×
29.12.2017
217.015.f032

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СИЛИЦИДОВ ТИТАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химической технологии неорганических веществ и может быть использовано, в частности, для синтеза тугоплавких соединений. Способ получения силицидов титана включает смешение газообразных галогенидов титана и кремния, взятых в мольном отношении от 5:3 до 1:2 при температуре от 450 до 1100°C в атмосфере инертного газа при нормальном давлении, синтез силицидов титана восстановлением смеси галогенидов титана и кремния в атмосфере инертного газа при нормальном давлении расплавленным цинком при температуре от 450 до 900°C или парами цинка при температуре от 900 до 1100°C, очистку силицидов титана отгонкой галогенидов цинка и металлического цинка в атмосфере инертного газа при температуре от 900 до 1100°C при нормальном давлении или в вакууме при температуре от 700 до 900°C. Обеспечивается простой, экономичный и безопасный способ получения силицидов титана при расширении ассортимента исходного сырья за счет использования хлоридов, бромидов и иодидов титана и кремния. 3 пр.

Изобретение относится к области химической технологии неорганических веществ, в частности к синтезу тугоплавких соединений.

Силициды титана характеризуются высокой жаропрочностью и, в отличие от других силицидов, высокой пластичностью при нормальных температурах. Известны пять силицидов: Ti3Si, Ti5Si3, Ti5Si4, TiSi, TiSi2. Из них наибольший практический интерес представляет Ti5Si3, который характеризуется конгруэнтным плавлением Тпл=2130°С, в то время как у других силицидов титана точка плавления заметно ниже, а состав твердой и жидкой фазы различается, и TiSi2, который отличается лучшей стойкостью к окислению при высоких температура в кислородной среде.

Известны способы получения силицидов титана методом самораспространяющегося высокотемпературного синтеза (СВС) (C.L. Yeh, W.H. Chen, С.С. Hsu. Formation of titanium silicides Ti5Si3 and TiSi2 by self-propagating combustion synthesis. Journal of Alloys and Compounds, 432 (2007), pp. 90-95; Д.Р. Каранян, C.K. Долуханян, С.С. Петросян, И.П. Боровинская. Получение дисилицида молибдена и силицида титана методом самораспространяющегося высокотемпературного синтеза // Промышленность Армении, N4 (1975), с. 23-25). Порошки металлического титана чистоты 99% и кремния чистоты 99,5%, крупностью -0,044 мм смешивают в шаровой мельнице с требуемым мольным соотношением для синтеза силицидов TixSiy. Приготовленную смесь порошков титана и кремния прессуют в виде цилиндрических таблеток, которые помещают в реактор из нержавеющей стали. Реактор заполняют аргоном чистоты 99,99% и поджигают верхнюю часть таблетки с помощью раскаленной металлической спирали, нагретой электрическим током. После завершения синтеза таблетки охлаждают до комнатной температуры в атмосфере аргона и извлекают из реактора.

Недостатком данного способа является необходимость использования дорогостоящих мелкодисперсных порошков титана и кремния высокой чистоты и тщательной гомогенизации смеси порошков.

Известны способы синтеза силицидов титана с использованием методов механохимии (CN 104475741, опубл. 01.04.2015; C.S. Byun et al. Formation mechanism of titanium silicide by mechanical alloying. Journal of Materials Science, 36 (2001), pp. 363-369). По данному способу порошки металлического титана и кремния чистоты 99,95%, крупностью от -0,072 мм до -0,019 мм помещают в цилиндрический сосуд мельницы, изготовленный из стали или частично стабилизированного диоксида циркония, и заполняют мелющими шарами. Воздух в мельнице замещают аргоном и выполняют перемешивание/измельчение в течение от 1-4 до 10-50 ч в зависимости от соотношения титана и кремния в порошке и скорости перемешивания.

Недостатками способа являются загрязнение полученных порошков силицидов титана непрореагировавшими частицами титана и кремния, большая продолжительность процесса, необходимость в использовании дорогостоящих мелкодисперсных порошков титана и кремния высокой чистоты и тщательной гомогенизации смеси порошков.

Известен способ синтеза силицидов титана с использованием механоактивации и ударной нагрузки (J. Liu, Y. Bai, P. Chen, N. Cui, H. Yin. Reaction synthesis of TiSi2 and Ti5Si3 by ball-milling and shock loading and their photocatalytic activities. Journal of Alloys and Compounds, 555 (2013), pp. 375-380). Смесь порошков металлического титана и кремния аналитической чистоты, крупностью -0,074 мм, взятых в требуемом соотношении, предварительно обрабатывают в мельнице в атмосфере азота в течение 3 ч. Приготовленную смесь порошков прессуют в медной капсуле, которую помещают в аппарат ударной нагрузки и подвергают ударному воздействию с помощью стальной болванки, которую разгоняют до скорости 1,0-3,5 км/с детонацией заряда нитрометана, в результате чего происходит синтез силицидов титана.

Недостатками способа являются использование дорогостоящих мелкодисперсных порошков титана и кремния высокой чистоты и необходимость предварительной гомогенизации их смеси в течение нескольких часов.

Известен способ получения силицидов титана с помощью электролиза титан- и кремнийсодержащих оксидных материалов в расплаве хлорида кальция (CN 101928964, опубл. 29.12.2010; Н. Jiao, Q. Wang, J. Ge, Н. Sun, S. Jiao. Electrochemical synthesis of Ti5Si3 in CaCl2 melt. Journal of Alloys and Compounds, 582 (2014), pp. 146-150). Из смеси порошков диоксида титана и диоксида кремния или титанового шлака готовят катод либо путем предварительного смешения и измельчения порошков в шаровой мельнице со связующим в течение 5-10 ч и прессования, либо путем смешения порошков, прессования и обжига при 1100°С в течение 4 ч. Прессованную и обработанную заготовку помещают в молибденовую или стальную сетку. Анод изготавливают из графита. Ячейку для электролиза заполняют безводным хлоридом кальция и нагревают до 900°С. В расплав хлорида кальция медленно в течение 2 ч опускают катод и анод. Затем подают напряжение 3.0V. Электролиз проводят в течение 5-10 ч. На катоде синтезируются силициды титана.

Недостатками способа являются большая длительность процесса электролиза, низкий выход по току (26%), высокие затраты электрической энергии, загрязнение полученного продукта низшими оксидами титана.

Известен способ получения силицидов титана восстановлением диоксида титана расплавленным кремнием (Z. Chen, Y. Li, Y. Tan and К. Morita. Reduction of Titanium Oxide by Molten Silicon to Synthesize Titanium Silicide. Materials Transactions, Vol. 56, No. 11 (2015) pp. 1919-1922). По данному способу порошки диоксида титана, диоксида кремния и оксида кальция смешиваются в соотношении 10:7:8 по массе и сплавляются с образованием шлака при 1500°С в графитовом тигле в индукционной печи. Затем в атмосфере аргона в расплав вносят требуемое количество чистого кремния. Восстановление проводят в течение 5-17 ч.

Недостатками способа являются высокая температура и большая длительность процесса.

Известен способ получения силицидов титана осаждением из газовой фазы (CN 100356522, опубл. 19.12.2007). По данному способу тетрахлорид титана TiCl4 из испарительной камеры в виде газа подают в смесительную камеру для смешивания с моносиланом SiH4 в атмосфере сухого азота при давлении 111325 - 131325 Па. Мольное отношение SiH4:TiCl4 выбирают от 1 до 3. Приготовленную газовую смесь подают в ростовую камеру, в которой находится подложка, имеющая температуру 690-750°С, давление 101325 - 121325 Па. Осаждение силицидов титана в виде пленки на подложке проводят в течение 30-300 с.

Недостатками способа являются опасность загрязнения продукта нитридами титана из-за работы в атмосфере азота, использование дорогостоящего и опасного в обращении реагента - моносилана, проблемы при синтезе силицида Ti5Si3 из-за мольного недостатка моносилана в газовой смеси, являющегося одновременно восстановителем и источником кремния.

Задача изобретения - разработка простого, экономичного и безопасного способа получения силицидов титана.

Технический результат изобретения - разработан простой, экономичный и безопасный способ получения силицидов титана. Расширен ассортимент исходного сырья за счет использования хлоридов, бромидов и иодидов титана и кремния.

Технический результат изобретения достигается тем, что способ получения силицидов титана включает смешение газообразных галогенидов титана и кремния, взятых в мольном соотношении Ti:Si от 5:3 до 1:2, при температуре от 450 до 1100°С в атмосфере инертного газа при нормальном давлении, синтез силицидов титана восстановлением смеси галогенидов титана и кремния в атмосфере инертного газа при нормальном давлении расплавленным цинком при температуре от 450 до 900°С или парами цинка при температуре от 900 до 1100°С, очистку силицидов титана отгонкой галогенидов цинка и металлического цинка в атмосфере инертного газа при температуре от 900 до 1100°С при нормальном давлении или под вакуумом при температуре от 700 до 900°С.

В предлагаемом изобретении исходным сырьем для получения силицидов титана являются галогениды титана и кремния, взятые в мольном соотношении Ti:Si от 5:3 до 1:2 в инертном газе (аргон) при нормальном давлении и температуре от 450 до 1100°С. Смесь галогенидов титана и кремния восстанавливают металлическим цинком при нормальном давлении и температуре от 450 до 1100°С и получают силициды титана по реакции

xTiHal4+ySiHal4+2(x+y)Zn→TixSiy+2(x+y)ZnHal2,

где Hal - галоген (Cl, Br, I).

Силициды титана подвергают очистке отгонкой галогенидов цинка и металлического цинка в атмосфере инертного газа при температуре от 900 до 1100°С при нормальном давлении или под вакуумом при температуре от 700 до 900°С.

Способ осуществляют следующим образом.

Галогениды титана и кремния смешивают в мольном соотношении Ti:Si от 5:3 до 1:2 в атмосфере инертного газа (аргон) при нормальном давлении и температуре от 450 до 1100°С. Смесь галогенидов титана и кремния восстанавливают металлическим цинком при нормальном давлении и температуре от 450 до 1100°С с получением силицидов титана. Из полученного порошка силицидов титана отгоняют галогенид цинка и примесь избыточного металлического цинка.

При работе с хлоридами при температуре от 450 до 732°С исходные хлориды титана и кремния подают в реактор в газообразном состоянии, металлический цинк - в виде расплава. В результате восстановления хлоридов титана и кремния хлорид цинка образуется в жидком состоянии. При температуре выше 732°С хлорид цинка переходит в газообразное состояние.

При работе с бромидами при температуре от 450 до 697°С бромиды титана и кремния подают в реактор в газообразном состоянии, металлический цинк - в виде расплава. В результате восстановления бромидов титана и кремния бромид цинка образуется в жидком состоянии. При температуре выше 697°С бромид цинка переходит в газообразное состояние.

При работе с иодидами при температуре от 450 до 900°С иодиды титана и кремния подают в реактор в газообразном состоянии, металлический цинк - в виде расплава. Образующийся при восстановлении иодидов титана и кремния иодид цинка находится в жидком состоянии.

При температуре выше 900°С и нормальном давлении в потоке газов металлический цинк переходит в газовую фазу, что позволяет получать силициды титана в виде пленки или мелкодисперсного порошка во всех представленных выше галогенидных системах.

Для эффективного восстановления галогенидов титана и кремния в реактор подают некоторое избыточное количество металлического цинка.

Для очистки полученных силицидов титана от галогенидов цинка и избыточного металлического цинка используют отгонку в атмосфере инертного газа (аргон) при температуре от 900 до 1100°С. Для снижения температуры очистки до 700°С применяют вакуумную отгонку.

Способ подтверждается конкретными примерами.

Пример 1. Тетрахлорид титана и тетрахлорид кремния в мольном отношении 1:1 подают в камеру смешения при температуре 500°С в атмосфере аргона при нормальном давлении. Затем смесь газов подают в реактор синтеза, в котором при температуре 500°С тетрахлориды титана и кремния контактируют с расплавленным цинком в атмосфере аргона при нормальном давлении. После завершения синтеза температуру в реакторе повышают до 1100°С и отгоняют хлорид цинка и избыточный цинк в атмосфере аргона при нормальном давлении. В результате получают силицид титана TiSi.

Пример 2. Тетрабромид титана и тетрабромид кремния в мольном отношении 5:3 подают в камеру смешения при температуре 450°С в атмосфере аргона при нормальном давлении и полученную смесь газов подают в реактор синтеза, в котором при температуре 450°С тетрабромиды титана и кремния контактируют с расплавленным цинком в атмосфере аргона при нормальном давлении. После завершения синтеза температуру в реакторе повышают до 700°С и отгоняют бромид цинка и избыточный цинк под вакуумом. В результате получают силицид титана Ti5Si3.

Пример 3. Тетраиодид титана и тетраиодид кремния в мольном отношении 5:3 подают в камеру смешения при температуре 900°С в атмосфере аргона. Затем смесь газов подают в реактор синтеза, в котором при температуре 900°С тетрабромиды титана и кремния контактируют с парами металлического цинка в атмосфере аргона при нормальном давлении. После завершения синтеза температуру в реакторе снижают до 700°С и отгоняют иодид цинка и избыточный цинк под вакуумом. В результате получают силицид титана Ti5Si3.

Таким образом, разработан простой, экономичный и безопасный способ получения силицидов титана. Расширен ассортимент исходного сырья за счет использования хлоридов, бромидов и иодидов титана и кремния.

Способ получения силицидов титана, включающий смешение газообразных галогенидов титана и кремния, взятых в мольном отношении от 5:3 до 1:2 при температуре от 450 до 1100°C в атмосфере инертного газа при нормальном давлении, синтез силицидов титана восстановлением смеси галогенидов титана и кремния в атмосфере инертного газа при нормальном давлении расплавленным цинком при температуре от 450 до 900°C или парами цинка при температуре от 900 до 1100°C, очистку силицидов титана отгонкой галогенидов цинка и металлического цинка в атмосфере инертного газа при температуре от 900 до 1100°C при нормальном давлении или в вакууме при температуре от 700 до 900°C.
Источник поступления информации: Роспатент

Показаны записи 41-50 из 62.
25.07.2019
№219.017.b89c

Способ обеспечения проведения физических измерений в проточном термостате при температурах выше комнатной

В способе обеспечения проведения физических измерений в проточном термостате при температурах выше комнатной газообразный теплоноситель нагревают техническим феном, герметично подсоединенным к входу канала термостата, а ток газообразного теплоносителя в канале термостата создают за счет...
Тип: Изобретение
Номер охранного документа: 0002695482
Дата охранного документа: 23.07.2019
08.11.2019
№219.017.df88

Способ производства пряников

Изобретение относится к пищевой промышленности. Способ приготовления пряников включает замес теста из муки пшеничной высшего сорта, сахара-песка, воды, растительного масла, углеаммонийной соли, формование, выпекание и охлаждение. В тесто дополнительно вводят растительную добавку, состоящую из...
Тип: Изобретение
Номер охранного документа: 0002705140
Дата охранного документа: 06.11.2019
21.11.2019
№219.017.e463

Чувствительный элемент тонкопленочного магнитометра

Изобретение относится к измерительной технике, а более конкретно - предназначено для измерения слабых магнитных полей, и может использоваться в магнитометрии. Чувствительный элемент состоит из печатной платы, на верхней стороне которой размещаются два СВЧ-резонатора, включающих одну общую...
Тип: Изобретение
Номер охранного документа: 0002706436
Дата охранного документа: 19.11.2019
29.11.2019
№219.017.e79c

Электрически управляемый поляризатор света на основе анизотропии светорассеяния

Электрически управляемый поляризатор света на основе анизотропии светорассеяния, обладающий высокими светопропусканием и поляризующей способностью, относится к оптоэлектронной технике, в частности к устройствам и элементам, основанным на жидких кристаллах и предназначенным для управления...
Тип: Изобретение
Номер охранного документа: 0002707424
Дата охранного документа: 26.11.2019
29.11.2019
№219.017.e79f

Чувствительный элемент сканирующего спектрометра ферромагнитного резонанса с частотной подстройкой

Изобретение относится к измерительной технике и предназначено для неразрушающего контроля качества и однородности магнитных пленок путем регистрации (записи) спектров ферромагнитного резонанса от локальных участков тонкопленочных образцов. Чувствительный элемент сканирующего спектрометра...
Тип: Изобретение
Номер охранного документа: 0002707421
Дата охранного документа: 26.11.2019
05.02.2020
№220.017.fddc

Тонкопленочный магнитометр слабых магнитных полей

Изобретение относится к измерительной технике и может использоваться в магнитометрии. Сущность изобретения заключается в том, что в тонкопленочном магнитометре слабых магнитных полей под углом α к оси трудного намагничивания тонкой магнитной пленки с помощью дополнительной магнитной системы и...
Тип: Изобретение
Номер охранного документа: 0002712926
Дата охранного документа: 03.02.2020
05.02.2020
№220.017.fdef

Тонкопленочная магнитная антенна

Изобретение относится к измерительной технике и предназначено для измерения величины и направления слабых магнитных полей в широком диапазоне частот и может использоваться в первую очередь в магнитометрии. Тонкопленочная магнитная антенна содержит СВЧ-генератор, тонкую магнитную пленку,...
Тип: Изобретение
Номер охранного документа: 0002712922
Дата охранного документа: 03.02.2020
08.02.2020
№220.018.0023

Оптический многослойный полосно-пропускающий фильтр

Оптический многослойный полосно-пропускающий фильтр относится к оптической технике терагерцового диапазона и может быть использован в оптических устройствах связи и измерительной аппаратуре. Фильтр содержит чередующиеся диэлектрические слои из материалов с высоким и низким показателями...
Тип: Изобретение
Номер охранного документа: 0002713566
Дата охранного документа: 05.02.2020
15.02.2020
№220.018.02aa

Многослойное сверхширокополосное поглощающее покрытие

Изобретение относится к технике сверхвысоких частот и предназначено для уменьшения радиолокационной заметности объектов военной техники, например летательных аппаратов. Техническим результатом изобретения является расширение полосы рабочих частот поглощающего покрытия. Изобретение представляет...
Тип: Изобретение
Номер охранного документа: 0002714110
Дата охранного документа: 12.02.2020
17.02.2020
№220.018.032a

Способ измерения магнитных характеристик ферромагнитных пленок и устройство для его осуществления

Группа изобретений относится к измерительной технике и предназначена для неразрушающего контроля качества и однородности тонких магнитных пленок. Сущность изобретения заключается в том, что измеряют производную от величины поглощения электромагнитной энергии СВЧ-поля образцом, который...
Тип: Изобретение
Номер охранного документа: 0002714314
Дата охранного документа: 14.02.2020
Показаны записи 11-18 из 18.
19.01.2018
№218.016.0309

Способ получения аморфных пленок со-р на диэлектрической подложке

Изобретение относится к области химического осаждения магнитомягких и магнитожестких пленок состава кобальт-фосфор, применяющихся в качестве сред для магнитной и термомагнитной записи, для создания микроэлектромагнитных механических устройств (MEMS), а также в датчиках слабых магнитных полей, в...
Тип: Изобретение
Номер охранного документа: 0002630162
Дата охранного документа: 05.09.2017
20.01.2018
№218.016.1d86

Полосковый резонатор

Изобретение относится к технике высоких и сверхвысоких частот и предназначено для создания частотно-селективных устройств. Полосковый резонатор содержит две диэлектрические подложки, подвешенные между экранами корпуса, на обе поверхности которых нанесены полосковые металлические проводники,...
Тип: Изобретение
Номер охранного документа: 0002640968
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.2082

Способ получения суспензии на полимерной основе с высокодисперсными металлическими частицами для изготовления полимерных матриц, наполненных упомянутыми частицами

Изобретение относится к способам введения частиц в вещество и может быть использовано для получения суспензий частиц, содержащих наполнители контролируемого размера, в том числе для введения частиц контролируемого размера от наночастиц до атомарных в матрицу термопластических и сетчатых...
Тип: Изобретение
Номер охранного документа: 0002641591
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.2263

Способ приготовления металлических наночастиц железа

Изобретение относится к приготовлению металлических наночастиц железа из водного золя на основе наночастиц ферригидрита и может быть использовано в медицине. Водный золь на основе наночастиц ферригидрита, полученных в результате культивирования бактерий Klebsiella oxytoca, выделенных из...
Тип: Изобретение
Номер охранного документа: 0002642220
Дата охранного документа: 24.01.2018
04.04.2018
№218.016.315b

Держатель образца для сквид-магнитометра типа mpms

Изобретение относится к устройствам для измерения переменных магнитных величин и может быть использовано при проведении магнитных измерений в следующих областях: физика магнитных явлений, физика конденсированного состояния. Держатель образца для СКВИД-магнитометра типа MPMS содержит...
Тип: Изобретение
Номер охранного документа: 0002645031
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.33c2

Емкостный дилатометр для работы в составе установки ppms qd

Изобретение относится к измерительной технике, предназначенной для измерения малых деформаций, в частности к емкостным дилатометрам, и может быть использовано для определения коэффициента линейного температурного расширения, пьезоэлектрического эффекта и магнитострикции. Емкостный дилатометр...
Тип: Изобретение
Номер охранного документа: 0002645823
Дата охранного документа: 28.02.2018
20.03.2019
№219.016.e92a

Способ конверсии хлороводорода для получения хлора

Изобретение может быть использовано в неорганической химии. Способ конверсии хлороводорода для получения хлора включает хлорирование оксида железа (III) газовой смесью хлороводорода и водорода, выделение хлорида железа (II) из газовой смеси продуктов хлорирования, окисление хлорида железа (II)...
Тип: Изобретение
Номер охранного документа: 0002448038
Дата охранного документа: 20.04.2012
19.04.2019
№219.017.33ba

Способ разложения кальцийсодержащего минерального сырья

Изобретение относится к технологии переработки кальцийсодержащего сырья. Проводят галогенирование исходного сырья при нагревании газообразным бромом с образованием бромида кальция и бромида железа (II). Затем проводят окисление бромида кальция 10-кратным избыточным количеством кислорода от...
Тип: Изобретение
Номер охранного документа: 0002440432
Дата охранного документа: 20.01.2012
+ добавить свой РИД