторе.

Обычно кристаллы выращивают в условиях свободного роста в устройствах, оснащенных мощным механизмом крепления кристалла и вращения его в кристаллизаторе с большим объемом раствора. Подача раствора к растущим граням кристалла осуществляется путем вращения кристалла в растворе, при этом кристаллы имеют большой размер (до 400 мм) и значительный вес (до 150 кг). Выращивание кристаллов в таких устройствах требует больших временных затрат, поскольку скорость роста кристаллов низкая. Кроме того, в связи с наличием в выращиваемом кристалле областей напряжений в периферии и областей граней в центре для изготовления элементов высокого оптического качества пригодна лишь часть кристалла, составляющая не более одной трети от его диаметра. Таким образом, при вырезании оптических элементов из таких кристаллов получается большое количество отходов.

Известно устройство для выращивания высокоскоростным способом профилированных кристаллов из раствора заданной формы, близкой к форме требуемого оптического элемента для лазерной техники, которое описано в патенте РФ №1342056.

Устройство сдержит герметичный кристаллизатор, заполненный раствором. Внутри кристаллизатора установлена ростовая камера (далее - камера) с затравочным кристаллом и погружной насос, имеющий одно или несколько сопел, выходное отверстие которых выполнено в виде щели. Для получения кристаллов прямоугольной формы камера выполнена прямоугольного сечения, а насос установлен с возможностью качания в вертикальной плоскости, параллельной одной из сторон камеры. Длина щели сопла равна стороне камеры, перпендикулярной плоскости качания насоса. На крышке кристаллизатора установлен механизм перемещения насоса с приводом. Камера снабжена механизмом вертикального перемещения с приводом, который обеспечивает опускание камеры по мере роста грани кристалла, поддерживая заданное расстояние между гранью кристалла и выходного среза сопла. Подача питающего раствора производится через сопла, периодически перемещающиеся вдоль растущей грани кристалла в направлении, перпендикулярном щели сопла. Камеру устанавливают на высоте, обеспечивающей определенное расстояние от растущей грани кристалла до выходного среза сопла.

Недостатками прототипа являются: неравномерная подача раствора к поверхности кристалла, наличие на поверхности кристалла зон, на которые не производится подача раствора, необходимость использования громоздкой механической системы перемещения ростовой камеры и такой же громоздкой системы перемещения мощного погружного насоса, большая сложность изготовления погружного насоса.

Сопла погружного насоса, подающие раствор, периодически проходят над растущей гранью кристалла, соответственно в текущий момент времени подпитываются только те участки кристалла, над которыми проходят сопла насоса, остальные временно находятся без подпитки, т.е. значительное время к этим участкам растущей грани не производится подача раствора.

Для поддержания постоянного расстояния между соплами погружного насоса и растущей гранью кристалла необходимо перемещать ростовую камеру вниз. Ростовая камера с кристаллом обладает большим весом (до 50 кг), для ее перемещения требуется сложная дорогостоящая механическая система.

Насос, химически нейтральный по отношению к раствору и имеющий сложную форму, изготавливается из стекла. Он состоит из нескольких деталей: корпуса с соплами и спрямляющими поток раствора элементами внутри, турбины и вала, соединяющегося с мотором. Эта тяжелая и громоздкая конструкция приводится в движение приводом, обеспечивающим качание. Все вместе это также является громоздкой и дорогой в изготовлении системой.

Задача, на решение которой направлено заявляемое изобретение, заключается в упрощении и облегчении конструкции устройства для выращивания профилированных кристаллов из раствора и улучшении условий для выращивания кристаллов в таком устройстве.

Технический эффект достигается тем, что устройство для выращивания профилированных кристаллов из раствора содержит герметичный кристаллизатор, установленную внутри него камеру роста с затравочным кристаллом и систему подачи раствора к кристаллу.

Новым является то, что система подачи включает неперемещающийся насос для подачи насыщенного раствора в зону роста кристалла и расположенную над растущей поверхностью кристалла пластину, выполненную с возможностью возвратно-поступательного движения в вертикальном направлении и постепенного движения вверх по мере роста кристалла, имеющую ширину и длину меньше ширины и длины ростовой камеры, так что между пластиной и стенками камеры есть щели, соединенную с приводом не менее чем одной штангой изменяемой длины с узлом крепления к пластине, позволяющим изменять угол между пластиной и штангой.

В частном случае реализации изобретения по п. 2 новым является то, что пластина выполнена с отверстиями для дополнительного прохода раствора.

Фиг. 1 - одна из возможных схем реализации устройства.

Фиг. 2 - размещение пластины в форме, вид сверху.

Фиг. 3 - поперечный разрез А-А на фиг. 2.

Фиг. 4 - схема процесса подачи раствора к растущей грани кристалла.

Устройство для выращивания профилированных кристаллов из раствора содержит ростовую камеру 1 с затравочным кристаллом 2, которая статично расположена в кристаллизаторе 3, заполненном раствором 4. Система подачи раствора к затравочному кристаллу 2 состоит из изготовленных из материала, химически инертного к раствору 4, неперемещающающегося насоса 5 для подачи насыщенного раствора в зону роста затравочного кристалла 2 и расположенной над растущей гранью затравочного кристалла 2 пластины 6, выполненной с возможностью возвратно-поступательного движения в вертикальном направлении, имеющей ширину и длину меньше ширины и длины ростовой камеры 1, так что между пластиной 6 и стенками ростовой камеры 1 образуются щели, соединенной с приводом 7 не менее чем одной штангой 8 изменяемой длины с узлом крепления 9 штанги 8 к пластине 6, позволяющим изменять угол между пластиной 6 и штангой 8.

На фиг. 1 приведена одна из возможных схем реализации изобретения, в которой использованы две штанги 8. В зависимости от требуемых характеристик выращиваемого кристалла число штанг 8 с узлами креплениями 9 может быть различным. Остальные чертежи также являются иллюстрирующими материалами данного частного случая применения, но не ограничивает возможностей реализации предлагаемого изобретения в общем случае.

Работа устройства осуществляется следующим образом.

Пластина 6 совершает возвратно-поступательное движение вверх-вниз и постепенное движение вверх по мере роста кристалла 2. При этом через щели между пластиной 6 и стенками камеры 1, статично расположенной в кристаллизаторе 3, возникают потоки раствора переменного направления, обеспечивающие непрерывную подачу раствора 4 ко всей растущей грани кристалла 2.

Скорость потоков раствора 4 увеличивается при уменьшении щелей между пластиной 6 и стенками камеры 1, при увеличении амплитуды и частоты возвратно-поступательного движения пластины 6, при уменьшении расстояния между пластиной 6 и растущей поверхностью кристалла 2. При изменении положения пластины 6 относительно центра камеры 1, наклона пластины 6 в продольном и поперечном направлениях возможно изменение распределения потоков раствора 4 для улучшения условий роста кристалла 2 в конкретных случаях. Возможно изменение положения пластины 6 в течение одного периода возвратно-поступательного движения пластины 6. Подача насыщенного раствора к пластине 6 осуществляется при помощи насоса 5, расположенного выше камеры 1. Таким образом, заявленное устройство обеспечивает непрерывную подачу раствора 4 одновременно ко всей растущей грани кристалла 2, переменное направление потоков раствора 4, возможность изменения параметров потоков раствора 4 путем выбора размеров пластины 6, амплитуды и частоты возвратно-поступательного движения пластины 6, положения пластины 6 относительно стенок камеры 1 и растущей грани кристалла 2, что способствует улучшению условий для роста кристалла 2.

За счет того, что пластина 6 выполнена с возможностью постепенного ее перемещения вверх, отпадает необходимость перемещения самой камеры 2 и насоса 5 относительно кристаллизатора 3, что позволило в предлагаемом устройстве, в отличие от прототипа, избавиться от громоздких механизмов перемещения камеры 1 и насоса 5, дало возможность уменьшить высоту кристаллизатора 3 и, соответственно, количество раствора 4, используемого в процессе роста кристалла 2.

В частном случае реализации устройства по п. 2 пластина 6 может быть выполнена с отверстиями, что дает дополнительные потоки раствора 4 к растущей грани кристалла 2. Так, на фиг. 2, фиг. 3 и фиг. 4 приведен частный случай реализации устройства по п. 2, в котором пластина выполнена с двумя симметричными относительно линии размещения двух штанг 8 щелевидными отверстиями 10. В общем случае форма отверстий может быть произвольной, и расположены они могут быть в произвольном порядке на поверхности пластины. Это зависит от требований к распределению потоков по грани кристалла.


УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ ИЗ РАСТВОРА
УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ ИЗ РАСТВОРА
УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ ИЗ РАСТВОРА
УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ ИЗ РАСТВОРА
УСТРОЙСТВО ДЛЯ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ КРИСТАЛЛОВ ИЗ РАСТВОРА
Источник поступления информации: Роспатент

Показаны записи 61-64 из 64.
30.05.2023
№223.018.737a

Способ прогнозирования риска некроза свободного аутодермотрансплантата

Изобретение относится к медицине, а именно к трансплантологии и реконструктивной хирургии. Оценивают изменения состояния микроциркуляторного кровотока в тканях аутодермотрансплантата после свободной кожной пластики. Для кожной пластики используют свободный расщепленный аутодермотрансплантат....
Тип: Изобретение
Номер охранного документа: 0002760989
Дата охранного документа: 02.12.2021
30.05.2023
№223.018.73cc

Способ оценки готовности реципиентной раны к свободной кожной пластике аутодермотрансплантатом

Изобретение относится к области медицины, а именно к общей хирургии, пластической хирургии, травматологии, и может быть использовано при подготовке реципиентной раны к свободной кожной пластике расщепленным аутодермотрансплантатом. C помощью оптической диффузионной спектроскопии определяют...
Тип: Изобретение
Номер охранного документа: 0002755490
Дата охранного документа: 16.09.2021
01.06.2023
№223.018.74c7

Неадиабатическая электронная пушка для мазера на циклотронном резонансе

Изобретение относится к технике вакуумных СВЧ электронных приборов. Технический результат - повышение устойчивости и эффективности работы пушки. Неадиабатическая электронная пушка для мазера на циклотронном резонансе (МЦР) включает расположенные на спадающем участке магнитного поля основного...
Тип: Изобретение
Номер охранного документа: 0002765773
Дата охранного документа: 02.02.2022
16.06.2023
№223.018.7c6b

Способ непрерывного мониторинга уровня глюкозы в биологической жидкости организма и устройство для его реализации

Группа изобретений относится к медицине, а именно к способу и устройству непрерывного мониторинга уровня глюкозы. При исполнении способа калибруют устройство непрерывного мониторинга уровня глюкозы с учетом величин температуры и кислотности исследуемой биологической жидкости. Размещают его в...
Тип: Изобретение
Номер охранного документа: 0002749982
Дата охранного документа: 21.06.2021
Показаны записи 21-28 из 28.
19.01.2018
№218.016.02e3

Электронный свч прибор

Изобретение относится к области электронной СВЧ-техники. Электронный СВЧ-прибор большой мощности пролетного типа включает выполненный из материала с низкой электропроводностью вакуумный корпус, магнитную систему формирования и транспортировки электронного пучка, выполненный отдельно от...
Тип: Изобретение
Номер охранного документа: 0002630251
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.03bb

Способ дистанционного определения скорости морского течения

Изобретение относится к радиолокационным методам мониторинга морской поверхности с целью дистанционного определения скорости морских течений в приповерхностном слое. Достигаемый технический результат – повышение точности измерений малогабаритной и мобильной аппаратурой. Способ позволяет...
Тип: Изобретение
Номер охранного документа: 0002630412
Дата охранного документа: 07.09.2017
20.01.2018
№218.016.1061

Устройство получения направленного экстремального ультрафиолетового излучения с длиной волны 11,2 нм ±1% для проекционной литографии высокого разрешения

Изобретение относится к области оптического приборостроения и касается устройства получения направленного экстремального ультрафиолетового излучения с длиной волны 11.2 нм ±1% для проекционной литографии высокого разрешения. Устройство включает в себя гиротрон, генерирующий пучок излучения...
Тип: Изобретение
Номер охранного документа: 0002633726
Дата охранного документа: 17.10.2017
20.01.2018
№218.016.138f

Источник нейтронов ограниченных размеров для нейтронной томографии

Заявленное изобретение относится к источнику нейтронов ограниченных размеров для нейтронной томографии, а именно к «точечному» источнику нейтронов с характерными размерами меньше 100 мкм с потоком нейтронов на уровне 1010 нейтр⋅с-1. В заявленном устройстве нейтроны образуются в результате...
Тип: Изобретение
Номер охранного документа: 0002634483
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.13c9

Способ идентификации переменного морского течения по данным радиолокационных наблюдений

Изобретение относится к радиолокационным методам изучения водной поверхности с целью обнаружения переменных течений. Достигаемый технический результат заключается в том, что способ позволяет идентифицировать переменные во времени и пространстве морские течения, которые на масштабах порядка...
Тип: Изобретение
Номер охранного документа: 0002634592
Дата охранного документа: 01.11.2017
17.02.2018
№218.016.2e1b

Способ вывода из осаждённого из газовой фазы алмаза электромагнитного излучения центров окраски

Способ вывода из осаждённого из газовой фазы алмаза электромагнитного излучения центров окраски, в котором у поверхности алмазного образца формируется собирающая излучение центров окраски оптическая система, состоящая из конуса с круглым основанием из оптического стекла, окружающего конус...
Тип: Изобретение
Номер охранного документа: 0002643694
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.367d

Изолятор фарадея с переменным направлением поля магнитной системы

Изобретение относится к оптической технике и может быть использовано как элемент оптической развязки на эффекте Фарадея для лазеров ближнего и среднего ИК-диапазона. Изолятор Фарадея с переменным направлением поля магнитной системы содержит последовательно расположенные на оптической оси...
Тип: Изобретение
Номер охранного документа: 0002646551
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.36d4

Способ монтажа дискового активного элемента на высокотеплопроводный радиатор

Изобретение относится к лазерной технике и может быть использовано для изготовления дисковых активных элементов мощных лазеров, обеспечивающих эффективное охлаждение активной среды. В способе согласно изобретению на активный элемент наносят с торцов диэлектрические отражающие и просветляющие...
Тип: Изобретение
Номер охранного документа: 0002646431
Дата охранного документа: 05.03.2018
+ добавить свой РИД