×
29.12.2017
217.015.f3d1

Результат интеллектуальной деятельности: Способ работы трехконтурного турбореактивного двигателя

Вид РИД

Изобретение

№ охранного документа
0002637153
Дата охранного документа
30.11.2017
Аннотация: Способ работы трехконтурного турбореактивного двигателя с форсажной камерой заключается в том, что сжатый воздух из адаптивного вентилятора разделяют на три потока. Поток первого контура подают в газогенератор, выхлопные газы из которого подают в турбину низкого давления, а от нее через смеситель и форсажную камеру в основное реактивное сопло. Поток второго контура подают через форсажную камеру в основное реактивное сопло. Поток третьего контура подают в сопло третьего контура. Регулируют работу двигателя переходом с трехконтурной схемы работы на двухконтурную схему работы и обратно, а также изменением степени двухконтурности двигателя путем переключения распределительными устройствами направления потоков сжатого воздуха и включения в работу форсажной камеры. На максимальном и переходных режимах работы с форсированием двигателя поток сжатого воздуха третьего контура подают непосредственно из канала третьего контура через форсажную камеру в основное реактивное сопло. Открытие и закрытие распределительных устройств для подключения и отключения канала третьего контура осуществляют по значениям приведенной частоты вращения ротора низкого давления. Изобретение направлено на повышение максимальной полетной тяги турбореактивного двигателя на максимальных и переходных режимах с форсированием двигателя при сохранении параметров расхода топлива. 4 ил.

Изобретение относится к области авиационной техники и может быть использовано в системах управления силовой установкой летательных аппаратов, оснащенной трехконтурным турбореактивным двигателем с форсажной камерой.

Одним из требований к силовым установкам транспортной и гражданской авиации является экономичность работы двигателя в условиях длительных полетов при обеспечении требуемых уровней полетной тяги с учетом ограничений по габаритным размерам. Одним из основных направлений повышения топливной экономичности турбореактивных двигателей является снижение удельного расхода топлива за счет повышения степени двухконтурности двигателей. Однако реализация высоких значений степени двухконтурности в турбореактивных двигателях ограничено существенным повышением габаритных характеристик. Поэтому наиболее перспективным направлением совершенствования турбореактивных двигателей является создание многоконтурного двигателя с регулированием степени двухконтурности в зависимости от режима его работы.

Известен способ работы трехконтурного турбореактивного двигателя, заключающийся в том, что сжатый воздух из адаптивного вентилятора разделяют на три потока, поток первого контура подают в камеру сгорания, выхлопные газы из которой подают в турбины высокого и низкого давления и далее - в основное реактивное сопло, поток второго контура смешивают в смесителе с потоком первого контура, подают в камеру сгорания и в основное реактивное сопло, поток третьего контура через распределительное устройство подают в сопло третьего контура, задают основные и переходные режимы работы двигателя, контролируют параметры работы двигателя и регулируют работу двигателя переходом с трехконтурной схемы работы на двухконтурную схему работы и обратно, а также изменением степени двухконтурности двигателя путем переключения распределительными устройствами направления потоков сжатого воздуха (заявка WO 2011/038188).

В известном способе работы управление третьим контуром с отдельным входом и двухъярусной ступенью вентилятора осуществляется с помощью регулируемых направляющих аппаратов вентилятора, независимых для каждого яруса. Воздух третьего контура в предложенной схеме направляется в проточный тракт за критическое сечение основного сопла. Основным недостатком предложенной схемы является использование отдельного входа в канал третьего контура и двухъярусной лопатки вентилятора, что на режимах с выключенным третьим контуром создает дополнительный отбор мощности от ротора низкого давления, снижает экономичность двигателя и ограничивает возможности использования третьего контура на различных режимах работы двигателя.

Известен способ работы трехконтурного турбореактивного двигателя с форсажной камерой, заключающийся в том, что сжатый воздух из адаптивного вентилятора разделяют на три потока, поток первого контура подают в газогенератор, выхлопные газы из которого подают в турбину низкого давления, а от нее в основное реактивное сопло, поток второго контура подают через форсажную камеру в реактивное сопло, поток третьего контура подают в сопло третьего контура, задают основные и переходные режимы работы двигателя, в качестве параметров работы двигателя контролируют расход топлива по времени и значения частоты вращения ротора газогенератора и ротора низкого давления и регулируют работу двигателя переходом с трехконтурной схемы работы на двухконтурную схему работы и обратно, а также изменением степени двухконтурности двигателя путем переключения распределительными устройствами направления потоков сжатого воздуха и включения в работу форсажной камеры (патент US 4080785).

В известном способе работы с помощью регулируемого смесителя происходит управление расходом воздуха в каналах второго и третьего контуров для получения требуемых характеристик двигателя. Недостатком данного способа является использование третьего контура только на дозвуковых скоростях, что не позволяет повысить экономичность двигателя на форсированных режимах его работы.

Известен также способ работы трехконтурного турбореактивного двигателя с форсажной камерой, заключающийся в том, что сжатый воздух из адаптивного вентилятора разделяют на три потока, поток первого контура подают в газогенератор, выхлопные газы из которого подают в турбину низкого давления, а от нее через смеситель и форсажную камеру в основное реактивное сопло, поток второго контура подают через форсажную камеру в основное реактивное сопло, поток третьего контура подают в сопло третьего контура, задают основные и переходные режимы работы двигателя, в качестве параметров работы двигателя контролируют температуру торможения потока воздуха на входе в двигатель, расход топлива по времени и значения частоты вращения ротора турбины и регулируют работу двигателя переходом с трехконтурной схемы работы на двухконтурную схему работы и обратно, а также изменением степени двухконтурности двигателя путем переключения распределительными устройствами направления потоков сжатого воздуха и включения в работу форсажной камеры (патент US 9279388).

В известном способе работы решается задача регулирования работы вентилятора таким образом, чтобы обеспечить постоянный поток сжатого воздуха на входе в двигатель при изменении тяги двигателя на разных режимах его работы. Для этого осуществляется контроль таких параметров, характеризующих работу двигателя, как расход воздуха на входе в двигатель, запас устойчивости компрессора высокого давления. Эти параметры невозможно измерить в полете, они могут быть получены оценочным путем при использовании дополнительных входных данных. К недостаткам известного способа следует отнести и то, что в нем отсутствует возможность подачи потока сжатого воздуха третьего контура через форсажную камеру в основное реактивное сопло, что существенно ограничивает возможность повышения экономичности двигателя.

Наиболее близким аналогом изобретения является способ работы турбореактивного двигателя с форсажной камерой, который содержит признаки, совпадающие с существенными признаками описываемого изобретения, а именно: сжатый воздух из адаптивного вентилятора разделяют на три потока, поток первого контура подают в газогенератор, выхлопные газы из которого подают в турбину низкого давления, а от нее через смеситель и форсажную камеру в основное реактивное сопло, поток второго контура подают через смеситель и форсажную камеру в основное реактивное сопло, поток третьего контура через распределительное устройство подают либо в сопло третьего контура, либо через форсажную камеру в основное реактивное сопло, задают основные и переходные режимы работы двигателя, в качестве параметров работы двигателя контролируют температуру торможения потока воздуха на входе в двигатель, расход топлива по времени и значения частоты вращения ротора газогенератора и ротора низкого давления, а регулируют работу двигателя переходом с трехконтурной схемы работы на двухконтурную схему работы и обратно, а также изменением степени двухконтурности двигателя путем переключения распределительными устройствами направления потоков сжатого воздуха и включения в работу форсажной камеры, причем на малом, взлетном и максимальном режимах, а также на переходных режимах без форсирования двигателя его работу осуществляют по двухконтурной схеме, а поток сжатого воздуха третьего контура направляют в канал второго контура, а на крейсерском режиме работы без форсирования двигателя поток сжатого воздуха третьего контура через канал третьего контура подают в сопло третьего контура (патент US 4064692).

В известном способе поток сжатого воздуха третьего контура используется только для перепуска из середины адаптивного вентилятора к основному реактивному соплу без возможности направлять воздух третьего контура в форсажную камеру непосредственно из канала третьего контура. При этом использование канала третьего контура в известном способе ограничивается дозвуковыми дроссельными режимами работы двигателя и не позволяет расширить возможности двигателя на основных и переходных режимах с форсированием его работы, что существенно снижает экономичность работы двигателя на этих режимах и не позволяет повысить полетную тягу на максимальных режимах с форсированием двигателя.

Техническим результатом изобретения является повышение максимальной полетной тяги на максимальных и переходных режимах работы с форсированием двигателя при сохранении показателей расхода топлива.

Этот технический результат достигается за счет того, что при осуществлении способа работы трехконтурного турбореактивного двигателя с форсажной камерой, заключающегося в том, что сжатый воздух из адаптивного вентилятора разделяют на три потока, поток первого контура подают в газогенератор, выхлопные газы из которого подают в турбину низкого давления, а от нее через смеситель и форсажную камеру в основное реактивное сопло, поток второго контура подают через смеситель и форсажную камеру в основное реактивное сопло, поток третьего контура через распределительное устройство подают либо в сопло третьего контура, либо через форсажную камеру в основное реактивное сопло, задают основные и переходные режимы работы двигателя, в качестве параметров работы двигателя контролируют температуру торможения потока воздуха на входе в двигатель, расход топлива по времени и значения частоты вращения ротора газогенератора и ротора низкого давления и регулируют работу двигателя переходом с трехконтурной схемы работы на двухконтурную схему работы и обратно, а также изменением степени двухконтурности двигателя путем переключения распределительными устройствами направления потоков сжатого воздуха и включения в работу форсажной камеры, причем на малом, взлетном и максимальном режимах, а также на переходных режимах без форсирования двигателя его работу осуществляют по двухконтурной схеме, а поток сжатого воздуха третьего контура направляют в канал второго контура, а на крейсерском режиме работы без форсирования двигателя поток сжатого воздуха третьего контура через канал третьего контура подают в сопло третьего контура.

Согласно изобретению на максимальном и переходных режимах работы с форсированием двигателя поток сжатого воздуха третьего контура подают непосредственно из канала третьего контура через форсажную камеру в основное реактивное сопло, а открытие и закрытие распределительных устройств для подключения и отключения канала третьего контура осуществляют по значениям приведенной частоты вращения ротора низкого давления.

Существенность отличительных признаков способа работы трехконтурного турбореактивного двигателя с форсажной камерой подтверждается тем, что только совокупность всех действий и операций, описывающая изобретение позволяет, получить технический результат изобретения - повышение максимальной полетной тяги турбореактивного двигателя на максимальных и переходных режимах с форсированием двигателя при сохранении параметров расхода топлива.

Пример реализации способа работы трехконтурного турбореактивного двигателя с форсажной камерой поясняется чертежами, где

на фиг. 1 представлен общий вид трехконтурного турбореактивного двигателя с изменяемым рабочим процессом;

на фиг. 2 представлена схема работы двигателя в двухконтурном режиме;

на фиг. 3 представлена схема работы двигателя в трехконтурном режиме с подачей потока сжатого воздуха третьего контура в форсажную камеру;

на фиг. 4 представлена схема работы двигателя в трехконтурном режиме с подачей потока сжатого воздуха третьего контура в сопло третьего контура.

Трехконтурный турбореактивный двигатель содержит адаптивный двухкаскадный вентилятор 1, выходом второго каскада 2 сообщенный каналом первого контура 3 с газогенератором 4, состоящим из компрессора высокого давления 5, основной камеры сгорания 6 и турбины высокого давления 7. К выходу газогенератора 4 последовательно подключены турбина низкого давления 8, смеситель 9, форсажная камера 10 и основное реактивное сопло 11.

Также адаптивный вентилятор 1 выходом второго каскада 2 через канал второго контура 12 последовательно сообщен со смесителем 9, форсажной камерой 10 и основным реактивным соплом 11, а выходом первого каскада 13 сообщен через распределительное устройство 14 с каналом третьего контура 15, подключенное через распределительное устройство 16 к реактивному соплу третьего контура 17, а также к смесителю 9, форсажной камере 10 и основному реактивному соплу 11.

Адаптивный вентилятор 1 приводится в движение турбиной низкого давления 8 с помощью ротора низкого давления 18. Компрессор высокого давления 5 приводится в движение турбиной высокого давления 7 с помощью ротора высокого давления 19.

Для контроля параметров работы в двигателе установлены датчик 20 температуры торможения потока воздуха на входе в двигатель, датчик 21 расхода топлива и датчики 22 и 23 частоты вращения ротора газогенератора и ротора низкого давления соответственно. Датчики 20, 21, 22 и 23 подключены к сравнивающему устройству 24, подключенному к блоку управления 25.

Работа трехконтурного турбореактивного двигателя осуществляется следующим образом. Сжатый воздух из адаптивного двухкаскадного вентилятора 1 разделяют на три потока, поток сжатого воздуха первого контура по каналу первого контура 3 подают в газогенератор 4, выхлопные газы из которого подают в турбину низкого давления 8, а от нее через смеситель 9 и форсажную камеру 10 в основное реактивное сопло 11, поток сжатого воздуха второго контура подают по каналу второго контура 12 через смеситель 9 и форсажную камеру 10 в основное реактивное сопло 11, а поток сжатого воздуха третьего контура через распределительное устройство 14 подают в канал третьего контура 15. Через канал третьего контура 15 поток сжатого воздуха подается через распределительное устройство 16 либо в сопло третьего контура 17, либо через форсажную камеру 10 в основное реактивное сопло 11.

Регулируют работу двигателя переходом с трехконтурной схемы работы на двухконтурную схему работы и обратно, а также изменением степени двухконтурности двигателя путем переключения распределительными устройствами 14 и 16 направления потоков сжатого воздуха и включения в работу форсажной камеры 10. На малом, взлетном и максимальном режимах, а также на переходных режимах без форсирования двигателя его работу осуществляют по двухконтурной схеме, а поток сжатого воздуха третьего контура через распределитель 14 и второй каскад 2 адаптивного вентилятора 1 направляют в канал второго контура 12, а на крейсерском режиме работы без форсирования двигателя поток сжатого воздуха третьего контура через канал третьего контура 15 подают в сопло третьего контура 17. На максимальном и переходных режимах работы с форсированием двигателя поток сжатого воздуха третьего контура подают непосредственно из канала третьего контура 15 через форсажную камеру 10 в основное реактивное сопло 11.

Оператором задаются основные и переходные режимы работы двигателя, в качестве параметров работы двигателя датчиком 20 контролируют температуру торможения потока воздуха на входе в двигатель, с помощью датчиков 21 определяют расход топлива по времени, датчиками 22 и 23 контролируют значения частоты вращения ротора газогенератора и ротора низкого давления.

Открытие и закрытие распределительных устройств 14 и 16 для подключения и отключения канала третьего контура осуществляют по значениям приведенной частоты вращения ротора низкого давления NI пр, определяемая по физической частоте вращения ротора низкого давления, пересчитанной по полной температуре на входе в двигатель:

,

где NI физ - физическая частота вращения ротора низкого давления;

Т0 - стандартное значение температуры, к которой приводится значение частоты вращения (по ГОСТ 4401-81 Т0=288 K);

Т*вх - температура торможения потока воздуха на входе в двигатель.

На взлетном режиме двигатель работает как обычный двухконтурный турбореактивный двигатель, так как параметр NI пр выше граничного значения переключения режима работы третьего контура. В данных условиях агрегаты управления адаптивного вентилятора 1 и распределительные устройства 14 и 16 сводят к минимуму расход воздуха в канале третьего контура 15, а сопло третьего контура 17 закрыто, как это показано на фиг. 2, схематично поясняющей конфигурацию двигателя без отбора воздуха в третий контур. Поток воздуха, попавший на вход в двигатель, проходит через оба каскада 2 и 13 адаптивного вентилятора 1.

На режиме «малый газ» двигатель управляется как обычный двухконтурный турбореактивный двигатель с выключенной форсажной камерой 10 (конфигурация без отборов воздуха в канал третьего контура 15). Распределительные устройства 14 и 16 сводят к минимуму расход воздуха в канале третьего контура, сопло третьего контура 20 закрыто, подача сжатого воздуха из канала третьего контура 15 в форсажную камеру 10 отсутствует, как показано на фиг. 2. Весь поток воздуха, поступающий на вход в двигатель, проходит через оба каскада 2 и 13 адаптивного вентилятора 11.

Такая же схема работы двигателя сохраняется на режимах с форсированием двигателя в условиях дозвукового полета, обеспечивая максимально возможную тягу двигателя. В этих условиях адаптивный вентилятор 1 работает на максимальном режиме, тем самым не допуская снижения параметра NI пр из-за снижения частоты его вращения, а набегающий поток воздуха имеет низкую полную температуру.

На дроссельных крейсерских режимах, характеризующихся пониженными частотами вращения газогенератора 4, при выключенной форсажной камере 10 адаптивный вентилятор работает с низкой физической частотой вращения NI физ, значение параметра NI пр становится ниже заданной величины. Распределительные устройства 14 и 16 через канал третьего контура 15 направляют расход воздуха в сопло третьего контура 17, подача воздуха третьего контура в форсажную камеру 10 отсутствует, как это показано на фиг. 4. Повышение степени двухконтурности двигателя при такой схеме работы обеспечивается за счет более высокого расхода воздуха через весь двигатель, параметры рабочего процесса в двигателе выше, а общие потери силовой установки ниже, чем у силовой установки с двухконтурным турбореактивным двигателем, что суммарно приводит к уменьшению эффективного удельного расхода топлива в турбореактивном двигателе.

На максимальном дроссельном режиме работы с форсированием двигателя в условиях сверхзвукового полета вентилятор 1 работает на глубоких дроссельных режимах в связи с существенным повышением температуры Т*вх торможения потока воздуха на входе в двигатель. Распределительные устройства 14 и 16 дополнительно направляют поток сжатого воздуха третьего контура в форсажную камеру 17 непосредственно из канала третьего контура 15, как схематично показано на фиг. 3. Подача сжатого воздуха третьего контура к соплу третьего контура 17 перекрыта распределительным устройством 16, а само сопло третьего контура 17 остается закрытым. Работа двигателя осуществляется по схеме, характерной для сверхзвукового прямоточного воздушно-реактивного двигателя. Тем самым повышается максимальная полетная тяга двигателя и, соответственно, обеспечивается максимальная скорость полета.

В том случае, когда параметр NI пр возрастает и его значение превышает заданную величину без команды оператора на изменение режима работы двигателя в конфигурации с подачей потока сжатого воздуха третьего контура в форсажную камеру 10, показанной на фиг. 3, распределительные устройства 14 и 16 перекрывают подачу сжатого воздуха через канал третьего контура 15 в форсажную камеру 10, снижают расход воздуха в третьем контуре до минимума, тем самым автоматически переводят двигатель на двухконтурную схему работы (фиг. 2).

На переходных режимах работы управление двигателем осуществляется следующим образом.

При переходе двигателя с максимального режима работы (фиг. 2) на максимальный с форсированием двигателя после включения форсажной камеры сгорания 10 сначала двигатель работает как обычный двухконтурный турбореактивный двигатель с включенной форсажной камерой, но в связи с увеличением температуры Т*вх торможения потока воздуха на входе в двигатель значение параметра NI пр снижается и при достижении им установленного граничного значения агрегаты распределительные устройства 14 и 16 дополнительно направляют поток сжатого воздуха третьего контура в форсажную камеру 17 непосредственно из канала третьего контура 15 (фиг. 3). При этом увеличение расхода сжатого воздуха через форсажную камеру при сохранении ее режима работы (температура газов после форсажной камеры не изменяется) позволяет повысить тягу двигателя.

Двигатель адаптируется к условиям работы, характерным для режима глубокого дросселирования, приближаясь к облику прямоточного воздушно-реактивного двигателя. По мере работы двигателя на этом режиме ускорение прекращается и двигатель продолжает работу в данной конфигурации, но уже на максимальном режиме с форсированием двигателя, обеспечивая более высокую скорость полета, нежели в конфигурации без отбора потока сжатого воздуха в канал третьего контур 15.

При поступлении команды оператора на изменение режима работы на максимальный режим без форсирования двигателя распределительные устройства 14 и 16 уменьшают расход воздуха третьего контура, перекрывая его подачу в форсажную камеру сгорания 10, прекращается подача топлива в форсажную камеру сгорания 10. Двигатель переходит в конфигурацию без подачи потока сжатого воздуха в канал третьего контура 15, вновь управляется как двухконтурный турбореактивный двигатель с выключенной форсажной камерой 10.

При переходе из максимального режима работы с форсированием двигателя на крейсерский режим двигатель сначала переходит в конфигурацию без отбора сжатого воздуха в канал третьего контура 15. По мере работы двигателя на этом режиме частота вращения ротора низкого давления NI физ снижается из-за дросселирования двигателя, что приводит к снижению параметра NI пр.

При преодолении параметром NI пр граничного значения распределительные устройства 14 и 16 увеличивают расход сжатого воздуха в канале третьего контура 15, направляя его в сопло третьего контура 17 и переводя двигатель в конфигурацию с отбором воздуха в третий контур и подачей его в сопло третьего контура (фиг. 4). Подача воздуха третьего контура в форсажную камеру сгорания 10 отсутствует. Двигатель адаптируется к новым условиям работы, приобретая облик двухконтурного турбореактивного двигателя с более высокой степенью двухконтурности.

Таким образом, управление двигателем по параметрам NI пр и NI физ на максимальных и переходных режимах с форсированием двигателя и подача потока сжатого воздуха непосредственно из канала третьего контура через форсажную камеру в основное реактивное сопло позволяет повысить полетную тягу двигателя с сохранением показателей расхода топлива.

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой, заключающийся в том, что сжатый воздух из адаптивного вентилятора разделяют на три потока, поток первого контура подают в газогенератор, выхлопные газы из которого подают в турбину низкого давления, а от нее через смеситель и форсажную камеру в основное реактивное сопло, поток второго контура подают через смеситель и форсажную камеру в основное реактивное сопло, поток третьего контура через распределительное устройство подают либо в сопло третьего контура, либо через форсажную камеру в основное реактивное сопло, задают основные и переходные режимы работы двигателя, в качестве параметров работы двигателя контролируют температуру торможения потока воздуха на входе в двигатель, расход топлива по времени и значения частоты вращения ротора газогенератора и ротора низкого давления, и регулируют работу двигателя переходом с трехконтурной схемы работы на двухконтурную схему работы и обратно, а также изменением степени двухконтурности двигателя путем переключения распределительными устройствами направления потоков сжатого воздуха и включения в работу форсажной камеры, причем на малом, взлетном и максимальном режимах, а также на переходных режимах без форсирования двигателя его работу осуществляют по двухконтурной схеме, а поток сжатого воздуха третьего контура направляют в канал второго контура, а на крейсерском режиме работы без форсирования двигателя поток сжатого воздуха третьего контура через канал третьего контура подают в сопло третьего контура, отличающийся тем, что на максимальном и переходных режимах работы с форсированием двигателя поток сжатого воздуха третьего контура подают непосредственно из канала третьего контура через форсажную камеру в основное реактивное сопло, а открытие и закрытие распределительных устройств для подключения и отключения канала третьего контура осуществляют по значениям приведенной частоты вращения ротора низкого давления.
Способ работы трехконтурного турбореактивного двигателя
Способ работы трехконтурного турбореактивного двигателя
Способ работы трехконтурного турбореактивного двигателя
Способ работы трехконтурного турбореактивного двигателя
Источник поступления информации: Роспатент

Показаны записи 71-80 из 205.
19.01.2018
№218.016.017c

Трансмиссионная смазочная композиция

Изобретение относится к области смазочных композиций для трансмиссий летательных аппаратов, в частности для смазки трансмиссий винтов вертолетов. Трансмиссионная смазочная композиция содержит базовый состав на основе полиальфаолефинового масла, включающий сложный эфир двухосновной кислоты,...
Тип: Изобретение
Номер охранного документа: 0002629949
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.115a

Газогенератор твердого топлива

Изобретение относится к отраслям промышленности, где требуется создание потока с регулируемым массовым расходом газообразного низкотемпературного рабочего тела. Газогенератор содержит центральный полый цилиндр, закрытый с одного торца и открытый в виде суживающегося сопла с другого торца,...
Тип: Изобретение
Номер охранного документа: 0002633976
Дата охранного документа: 20.10.2017
13.02.2018
№218.016.1fef

Зубчатое колесо

Изобретение относится к машиностроению и может быть использовано в высоконагруженных зубчатых передачах, в частности в передачах центрального и углового приводов авиационных двигателей. Зубчатое колесо содержит обод с коническим зубчатым венцом и кольцевым пазом прямоугольного сечения,...
Тип: Изобретение
Номер охранного документа: 0002641351
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.22c6

Способ сравнительной оценки эффективности присадок - промоторов горения топлива в камере сгорания воздушно-реактивного двигателя

Изобретение относится к жидким углеродсодержащим топливам, содержащим присадки, применительно к оценке эффективности присадок - промоторов горения топлива в камере сгорания воздушно-реактивного двигателя. Способ заключается в том, что на первом этапе в испарительную камеру сгорания подают...
Тип: Изобретение
Номер охранного документа: 0002642236
Дата охранного документа: 24.01.2018
13.02.2018
№218.016.230c

Устройство уравновешивания осевого давления ротора турбомашины

Устройство уравновешивания осевого давления ротора турбомашины содержит полый корпус и установленный в корпусе дисковый поршень с центральным валом и разделением корпуса на две полости с каналами подвода и отвода сжатого воздуха в каждую полость. Один конец вала снабжен центральным резьбовым...
Тип: Изобретение
Номер охранного документа: 0002641994
Дата охранного документа: 23.01.2018
17.02.2018
№218.016.2bc2

Демпфирующий элемент

Изобретение относится к области машиностроения. Демпфирующий элемент для конического зубчатого колеса выполнен в виде металлического кольца, установленного с возможностью взаимодействия с внутренней опорной поверхностью. Металлическое кольцо выполнено с прямоугольным поперечным сечением и...
Тип: Изобретение
Номер охранного документа: 0002643309
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2e1e

Дроссельное устройство

Изобретение относится к арматуростроению и предназначено для регулирования расходов высокотемпературных газов в испытательных стендах авиадвигателей, а также других отраслях промышленности. Корпус устройства выполнен разъемным, состоящим из двух частей - передней и задней, содержащих...
Тип: Изобретение
Номер охранного документа: 0002643876
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2e24

Устройство для определения адгезионной прочности многослойного керамического теплозащитного покрытия

Изобретение относится к области технической физики и может быть использовано для определения адгезионной прочности многослойного керамического теплозащитного покрытия (ТЗП), применяемого для защиты деталей машин от высоких температур, преимущественно в авиационной технике. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002643682
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.2f76

Авиационная силовая установка

Авиационная силовая установка содержит турбореактивный двухконтурный двигатель с внешним и внутренним контурами и по меньшей мере один выносной вентиляторный модуль. Выносной вентиляторный модуль имеет корпус с установленными в нем тяговым вентилятором, приводом вентилятора, размещенными на...
Тип: Изобретение
Номер охранного документа: 0002644721
Дата охранного документа: 13.02.2018
10.05.2018
№218.016.3896

Нанокомпозитное твердое горючее для прямоточного воздушно-реактивного двигателя

Изобретение относится к созданию нанокомпозитного твердого горючего для прямоточного воздушно-реактивного двигателя, которое может применяться в различных ракетных системах, например, противоракетной, противовоздушной обороны, ракетных систем залпового огня и другого назначения. Твердое горючее...
Тип: Изобретение
Номер охранного документа: 0002646933
Дата охранного документа: 12.03.2018
Показаны записи 71-80 из 85.
19.01.2018
№218.016.017c

Трансмиссионная смазочная композиция

Изобретение относится к области смазочных композиций для трансмиссий летательных аппаратов, в частности для смазки трансмиссий винтов вертолетов. Трансмиссионная смазочная композиция содержит базовый состав на основе полиальфаолефинового масла, включающий сложный эфир двухосновной кислоты,...
Тип: Изобретение
Номер охранного документа: 0002629949
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.115a

Газогенератор твердого топлива

Изобретение относится к отраслям промышленности, где требуется создание потока с регулируемым массовым расходом газообразного низкотемпературного рабочего тела. Газогенератор содержит центральный полый цилиндр, закрытый с одного торца и открытый в виде суживающегося сопла с другого торца,...
Тип: Изобретение
Номер охранного документа: 0002633976
Дата охранного документа: 20.10.2017
13.02.2018
№218.016.1fef

Зубчатое колесо

Изобретение относится к машиностроению и может быть использовано в высоконагруженных зубчатых передачах, в частности в передачах центрального и углового приводов авиационных двигателей. Зубчатое колесо содержит обод с коническим зубчатым венцом и кольцевым пазом прямоугольного сечения,...
Тип: Изобретение
Номер охранного документа: 0002641351
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.22c6

Способ сравнительной оценки эффективности присадок - промоторов горения топлива в камере сгорания воздушно-реактивного двигателя

Изобретение относится к жидким углеродсодержащим топливам, содержащим присадки, применительно к оценке эффективности присадок - промоторов горения топлива в камере сгорания воздушно-реактивного двигателя. Способ заключается в том, что на первом этапе в испарительную камеру сгорания подают...
Тип: Изобретение
Номер охранного документа: 0002642236
Дата охранного документа: 24.01.2018
13.02.2018
№218.016.230c

Устройство уравновешивания осевого давления ротора турбомашины

Устройство уравновешивания осевого давления ротора турбомашины содержит полый корпус и установленный в корпусе дисковый поршень с центральным валом и разделением корпуса на две полости с каналами подвода и отвода сжатого воздуха в каждую полость. Один конец вала снабжен центральным резьбовым...
Тип: Изобретение
Номер охранного документа: 0002641994
Дата охранного документа: 23.01.2018
17.02.2018
№218.016.2bc2

Демпфирующий элемент

Изобретение относится к области машиностроения. Демпфирующий элемент для конического зубчатого колеса выполнен в виде металлического кольца, установленного с возможностью взаимодействия с внутренней опорной поверхностью. Металлическое кольцо выполнено с прямоугольным поперечным сечением и...
Тип: Изобретение
Номер охранного документа: 0002643309
Дата охранного документа: 31.01.2018
17.02.2018
№218.016.2e1e

Дроссельное устройство

Изобретение относится к арматуростроению и предназначено для регулирования расходов высокотемпературных газов в испытательных стендах авиадвигателей, а также других отраслях промышленности. Корпус устройства выполнен разъемным, состоящим из двух частей - передней и задней, содержащих...
Тип: Изобретение
Номер охранного документа: 0002643876
Дата охранного документа: 06.02.2018
17.02.2018
№218.016.2e24

Устройство для определения адгезионной прочности многослойного керамического теплозащитного покрытия

Изобретение относится к области технической физики и может быть использовано для определения адгезионной прочности многослойного керамического теплозащитного покрытия (ТЗП), применяемого для защиты деталей машин от высоких температур, преимущественно в авиационной технике. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002643682
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.2f76

Авиационная силовая установка

Авиационная силовая установка содержит турбореактивный двухконтурный двигатель с внешним и внутренним контурами и по меньшей мере один выносной вентиляторный модуль. Выносной вентиляторный модуль имеет корпус с установленными в нем тяговым вентилятором, приводом вентилятора, размещенными на...
Тип: Изобретение
Номер охранного документа: 0002644721
Дата охранного документа: 13.02.2018
10.05.2018
№218.016.43e6

Способ полетной диагностики авиационного турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к авиадвигателестроению, касается определения в полете параметров двухконтурного турбореактивного двигателя со смешением потоков и может быть использовано для диагностики его состояния в условиях эксплуатации. Предварительно измеряют степень неравномерности полного...
Тип: Изобретение
Номер охранного документа: 0002649715
Дата охранного документа: 04.04.2018
+ добавить свой РИД