×
20.11.2017
217.015.ef5a

Результат интеллектуальной деятельности: Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиолокационной измерительной технике и может быть использовано, в частности, в составе радиолокационных измерительных стендов многочастотного импульсного зондирования и инверсного синтеза апертуры антенны, осуществляющих построение двумерных радиолокационных изображений (РЛИ) исследуемых объектов. Достигаемый технический результат - итерационное улучшение фокусировки РЛИ и уменьшение энтропии РЛИ вплоть до достижения потенциальной разрешающей способности путем последовательного уточнения расстояния от эквивалентного фазового центра антенны до точки синтезирования. Указанный результат достигается за счет вычисления для выбранного дискретного диапазона из N значений расстояния от эквивалентного фазового центра антенны до точки синтезирования соответствующего набора РЛИ объекта, оценки значения энтропии для каждого РЛИ, выбора значения расстояния с минимальной энтропией, формирования нового, меньшего в N раз, дискретного диапазона значений расстояний от эквивалентного фазового центра антенны до точки синтезирования в окрестности расстояния с минимальной энтропией и циклического повторения вычислений. Выход из итерационного цикла выполняется по достижению заданной величины уменьшения энтропии РЛИ на текущей и предыдущей итерациях. 3 ил.

Изобретение относится к радиолокационной измерительной технике и может быть использовано, в частности, в составе радиолокационных измерительных стендов многочастотного импульсного зондирования и инверсного синтеза апертуры антенны, осуществляющих построение двумерных радиолокационных изображений (РЛИ) исследуемых объектов.

Методы получения РЛИ объекта основаны на цифровой обработке комплексной огибающей отраженного от него сигнала, измеренного в широкой полосе частот зондирующих импульсов радиолокационной системы (РЛС) при различных ракурсах наблюдения вращающегося объекта.

Известен [Патент RU 2422851 С1 «Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании» МПК: G01S 13/89 (2006.01), 27.06.2011] способ получения двумерного радиолокационного изображения в большом диапазоне изменения величин эффективных площадей рассеивания (ЭПР) локальных рассеивающих центров при многочастотном импульсном зондировании, включающий излучение импульсов с изменением несущей частоты ƒ от импульса к импульсу с шагом Δƒ в полосе частот ΔF, измерение частоты ƒ(tnm) зондирующих импульсов в моменты времени tnm, где n - номер шага перестройки частоты, m - номер повторного цикла перестройки, измерение в земной системе отсчета в моменты времени tnm координат центра антенны РЛС и координат выбранного центра синтезирования на объекте, измерение относительно земной системы отсчета угла наблюдения ψ(tnm) связанной с объектом системы отсчета с началом в центре синтезирования, прием отраженных сигналов, измерение комплексных огибающих отраженных сигналов, корректировку фазы измеренных комплексных огибающих отраженных сигналов к расстоянию от центра антенны РЛС до точки синтезирования, запоминание измеренных комплексных огибающих отраженных сигналов в течение времени синтезирования в угловом секторе, образование двумерной матрицы комплексных огибающих в координатах пространственных частот:

и преобразование ее с помощью быстрого двумерного преобразования Фурье в двумерную матрицу синтезированных откликов. Определяют размер половины сектора углов наблюдения Δψ исходя из соотношения:

где ;

ƒcp - средняя частота в полосе перестройки,

запоминают измеренные комплексные огибающие отраженных сигналов в секторе углов наблюдения ±Δψ, заносят в элементы с номерами (n1, m1) двумерной матрицы комплексных огибающих значения, полученные для номера n2 шага перестройки частоты и номера m2 повторного цикла перестройки, где:

с - скорость света;

n1=l, …, N1;

m1=1, …, М1;

Ν1=Lz (maxƒz-minƒz);

Μ1=Lx (maxƒx-minƒx);

Lz, Lx - размеры области синтезирования радиолокационного изображения по продольной z и поперечной x координатам;

Данный способ синтезирования двумерных РЛИ обеспечивает повышение разрешающей способности РЛИ и точности оценок ЭПР рассеивающих центров (РЦ) при расширении сектора углов поворота объекта относительно линии визирования, что достигается за счет формирования матрицы комплексных огибающих в координатах пространственных частот. Поскольку значения пространственных частот и координат РЦ в записи фазы комплексных огибающих связаны линейным образом, то в результате преобразования Фурье отраженный сигнал, определенный в области пространственных частот, преобразуется в область декартовых координат без искажения при увеличении полосы частот и сектора углов поворота.

Описанный способ взят в качестве прототипа.

Существенным недостатком способа-прототипа является то, что расстояние от центра антенны РЛС до точки синтезирования является априорно известным параметром, и корректировка фазы измеренных комплексных огибающих отраженных сигналов к расстоянию от центра антенны РЛС до точки синтезирования, т.е. до центра вращения объекта выполняется точно.

На практике фазовые набеги измеренных комплексных огибающих определяются не только расстоянием от центра антенны РЛС до точки синтезирования, но и фазовыми задержками сигнала в волноводных устройствах, устройствах формирования, преобразования и фильтрации сигналов, следовательно, расстояние от эквивалентного фазового центра антенны до точки синтезирования (центра вращения объекта) не может быть точно определено только геометрическими измерениями.

В результате указанного недостатка изображение расфокусируется и в целом способ не обеспечивает достижения потенциальной разрешающей способности.

Предлагается способ, позволяющий избежать указанного недостатка.

Предлагаемый способ решает задачу получения двумерного РЛИ объекта с достижимой для заданной полосы частот разрешающей способностью с итерационным уточнением эквивалентного расстояния от условного фазового центра РЛС до точки синтезирования, обеспечивая пошаговое улучшение фокусировки РЛИ вплоть до достижения потенциальной разрешающей способности.

Для решения указанной задачи предлагается способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования, включающий излучение импульсов с изменением несущей частоты ƒ от импульса к импульсу с шагом Δƒ в полосе частот ΔF, измерение частоты ƒ(tnm) зондирующих импульсов в моменты времени tnm, где n - номер шага перестройки частоты, m - номер повторного цикла перестройки, измерение в земной системе отсчета в моменты времени tnm координат центра антенны радиолокационной системы и координат выбранного центра синтезирования на объекте, измерение относительно земной системы отсчета угла наблюдения ψ(tnm) связанной с объектом системы отсчета с началом в центре синтезирования, прием отраженных сигналов, измерение комплексных огибающих отраженных сигналов, корректировку фазы измеренных комплексных огибающих отраженных сигналов к расстоянию от центра антенны РЛС до точки синтезирования, запоминание измеренных комплексных огибающих отраженных сигналов в течение времени синтезирования в угловом секторе, образование двумерной матрицы комплексных огибающих в координатах пространственных частот:

и преобразование ее с помощью быстрого двумерного преобразования Фурье в двумерную матрицу синтезированных откликов, определяют размер половины сектора углов наблюдения Δψ исходя из соотношения:

где ;

ƒср - средняя частота в полосе перестройки,

запоминают измеренные комплексные огибающие отраженных сигналов в секторе углов наблюдения ±Δψ, заносят в элементы с номерами (n1, m1) двумерной матрицы комплексных огибающих значения, полученные для номера n2 шага перестройки частоты и номера m2 повторного цикла перестройки, где:

с - скорость света;

n1=l, …, N1;

m1=1, …, М1

Ν1=Lz (maxƒz-minƒz);

Μ1=Lx (maxƒx-minƒx);

Lz, Lx - размеры области синтезирования радиолокационного изображения по продольной z и поперечной x координатам;

Согласно изобретению выбирается начальный размер области неопределенности по продольной координате Lнеопр=Lz, где Lz - размер области синтезирования РЛИ по продольной координате, выбирается начальное приближение R0=0 расстояния от эквивалентного фазового центра антенны до точки синтезирования, выполняется инициализация Ri=R0-Lнеопр/2+i×Lнеопр/Ν, 0≤i≤N-l набора расстояний от эквивалентного фазового центра антенны до точки синтезирования, где N - количество интервалов разбиения, для каждого значения расстояния Ri выполняется корректировка фаз измеренных комплексных огибающих отраженных сигналов к расстоянию от центра антенны РЛС до точки синтезирования и построение двумерного РЛИ Рi, для каждого РЛИ Pi выполняется вычисление энтропии Е(Рi):

где

- элемент матрицы нормированного двумерного РЛИ;

P'i[m, k] - элемент матрицы Pi двумерного РЛИ;

М, K - размеры двумерного РЛИ.

Для вычисленного набора энтропий E(Pi) отыскивается минимальная энтропия Еminimin) и ее порядковый номер в наборе imin, по порядковому номеру imin уточняется расстояние от эквивалентного фазового центра антенны до точки синтезирования R0=Rimin, уменьшается в N раз размер области неопределенности по продольной координате Lнеопр=Lнеопр/Ν, где N - количество интервалов разбиения области неопределенности по продольной координате, далее цикл повторяется, начиная с инициализации набора расстояний Ri.

Выход из итерационного цикла осуществляется путем сравнения разности значений минимальных энтропий на текущей и предыдущей итерации с порогом:

где Ejmin - значение минимума энтропии на текущей итерации j;

Ej-1min - значение минимума энтропии на предыдущей итерации j-1;

ε - выбранное значение порога.

Достигаемый технический результат заключается в итерационном улучшении фокусировки РЛИ и уменьшении энтропии РЛИ вплоть до достижения потенциальной разрешающей способности путем последовательного уточнения расстояния от эквивалентного фазового центра антенны до точки синтезирования.

Сравнительный анализ способа-прототипа и предлагаемого способа показывает, что введены новые операции: выбор начального размера области неопределенности по продольной координате, выбор начального приближения расстояния от эквивалентного фазового центра антенны до точки синтезирования, инициализация набора расстояний от эквивалентного фазового центра антенны до точки синтезирования, вычисление элементов набора РЛИ для соответствующих элементов набора расстояний от эквивалентного фазового центра антенны до точки синтезирования, вычисление энтропии для каждого РЛИ, для вычисленного набора энтропий поиск минимальной энтропии и ее порядкового номера в наборе, по порядковому номеру уточнение расстояния от эквивалентного фазового центра антенны до точки синтезирования, уменьшение в N раз размера области неопределенности по продольной координате, где N - количество интервалов разбиения области неопределенности по продольной координате, повторение цикла, начиная с инициализации набора расстояний, выход из итерационного цикла путем сравнения разности значений минимальных энтропий на текущей и предыдущей итерации с порогом,

которые позволяют итерационно улучшать фокусировку и разрешающую способность РЛИ по сравнению со способом-прототипом вплоть до достижения потенциальной разрешающей способности.

На фигуре 1 показано РЛИ модели исследуемого объекта, полученное после первой итерации предлагаемым способом, на фигуре 2 - после второй итерации, на фигуре 3 - после третьей итерации.

При реализации предлагаемого способа выполняются следующая последовательность операций:

- выбор начального размера области неопределенности по продольной координате Lнеопр=Lz, где Lz - размер области синтезирования РЛИ по продольной координате - 1,

- выбор начального приближения R0=0 расстояния от эквивалентного фазового центра антенны до точки синтезирования - 2,

- инициализация Ri=R0-Lнеопр/2+i×Lнеопр/Ν, 0≤i≤N-l набора расстояний от эквивалентного фазового центра антенны до точки синтезирования, где N - количество интервалов разбиения - 3,

- для каждого значения расстояния Ri корректировка фаз измеренных комплексных огибающих отраженных сигналов к расстоянию от центра антенны РЛС до точки синтезирования и построение двумерного РЛИ Pi в соответствии с прототипом - 4,

- вычисление энтропии E(Ρi) для каждого РЛИ Pi:

где

- элемент матрицы нормированного двумерного РЛИ;

P'i [m, k] - элемент матрицы Pi двумерного РЛИ;

M, K - размеры двумерного РЛИ - 5,

- для вычисленного набора энтропий E(Pi) поиск минимальной энтропии Emin(Pimin) и ее порядкового номера в наборе imin - 6,

- по порядковому номеру imin уточнение расстояния от эквивалентного фазового центра антенны до точки синтезирования R0=Rimin-7,

- уменьшение в N раз размера области неопределенности по продольной координате Lнеопр=Lнеопр/Ν, где Ν - количество интервалов разбиения области неопределенности по продольной координате - 8,

- повторение цикла, начиная с инициализации набора расстояний Ri (операция 3), - 9,

- выход из итерационного цикла осуществляется путем сравнения разности значений минимальных энтропий на текущей и предыдущей итерации с порогом:

где Ejmin - значение минимума энтропии на текущей итерации j;

Ej-1min - значение минимума энтропии на предыдущей итерации j-1;

ε - выбранное значение порога - 10.

Работоспособность предлагаемого способа проверена методом математического моделирования.

Условия локации при моделировании заданы следующим образом:

зондирующие сигналы РЛС - импульсы с периодом повторения 20 мкс, несущая частота сигнала меняется от импульса к импульсу с шагом 4500/1024 МГц в полосе частот от 12750 до 17250 МГц, объект равномерно вращается со скоростью 1.5°/c.

Модель объекта задана в виде совокупности неподвижных относительно связанной системы отсчета 9 РЦ, которые расположены в узлах квадратной сетки с удалением соседних РЦ по обеим координатам на 1 м.

Уровни эффективных площадей рассеяния (ЭПР) заданных РЦ выбраны одинаковыми и равными 1 м2.

Для заданной 30% перестройки частоты размер половины сектора углов синтезирования составляет примерно 10°.

На фиг. 1 приведено двумерное РЛИ объекта в плоскости локации, полученное после первой итерации предложенным способом в секторе углов наблюдения ±10° относительно ракурса синтезированного РЛИ. Значение минимума энтропии РЛИ E1min=8.26.

На фиг. 2 и 3 приведены двумерные РЛИ объекта после 2 и 3 итерации, значения минимумов энтропии равны соответственно E2min=7.1124 и E3min=6.5073.

Ошибки определения дальности от эквивалентного фазового центра антенны РЛС до точки синтезирования на первой, второй и третьей итерациях равны соответственно ΔR1=-1.05 м, ΔR2=0.31 м ΔR3=0.01 м.

Технический результат достигнут: устранены недостатки прототипа, обеспечено итерационное улучшение фокусировки и разрешающей способности РЛИ.


Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Способ получения двумерного радиолокационного изображения объекта при многочастотном импульсном зондировании и инверсном синтезе апертуры с итерационным уточнением расстояния от эквивалентного фазового центра антенны до точки синтезирования
Источник поступления информации: Роспатент

Показаны записи 61-70 из 640.
20.04.2015
№216.013.43b7

Система обеспечения электрической энергией воздушных судов

Система обеспечения электрической энергией воздушных судов относится к силовым установкам вспомогательного назначения для воздушных судов. Система содержит аккумуляторные батареи, аппаратуру регулирования, управления и защиты, преобразователь постоянного тока в переменный ток,...
Тип: Изобретение
Номер охранного документа: 0002548833
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4a6e

Широкополосный усилитель мощности коротковолнового диапазона

Изобретение относится к радиоэлектронике и может быть использовано в широкополосных радиопередатчиках. Технический результат заключается в преобразовании энергии высших гармоник в энергию постоянного тока и возвращении этой энергии источнику питания. В усилителе используют мостовую схему...
Тип: Изобретение
Номер охранного документа: 0002550561
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b1b

Многофункциональная командно-штабная машина

Изобретение относится к технике электросвязи. Технический результат заключается в расширении сферы и объема, а также качества предоставляемых должностным лицам услуг связи. Упомянутый технический результат достигается тем, что многофункциональная командно-штабная машина (КШМ) состоит из...
Тип: Изобретение
Номер охранного документа: 0002550734
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b32

Устройство обнаружения шумовых гидроакустических сигналов на основе квадратурного приемника

Предлагаемое изобретение относится к области гидроакустики, а именно к устройствам обнаружения шумовых гидроакустических сигналов в виде дискретных составляющих (ДС) на фоне аддитивной помехи. Техническим результатом является повышение помехоустойчивости обнаружителя шумовых гидроакустических...
Тип: Изобретение
Номер охранного документа: 0002550757
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b33

Гидроакустический способ контроля скорости потока жидких сред в трубопроводах

Изобретение относится к области гидроакустической метрологии. Сущность: при использовании известного свойства электроакустических излучателей изменять соотношение величин активной и реактивной составляющих своего сопротивления излучения в соответствии с флюктуациями характеристик среды - ее...
Тип: Изобретение
Номер охранного документа: 0002550758
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4be2

Транспортное средство для перевозки суперконтейнеров с разрядными и экологически опасными грузами

Изобретение относится к средствам транспорта разрядных и экологически опасных грузов. Транспортное средство для перевозки суперконтейнеров с разрядными и экологически опасными грузами содержит раму (1) с платформой, две лебедки (3), два гидравлических домкрата (8), опорные балки (7), грузовую...
Тип: Изобретение
Номер охранного документа: 0002550940
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c94

Импульсный источник напряжения

Изобретение относится к электротехнике и к импульсной силовой электронике, в частности к преобразователям постоянного напряжения в переменное - инверторам и регуляторам напряжения, и предназначено для использования в автономных системах электропитания и в электроприводах перспективных...
Тип: Изобретение
Номер охранного документа: 0002551118
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d82

Способ бесстробового автоматического сопровождения подвижной цели

Изобретение относится к гидроакустике и радиолокации и может быть использовано в системе обработки информации для автоматического сопровождения подвижных целей. Достижимый технический результат - снижение вероятности формирования ложных траекторий. Сущность способа состоит в том, что решение...
Тип: Изобретение
Номер охранного документа: 0002551356
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d83

Способ передачи информации в сдв диапазоне

Изобретение относится к технике связи и может использоваться для передачи информации в СДВ диапазоне. Технический результат состоит в обеспечении связи с подводными объектами. Для этого передают информацию в СДВ диапазоне путем амплитудной модуляции несущей частоты коротковолнового передатчика...
Тип: Изобретение
Номер охранного документа: 0002551357
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4da4

Способ роботизированного обеспечения применения высокоточного оружия

Изобретение относится к области приборостроения и может найти применение в системах управления высокоточным оружием. Технический результат - повышение эффективности стрельбы управляемыми снарядами или ракетами. Для этого осуществляют формирование и совмещение с целью независимой линии...
Тип: Изобретение
Номер охранного документа: 0002551390
Дата охранного документа: 20.05.2015
Показаны записи 61-70 из 390.
10.04.2015
№216.013.404f

Транспортное средство для перевозки разрядных грузов

Изобретение относится к средствам транспорта, применяемым для перевозки разрядных грузов, и может быть использовано при создании грузовых автомобилей, полуприцепов и грузовых платформ, используемых для перевозки экологически опасных грузов. Транспортное средство содержит грузовую платформу с...
Тип: Изобретение
Номер охранного документа: 0002547951
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.43b7

Система обеспечения электрической энергией воздушных судов

Система обеспечения электрической энергией воздушных судов относится к силовым установкам вспомогательного назначения для воздушных судов. Система содержит аккумуляторные батареи, аппаратуру регулирования, управления и защиты, преобразователь постоянного тока в переменный ток,...
Тип: Изобретение
Номер охранного документа: 0002548833
Дата охранного документа: 20.04.2015
10.05.2015
№216.013.4a6e

Широкополосный усилитель мощности коротковолнового диапазона

Изобретение относится к радиоэлектронике и может быть использовано в широкополосных радиопередатчиках. Технический результат заключается в преобразовании энергии высших гармоник в энергию постоянного тока и возвращении этой энергии источнику питания. В усилителе используют мостовую схему...
Тип: Изобретение
Номер охранного документа: 0002550561
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b1b

Многофункциональная командно-штабная машина

Изобретение относится к технике электросвязи. Технический результат заключается в расширении сферы и объема, а также качества предоставляемых должностным лицам услуг связи. Упомянутый технический результат достигается тем, что многофункциональная командно-штабная машина (КШМ) состоит из...
Тип: Изобретение
Номер охранного документа: 0002550734
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b32

Устройство обнаружения шумовых гидроакустических сигналов на основе квадратурного приемника

Предлагаемое изобретение относится к области гидроакустики, а именно к устройствам обнаружения шумовых гидроакустических сигналов в виде дискретных составляющих (ДС) на фоне аддитивной помехи. Техническим результатом является повышение помехоустойчивости обнаружителя шумовых гидроакустических...
Тип: Изобретение
Номер охранного документа: 0002550757
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b33

Гидроакустический способ контроля скорости потока жидких сред в трубопроводах

Изобретение относится к области гидроакустической метрологии. Сущность: при использовании известного свойства электроакустических излучателей изменять соотношение величин активной и реактивной составляющих своего сопротивления излучения в соответствии с флюктуациями характеристик среды - ее...
Тип: Изобретение
Номер охранного документа: 0002550758
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4be2

Транспортное средство для перевозки суперконтейнеров с разрядными и экологически опасными грузами

Изобретение относится к средствам транспорта разрядных и экологически опасных грузов. Транспортное средство для перевозки суперконтейнеров с разрядными и экологически опасными грузами содержит раму (1) с платформой, две лебедки (3), два гидравлических домкрата (8), опорные балки (7), грузовую...
Тип: Изобретение
Номер охранного документа: 0002550940
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4c94

Импульсный источник напряжения

Изобретение относится к электротехнике и к импульсной силовой электронике, в частности к преобразователям постоянного напряжения в переменное - инверторам и регуляторам напряжения, и предназначено для использования в автономных системах электропитания и в электроприводах перспективных...
Тип: Изобретение
Номер охранного документа: 0002551118
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d82

Способ бесстробового автоматического сопровождения подвижной цели

Изобретение относится к гидроакустике и радиолокации и может быть использовано в системе обработки информации для автоматического сопровождения подвижных целей. Достижимый технический результат - снижение вероятности формирования ложных траекторий. Сущность способа состоит в том, что решение...
Тип: Изобретение
Номер охранного документа: 0002551356
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d83

Способ передачи информации в сдв диапазоне

Изобретение относится к технике связи и может использоваться для передачи информации в СДВ диапазоне. Технический результат состоит в обеспечении связи с подводными объектами. Для этого передают информацию в СДВ диапазоне путем амплитудной модуляции несущей частоты коротковолнового передатчика...
Тип: Изобретение
Номер охранного документа: 0002551357
Дата охранного документа: 20.05.2015
+ добавить свой РИД