×
29.12.2017
217.015.f36b

Результат интеллектуальной деятельности: Способ определения дальности до поверхности земли

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных систем, предназначенных для определения дальности от движущегося объекта до поверхности земли, использующих принцип отражения радиоволн. Достигаемый технический результат - повышение скрытности работы при определении дальности до поверхности земли. Указанный результат достигается за счет того, что способ определения дальности до поверхности земли заключается в излучении зондирующих сигналов в направлении поверхности земли, использовании в качестве зондирующих сигналов радиоимпульсов, имеющих несущую частоту ƒ, длительность t, период повторения Т, и состоящих из N монохроматических субимпульсов длительностью τ с непериодической фазокодовой внутриимпульсной манипуляцией, которую реализуют модулированием М-последовательностями начальных фаз субимпульсов, принимающих одно из двух значений 0 или π, приеме сигналов, отраженных от поверхности земли, проведении согласованной фильтрации отраженных сигналов с использованием в качестве весовых коэффициентов кодов, формирующих модулирующие М-последовательности, и определении дальности до поверхности земли, при этом производят перестройку несущей частоты ƒ радиоимпульсов от радиоимпульса к радиоимпульсу по случайному равновероятному закону в каждом периоде повторения и изменяют от радиоимпульса к радиоимпульсу период повторения радиоимпульсов, длительность радиоимпульсов и количество монохроматических субимпульсов.

Изобретение относится к области радиолокационной техники и может быть использовано при построении различных радиолокационных систем, предназначенных для определения дальности от движущегося объекта до поверхности земли, использующих принцип отражения радиоволн.

Известен способ определения дальности до поверхности земли [1], применяемый в радиовысотомерах, заключающийся в излучении зондирующих сигналов в направлении поверхности земли, в качестве которых используют радиоимпульсы с периодической фазокодовой внутриимпульсной манипуляцией.

Реализация способа [1] заключается в следующем.

Излучают в направлении поверхности земли зондирующие сигналы на постоянной несущей частоте ƒн.

Используют в качестве зондирующих сигналов радиоимпульсы с периодической фазокодовой манипуляцией.

Определяют параметры радиоимпульсов, исходя из требований:

- радиоимпульсы должны иметь постоянные длительность tи, и период повторения Tп;

Реализуют фазокодовую манипуляцию модулированием М-последовательностями начальных фаз радиоимпульсов, принимающих одно из двух значений 0 или π.

Принимают сигналы, отраженные от поверхности земли.

Проводят согласованную фильтрацию отраженных сигналов с использованием в качестве весовых коэффициентов кодов, формирующих модулирующие М-последовательности.

Определяют дальность до поверхности земли.

Способ [1] имеет ряд недостатков.

В способе [1] согласованную фильтрацию отраженных сигналов при определении дальности от движущегося объекта до поверхности земли проводят в течение времени, которое необходимо на формирование одного полного периода зондирующих сигналов - сигналов, промодулированных одной М-последовательностью. То есть обработка отраженных сигналов при определении одного значения дальности до поверхности земли производится в течение времени, необходимого для приема одного полного периода зондирующих сигналов, который при больших дальностях до поверхности земли может составлять сотни радиоимпульсов.

Недостатком способа [1] является низкая скрытность работы при определении дальности до поверхности земли, т.к. в способе [1] зондирующие сигналы излучают на постоянной несущей частоте ƒн.

Недостатком способа [1] также является то, что в способе [1] предъявляются высокие требования к стабильности фазы зондирующих сигналов за время полного периода зондирующих сигналов, а при обработке отраженных сигналов необходимо учитывать влияние эффекта Доплера за время полного периода зондирующих сигналов.

Известен способ определения дальности до поверхности земли [2], выбранный за прототип, применяемый в радиовысотомерах, заключающийся в излучении зондирующих сигналов в направлении поверхности земли, в качестве которых используют радиоимпульсы с непериодической фазокодовой внутриимпульсной манипуляцией.

Реализация способа [2] заключается в следующем.

Задают диапазон определяемых дальностей.

Используют в качестве зондирующих сигналов радиоимпульсы с непериодической фазокодовой внутриимпульсной манипуляцией.

Определяют параметры радиоимпульсов исходя из требований:

- радиоимпульсы должны иметь постоянные длительность tи, и период повторения Тп;

- радиоимпульсы должны состоять из N монохроматических субимпульсов длительностью τ, где N - постоянная величина;

- максимальная длительность радиоимпульсов tи должна быть ограничена временем распространения сигнала от нижней границы диапазона определяемых дальностей до поверхности земли и обратно.

Реализуют фазокодовую внутриимпульсную манипуляцию модулированием М-последовательностями начальных фаз субимпульсов, принимающих одно из двух значений 0 или π.

Излучают в направлении поверхности земли зондирующие сигналы на постоянной несущей частоте ƒн.

Принимают сигналы, отраженные от поверхности земли.

Проводят согласованную фильтрацию отраженных сигналов с использованием в качестве весовых коэффициентов кодов, формирующих модулирующие М-последовательности.

Определяют дальность до поверхности земли.

Недостатком способа [2] является низкая скрытность работы при определении дальности до поверхности земли.

В способе [2] зондирующие сигналы излучают на постоянной несущей частоте ƒн.

В способе [2] радиоимпульсы имеют постоянные длительность tи и количество N монохроматических субимпульсов длительностью τ, что требует увеличения уровня мощности излучаемых радиоимпульсов при определении дальности до поверхности земли вблизи верхней границы диапазона определяемых дальностей.

Излучение зондирующих сигналов на постоянной несущей частоте с большим уровнем пиковой мощности излучаемых радиоимпульсов приводит к снижению скрытности работы при определении дальности до поверхности земли.

Техническим результатом предлагаемого изобретения является повышение скрытности работы при определении дальности до поверхности земли.

Технический результат достигается тем, что в способе определения дальности до поверхности земли, заключающемся в излучении зондирующих сигналов в направлении поверхности земли, использовании в качестве зондирующих сигналов радиоимпульсов, имеющих несущую частоту ƒн, длительность tи, период повторения Тп, и состоящих из N монохроматических субимпульсов длительностью τ, с непериодической фазокодовой внутриимпульсной манипуляцией, которую реализуют модулированием М-последовательностями начальных фаз субимпульсов, принимающих одно из двух значений 0 или π, приеме сигналов, отраженных от поверхности земли, проведении согласованной фильтрации отраженных сигналов с использованием в качестве весовых коэффициентов кодов, формирующих модулирующие М-последовательности и определении дальности до поверхности земли производят перестройку несущей частоты ƒн радиоимпульсов от радиоимпульса к радиоимпульсу по случайному равновероятному закону в каждом периоде повторения и изменяют от радиоимпульса к радиоимпульсу период повторения радиоимпульсов, длительность радиоимпульсов и количество монохроматических субимпульсов, причем длительность tиi радиоимпульсов в i-м периоде повторения радиоимпульсов определяют как разность между временем распространения сигнала от движущегося объекта до поверхности земли и обратно для дальности, определенной в (i-1)-м периоде и первой временной константой, определяемой условиями определения дальности до поверхности земли; количество Ni монохроматических субимпульсов в i-м радиоимпульсе определяют как отношение длительности радиоимпульса в i-м периоде повторения к длительности монохроматических субимпульсов (постоянная величина) с округлением до ближайшего целого в меньшую сторону; а значение периода повторения Tпi для i-го радиоимпульса определяют как разность между временем распространения сигнала от движущегося объекта до поверхности земли и обратно для дальности, определенной в (i-1)-м периоде и второй временной константой, определяемой временем, необходимым на перестройку несущей частоты от радиоимпульса к радиоимпульсу в каждом периоде повторения по случайному равновероятному закону в заданном диапазоне частот и временем, необходимым на прием сигналов, отраженных от поверхности земли в заданном секторе углов.

Способ определения дальности до поверхности земли реализуется следующим образом.

Задают диапазон определяемых дальностей.

Используют в качестве зондирующих сигналов радиоимпульсы с непериодической фазокодовой внутриимпульсной манипуляцией.

Реализуют фазокодовую внутриимпульсную манипуляцию модулированием М-последовательностями начальных фаз субимпульсов, принимающих одно из двух значений 0 или π.

Определяют параметры радиоимпульсов, исходя из требований:

- длительность tиi радиоимпульсов должна быть максимальной;

- количество Ni монохроматических субимпульсов длительностью τ в излучаемых радиоимпульсах должно быть максимальным;

- период повторения Tпi радиоимпульсов должен обеспечивать однозначность определения дальностей до поверхности земли.

- при определении дальности до поверхности земли изменение параметров радиоимпульсов длительности tиi, количества Ni монохроматических субимпульсов и периода повторения Tпi должно обеспечивать минимальный уровень пиковой мощности излучаемых радиоимпульсов при определении дальности до поверхности земли во всем диапазоне определяемых дальностей.

Излучают в направлении поверхности земли зондирующие сигналы на перестраиваемой от радиоимпульса к радиоимпульсу несущей частоте ƒнi.

Перестройку несущей частоты ƒнi производят в каждом периоде повторения по случайному (равновероятному) закону в заданном диапазоне частот. Несущая частота ƒнi для каждого i-го радиоимпульса постоянна.

Принимают сигналы, отраженные от поверхности земли.

Проводят согласованную фильтрацию отраженных сигналов с использованием в качестве весовых коэффициентов кодов, формирующих модулирующие М-последовательности.

Определяют дальность до поверхности земли.

Рассмотрим более подробно определение параметров радиоимпульсов: определение переменных значений длительности tиi, количества Ni монохроматических субимпульсов длительностью τ и периода повторения Tиi радиоимпульсов.

Длительность tиi, количество Ni монохроматических субимпульсов и период повторения Tпi радиоимпульсов в i-м периоде повторения радиоимпульсов определяют в зависимости от дальности до поверхности земли, определенной в (i-1)-м периоде повторения (в предыдущем периоде повторения).

В начале работы за дальность до поверхности земли, определенную в (i-1)-м периоде повторения, может быть принята дальность до поверхности земли, определенная с помощью иных средств измерений.

Время распространения сигнала от движущегося объекта до поверхности земли и обратно для дальности, определенной в (i-1)-м периоде, равно:

tpc(i-1)=2R(i-1)/c,

где R(i-1) - дальность до поверхности земли, определенная в (i-1)-м периоде повторения;

с - скорость распространения электромагнитных волн.

Значение длительности tиi радиоимпульса в i-м периоде повторения определяют:

tиi tpc(i-1)-tconst1,

где tconst1=tмз+tпи+tив+tвc - первая временная константа, определяемая условиями определения дальности до поверхности земли;

tмз - время, определяемое величиной «мертвой» зоны приемника измерителя дальности при измерении дальности;

tпи - время, определяемое погрешностью измерения дальности измерителя дальности;

tив - время, определяемое максимальным изменением высоты рельефа поверхности земли за один период повторения радиоимпульсов;

tвc - время, определяемое изменением дальности до поверхности земли за один период повторения радиоимпульсов при наличии вертикальной скорости движения движущегося объекта.

Количество Ni монохроматических субимпульсов в i-м радиоимпульсе определяют:

где ⎣ ⎦ - округление до ближайшего целого в меньшую сторону;

tиi - длительность радиоимпульса в i-м периоде повторения;

τ - длительность монохроматических субимпульсов (постоянная величина).

Значение периода повторения Tпi для i-го радиоимпульса определяют:

Tпi=tpc(i-1)+tиi+tconst2,

где tconst2=tпер+tизм,

tconst - вторая временная константа;

tпер - время, необходимое на перестройку несущей частоты от радиоимпульса к радиоимпульсу в каждом периоде повторения по случайному (равновероятному) закону в заданном диапазоне частот;

tизм - время, необходимое на прием сигналов, отраженных от поверхности земли в заданном секторе углов.

Данный способ определения дальности до поверхности земли имеет существенные отличия от прототипа, поскольку обеспечивается повышение скрытности работы при определении дальности до поверхности земли за счет:

- перестройки несущей частоты радиоимпульсов от радиоимпульса к радиоимпульсу по случайному равновероятному закону;

- снижения уровня пиковой мощности излучаемых радиоимпульсов, которое обусловлено двумя факторами.

1. Значение длительности tиi радиоимпульса в i-м периоде повторения - величина переменная и определяется дальностью до поверхности земли, измеренной в предыдущем периоде измерений (временем распространения сигнала от движущегося объекта до поверхности земли и обратно для дальности, определенной в предыдущем периоде). Это позволяет изменять количество Ni, монохроматических субимпульсов длительностью τ в излучаемых радиоимпульсах, увеличивая их количество при увеличении измеряемой дальности, и тем самым не требовать увеличения уровня мощности излучаемых радиоимпульсов при определении дальности до поверхности земли вблизи верхней границы диапазона определяемых дальностей. Так, Ni может составлять единицы при малых дальностях и сотни - при больших дальностях. При этом выигрыш в отношении сигнал/шум за счет когерентной обработки может составить десятки децибел.

2. Значение периода повторения Tпi для i-го радиоимпульса - величина переменная и определяется значением длительности tиi радиоимпульса в i-м периоде повторения, временем распространения сигнала от движущегося объекта до поверхности земли и обратно для дальности, определенной в предыдущем периоде и константой, значение которой в основном определяется временем, необходимым на перестройку несущей частоты от радиоимпульса к радиоимпульсу в каждом периоде повторения. Это позволяет изменять значение периода повторения Tпi для i-го радиоимпульса, обеспечивая однозначность измерения дальности до поверхности земли. Необходимо отметить, что наличие константы приводит к тому, что скважность радиоимпульсов является переменной и уменьшается при увеличении измеряемой дальности, тем самым увеличивая среднюю мощность излучаемых радиоимпульсов. Так, скважность радиоимпульсов может составлять единицы при больших дальностях и сотни (и даже тысячи) - при малых дальностях.

Данный способ определения дальности до поверхности земли имеет дополнительные существенные отличия от аналога.

Так, в предлагаемом способе по сравнению с аналогом предъявляются более низкие требования к стабильности фазы зондирующих сигналов. Стабильность фазы зондирующих сигналов требуется не за время полного периода зондирующих сигналов, а лишь за время, соответствующее времени излучения данного радиоимпульса. А эффект Доплера практически не оказывает влияния при обработке отраженных сигналов, т.к. осуществляется перестройка несущей частоты радиоимпульсов от радиоимпульса к радиоимпульсу по случайному равновероятному закону.

Таким образом, данный способ определения дальности до поверхности земли имеет существенные отличия от известных способов определения дальности, поскольку обеспечивается повышение скрытности работы при определении дальности до поверхности земли.

Источники информации

1. Ю.В. Опаленов, А.А. Потапов, С.Ю. Федюнин. Радиофизический измерительный комплекс со сложным ФМ сигналом в диапазоне миллиметровых волн, Радиотехника, 1991 г., №11, стр. 67-70.

2. В.И. Вербицкий, Н.Н. Калмыков, С.А. Мельников, В.В. Соловьев, А.С. Рыжков. Радиовысотомер больших высот с ФКМ сигналом, Сборник трудов Третьей Всероссийской научно-технической конференции «Радиовысотометрия-2010», Каменск-Уральский, 2010 г., стр. 206-210 (прототип).

Способ определения дальности до поверхности земли, заключающийся в излучении зондирующих сигналов в направлении поверхности земли, использовании в качестве зондирующих сигналов радиоимпульсов, имеющих несущую частоту ƒ, длительность t, период повторения T, и состоящих из N монохроматических субимпульсов длительностью τ, с непериодической фазокодовой внутриимпульсной манипуляцией, которую реализуют модулированием М-последовательностями начальных фаз субимпульсов, принимающих одно из двух значений 0 или π, приеме сигналов, отраженных от поверхности земли, проведении согласованной фильтрации отраженных сигналов с использованием в качестве весовых коэффициентов кодов, формирующих модулирующие М-последовательности, и определении дальности до поверхности земли, отличающийся тем, что производят перестройку несущей частоты ƒ радиоимпульсов от радиоимпульса к радиоимпульсу по случайному равновероятному закону в каждом периоде повторения и изменяют от радиоимпульса к радиоимпульсу период повторения радиоимпульсов, длительность радиоимпульсов и количество монохроматических субимпульсов, причем длительность t, радиоимпульсов в i-м периоде повторения радиоимпульсов определяют как разность между временем распространения сигнала от движущегося объекта до поверхности земли и обратно для дальности, определенной в (i-1)-м периоде, и первой временной константой, определяемой условиями определения дальности до поверхности земли; количество N монохроматических субимпульсов в i-м радиоимпульсе определяют как отношение длительности радиоимпульса в i-м периоде повторения к длительности монохроматических субимпульсов (постоянная величина) с округлением до ближайшего целого в меньшую сторону; а значение периода повторения T для i-го радиоимпульса определяют как разность между временем распространения сигнала от движущегося объекта до поверхности земли и обратно для дальности, определенной в (i-1)-м периоде, и второй временной константой, определяемой временем, необходимым на перестройку несущей частоты от радиоимпульса к радиоимпульсу в каждом периоде повторения по случайному равновероятному закону в заданном диапазоне частот и временем, необходимым на прием сигналов, отраженных от поверхности земли в заданном секторе углов.
Источник поступления информации: Роспатент

Показаны записи 51-60 из 583.
20.11.2013
№216.012.8277

Коррозионно-стойкая аустенитная сталь

Изобретение относится к области металлургии, а именно к коррозионно-стойким аустенитным сталям с повышенным содержанием кремния для использования в ядерной энергетике при изготовлении теплообменного оборудования, работающего при высокой температуре в контакте с пароводяной средой и тяжелым...
Тип: Изобретение
Номер охранного документа: 0002499075
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.836e

Радиационная защита космической ядерной энергетической установки

Изобретение относится к радиационной защите в составе ядерной энергетической установки для космического аппарата. Защита в местах прохода трубопроводов снабжена вставками из теплозащитного материала, например, на основе кварцевых волокон, закрепленными на внешней поверхности защиты и...
Тип: Изобретение
Номер охранного документа: 0002499322
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.853e

Способ получения дихлоргидринов глицерина

Изобретение относится к способу получения дихлоргидринов глицерина, которые являются промежуточными продуктами для синтеза эпихлоргидрина. Способ включает гидрохлорирование глицерина газообразным хлористым водородом при температуре 70-140°С в присутствии карбоновой кислоты и нерастворимого в...
Тип: Изобретение
Номер охранного документа: 0002499788
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.8620

Пассивная система охлаждения электронных компонент печатных плат

Изобретение относится к области электроники, в частности к охлаждению теплонапряженных компонентов постоянно работающих электронных приборов, включая компьютеры, а также к области теплотехники, в частности к тепловым трубам. Техническим результатом является повышение эффективности охлаждения за...
Тип: Изобретение
Номер охранного документа: 0002500014
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.8a5a

Способ эксплуатации ядерного реактора на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем

Изобретение относится к ядерной технике и может быть использовано в ядерных реакторах на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем. Способ эксплуатации ядерного реактора осуществляют в замкнутом топливном цикле с переходом в течение нескольких кампаний к работе...
Тип: Изобретение
Номер охранного документа: 0002501100
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a5b

Способ эксплуатации ядерного реактора на быстрых нейтронах с жидкометаллическим теплоносителем

Изобретение относится к ядерной технике и может быть использовано в ядерных реакторах на быстрых нейтронах с жидкометаллическим теплоносителем. Способ эксплуатации ядерного реактора на быстрых нейтронах с жидкометаллическим теплоносителем осуществляют в замкнутом топливном цикле с переходом в...
Тип: Изобретение
Номер охранного документа: 0002501101
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a5e

Устройство для резки чехла с отработавшим ядерным топливом в ячейке хранилища

Изобретение относится к области атомной техники и может быть использовано в устройствах для резки чехла с отработавшим ядерным топливом в ячейке хранилища. Устройство содержит вертикально-сверлильный станок, который установлен на платформе, расположенной с возможностью поворота относительно...
Тип: Изобретение
Номер охранного документа: 0002501104
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a60

Способ дезактивации материалов

Изобретение относится к ядерной технике и технологии, к дезактивации различных материалов, загрязненных радионуклидами. В заявленном способе дезактивацию проводят в две стадии: на первой стадии в разогретую до 110°C камеру дезактивации с загрязненными материалами подают пар, активированный...
Тип: Изобретение
Номер охранного документа: 0002501106
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e33

Устройство для определения максимальной энергии электронов

Предложено устройство для определения максимальной энергии электронов. Устройство содержит фильтр из электропроводящего материала с малым атомным весом и известной зависимостью пробега электронов от их энергии и детектор для регистрации электронов. Устройство выполнено в виде монолитного...
Тип: Изобретение
Номер охранного документа: 0002502086
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e76

Способ модификации поверхностей металлов или гетерогенных структур полупроводников

Изобретение относится к области машиностроения и может быть использовано в космических технологиях, авиастроении, автомобилестроении, станкостроении, технологиях создания строительных материалов и конструкций, в области трубопроводного транспорта и в технологии создания полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002502153
Дата охранного документа: 20.12.2013
Показаны записи 51-60 из 428.
20.11.2013
№216.012.8277

Коррозионно-стойкая аустенитная сталь

Изобретение относится к области металлургии, а именно к коррозионно-стойким аустенитным сталям с повышенным содержанием кремния для использования в ядерной энергетике при изготовлении теплообменного оборудования, работающего при высокой температуре в контакте с пароводяной средой и тяжелым...
Тип: Изобретение
Номер охранного документа: 0002499075
Дата охранного документа: 20.11.2013
20.11.2013
№216.012.836e

Радиационная защита космической ядерной энергетической установки

Изобретение относится к радиационной защите в составе ядерной энергетической установки для космического аппарата. Защита в местах прохода трубопроводов снабжена вставками из теплозащитного материала, например, на основе кварцевых волокон, закрепленными на внешней поверхности защиты и...
Тип: Изобретение
Номер охранного документа: 0002499322
Дата охранного документа: 20.11.2013
27.11.2013
№216.012.853e

Способ получения дихлоргидринов глицерина

Изобретение относится к способу получения дихлоргидринов глицерина, которые являются промежуточными продуктами для синтеза эпихлоргидрина. Способ включает гидрохлорирование глицерина газообразным хлористым водородом при температуре 70-140°С в присутствии карбоновой кислоты и нерастворимого в...
Тип: Изобретение
Номер охранного документа: 0002499788
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.8620

Пассивная система охлаждения электронных компонент печатных плат

Изобретение относится к области электроники, в частности к охлаждению теплонапряженных компонентов постоянно работающих электронных приборов, включая компьютеры, а также к области теплотехники, в частности к тепловым трубам. Техническим результатом является повышение эффективности охлаждения за...
Тип: Изобретение
Номер охранного документа: 0002500014
Дата охранного документа: 27.11.2013
10.12.2013
№216.012.8a5a

Способ эксплуатации ядерного реактора на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем

Изобретение относится к ядерной технике и может быть использовано в ядерных реакторах на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем. Способ эксплуатации ядерного реактора осуществляют в замкнутом топливном цикле с переходом в течение нескольких кампаний к работе...
Тип: Изобретение
Номер охранного документа: 0002501100
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a5b

Способ эксплуатации ядерного реактора на быстрых нейтронах с жидкометаллическим теплоносителем

Изобретение относится к ядерной технике и может быть использовано в ядерных реакторах на быстрых нейтронах с жидкометаллическим теплоносителем. Способ эксплуатации ядерного реактора на быстрых нейтронах с жидкометаллическим теплоносителем осуществляют в замкнутом топливном цикле с переходом в...
Тип: Изобретение
Номер охранного документа: 0002501101
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a5e

Устройство для резки чехла с отработавшим ядерным топливом в ячейке хранилища

Изобретение относится к области атомной техники и может быть использовано в устройствах для резки чехла с отработавшим ядерным топливом в ячейке хранилища. Устройство содержит вертикально-сверлильный станок, который установлен на платформе, расположенной с возможностью поворота относительно...
Тип: Изобретение
Номер охранного документа: 0002501104
Дата охранного документа: 10.12.2013
10.12.2013
№216.012.8a60

Способ дезактивации материалов

Изобретение относится к ядерной технике и технологии, к дезактивации различных материалов, загрязненных радионуклидами. В заявленном способе дезактивацию проводят в две стадии: на первой стадии в разогретую до 110°C камеру дезактивации с загрязненными материалами подают пар, активированный...
Тип: Изобретение
Номер охранного документа: 0002501106
Дата охранного документа: 10.12.2013
20.12.2013
№216.012.8e33

Устройство для определения максимальной энергии электронов

Предложено устройство для определения максимальной энергии электронов. Устройство содержит фильтр из электропроводящего материала с малым атомным весом и известной зависимостью пробега электронов от их энергии и детектор для регистрации электронов. Устройство выполнено в виде монолитного...
Тип: Изобретение
Номер охранного документа: 0002502086
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e76

Способ модификации поверхностей металлов или гетерогенных структур полупроводников

Изобретение относится к области машиностроения и может быть использовано в космических технологиях, авиастроении, автомобилестроении, станкостроении, технологиях создания строительных материалов и конструкций, в области трубопроводного транспорта и в технологии создания полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002502153
Дата охранного документа: 20.12.2013
+ добавить свой РИД