×
26.08.2017
217.015.ee08

Результат интеллектуальной деятельности: Способ количественной оценки неоднородности зёренной структуры листовых металлических материалов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлографических исследований и анализа материалов, в частности к определению неоднородности величины зерна в листовых металлах и сплавах. Получают металлографический шлиф с поверхности листа с четко выраженной зеренной структурой, затем с помощью микроскопа получают изображение микроструктуры, которое разбивают на 9…12 прямоугольных фрагментов, внутри каждого фрагмента подсчитывают количество зерен, находят средний размер зерна внутри каждого фрагмента как корень квадратный из отношения площади фрагмента к количеству зерен внутри него; получают выборку из 9…12 чисел, для них строят график вероятности величины зерна; коэффициент неоднородности рассчитывают как отношение ширины графика на полувысоте к наиболее вероятному размеру зерна, умноженному на максимальную вероятность величины зерна. Достигается расширение технологических возможностей микроструктурного анализа и снижение затрат на изготовление образцов. 2 пр., 3 табл., 6 ил.

Предлагаемое изобретение относится к области материаловедения, а именно к количественным методам оценки неоднородности зеренной структуры металлических сплавов, предназначенных для последующей листовой штамповки.

Известен способ определения величины зерна металлов и сплавов (патент РФ №2317540, МПК G01N 33/20, опубл. 20.02.2008). Он заключается в выборе области на изображении зеренной структуры металла со шлифа, на которую наносят две взаимно перпендикулярные группы равноотстоящих параллельных секущих, замеряют величины хорд, образовавшихся в результате пересечения границ зерен секущими, и по полученной совокупности замеров судят о величине зерна. Результатом измерений является установление среднего диаметра зерна.

Недостаток метода состоит в субъективности выбора представительной области, большой трудоемкости расчетов и в том, что он дает представления о средней величине зерна и не может использоваться для оценки структуры изделий из сталей и сплавов, склонных к образованию разнозернистости, в особенности тех, в которых структура строго регламентируется. Разнозернистость оценивается по наличию зерен с размером, отличающимся от преобладающего по шкале и площади, занимаемой зернами с размером, отличным от преобладающего.

Известен зарубежный стандарт ASTM Е112 - «Методы определения среднего размера зерна металлических материалов» (ASTM Е112 Standard Test Methods for Determining Average Grain Size, Дата публикации: 01.10.2013. - 28 р.). Представленные методы применяются для определения среднего размера зерна образцов с равномерным распределением площадей, диаметров и длин секущих отрезков зерна. Эти распределения являются приблизительно логарифмически нормальными распределениями.

Измерение отдельных очень крупных зерен в мелкозернистой матрице описано в Методе испытаний E930 (ASTM Е930-99 (2015) Standard Test Methods for Estimating the Largest Grain Observed in a Metallographic Section (ALA Grain Size). Дата публикации: 30.09.2015. - 6 p.).

Недостатком предложенных методик является трудоемкость и большая погрешность, так как измерения следует проводить в ручном режиме.

Для автоматизации процесса расчета среднего размера зерна и уменьшения погрешности предлагаются компьютерные программы и графические редакторы для анализа изображений (ООО «Новые экспертные системы» [Электронный ресурс]: - Загл. с титул, экрана. URL: http://www.nexsys.ru/nexsys_iepro3x.htm), позволяющие строить зависимости вероятности распределения размеров зерен. Результатом является гистограмма распределения вероятности среднего размера зерна.

Недостаток всех предложенных методов состоит в отсутствии количественного критерия, позволяющего однозначно оценить неоднородность величины зерна металлов и сплавов.

Наиболее близким по технической сущности к заявляемому способу, который принят за прототип, является метод подсчета зерен (ГОСТ 5639 «Стали и сплавы. Методы выявления и определения величины зерна», страницы 8, 13). Он заключается в том, что на изображении микроструктуры проводят прямые отрезки таким образом, чтобы концы отрезков заканчивались на границах зерен. Протяженность и количество отрезков выбирают таким образом, чтобы в пересечение попали не менее 250 зерен. Далее подсчитывают длины хорд зерен, попавших в пересечение с выбранной линией. Получают массив значений, который классифицируют согласно размерной группе с коэффициентом 1,45: в первую размерную группу попадают зерна с длиной хорды 1,0…1,45, во второй размерной группе находятся зерна с длиной хорды 1,45…2,10 (1,45*1,45) и так далее. Затем подсчитывают количество зерен, имеющих длины хорд, попадающие в заданный интервал значений. После чего находят долю зерен с определенным размером зерна. Для оценки степени неоднородности величины зерна рассчитывают среднеквадратичное отклонение от размера средней хорды и коэффициент вариации.

Недостаток предложенного способа заключается в отсутствии четкой количественной оценки неоднородности размера зерна, трудоемкости измерений.

В основе предлагаемого изобретения лежит решение задачи по определению неоднородности величины зерна листовых металлов и сплавов путем изменения условий обработки видимого изображения зеренной структуры металла, в результате чего достигается расширение технологических возможностей количественного микроструктурного анализа.

Технический результат предлагаемого изобретения заключается в получении однозначного критерия для оценки неоднородности зеренной структуры. Этот количественный показатель может быть необходим при выявлении наиболее благоприятных режимов деформационной и термической обработки листовых заготовок, который позволит получить наиболее однородную зеренную структуру. Эффект от применения изобретения состоит в расширении возможностей количественного микроструктурного анализа, уменьшении трудоемкости и расходов на материалы при изготовлении образцов.

Технический результат изобретения достигается за счет того, что способ, включающий получение металлографического шлифа, его травление для получения зеренной структуры, затем, с помощью металлографического оптического или электронного микроскопа, получение изображения микроструктуры, далее изображение микроструктуры разбивают на 9…12 прямоугольных фрагментов одинаковой площади, внутри каждого фрагмента подсчитывают количество зерен, определяют действительную площадь каждого прямоугольного фрагмента, после этого находят средний размер зерна внутри каждого фрагмента по формуле ,

где F - действительная площадь прямоугольного фрагмента;

N - количество зерен внутри прямоугольного фрагмента,

получают выборку из 9…12 чисел, для них строят график вероятности величины зерна, который представляет собой несимметричную кривую с максимумом, по полученным данным рассчитывают коэффициент неоднородности β по следующей формуле:

где

B - ширина волны на полувысоте кривой;

dвер - наиболее вероятная величина зерна;

H - максимальная вероятность величины зерна.

За счет использования соотношения ширины графика, измеренной на уровне половины его высоты в тех же единицах, что и линейный размер зерна, к преимущественной величине зерна достигается отсутствие размерности у коэффициента неоднородности и однозначность оценки однородности зеренной структуры.

Сущность изобретения поясняется чертежами.

На фиг. 1 изображена график распределения вероятности повторения значений от размера зерен;

на фиг. 2 изображен график вероятности распределения значений размера зерен в сплаве Д16 после деформации и отжига;

на фиг. 3 изображена микроструктура листа из сплава АМг2 при температуре отжига 450°C;

на фиг. 4 изображен график вероятности распределения величины зерна для микроструктуры листа из сплава АМг2 при температуре отжига 450°C;

на фиг. 5 изображена микроструктура листа из сплава АМг2 при температуре отжига 350°C;

на фиг. 6 изображен график вероятности распределения величины зерна для микроструктуры листа из сплава АМг2 при температуре отжига 350°C.

Предлагаемый способ осуществляют следующим образом.

Образец для изготовления микрошлифа выбирают в зависимости от вида листового материала и режима его обработки. Для узких листов и лент отбор образцов производят в середине передней и задней кромки рулона. Для широких листов отбор образцов производят в центре, у края листа на расстоянии ширины листа от края ближе к передней и задней кромке рулона. Либо определяют область с интересующей микроструктурой.

Изображение микроструктуры разбивают на 9-12 прямоугольных фрагментов с одинаковой площадью. Площадь каждого фрагмента рассчитывают с учетом увеличения микроскопа при получении изображения микроструктуры.

Средний размер зерна d рассчитывают как корень квадратный от отношения площади прямоугольного фрагмента F к количеству зерен N:

На фиг. 1 представлен типичный график вероятности величины зерна, из которого находят значения B - ширины волны на полувысоте кривой (мкм), dвер - наиболее вероятной величины зерна (мкм), H - высота кривой, показывающая наибольшую вероятность и имеющая нулевую размерность. По полученным значениям рассчитывают коэффициент неоднородности β, используя формулу:

.

Величина H не имеет размерности, т.к. определяет наибольшую вероятность повторения размеров зерна определенного диапазона.

При равной вероятности всех значений величины зерна (H=const) будет наблюдаться наибольшая разнозернистость, то есть неоднородность величины зерна. В этом случае коэффициент неоднородности (β→∞). Если разнозернистость минимальна или отсутствует, то есть зеренная структура обладает высокой степенью однородности, то график плотности вероятности вырождается в вертикальную линию при определенном значении размера зерна dвер. Тогда коэффициент неоднородности (β→0). Таким образом, чем больше значение коэффициента неоднородности β, тем выше степень неоднородности зеренной структуры.

Пример 1 использования изобретения.

При анализе изображения микроструктуры сплава Д16 после рекристаллизации были получены значения размера зерна, представленные в таблице 1.

Распределение плотности вероятности размера зерна для полученной выборки представлено фиг. 2. Как видно из фиг. 2, ширина волны на полувысоте составляет В=95 мкм, наиболее вероятный размер зерна dвер=135 мкм, высота пика H=0,33 (или 33%), коэффициент неоднородности .

Пример 2 использования изобретения.

На фиг. 3 представлена микроструктура сплава АМг2 после пластической деформации со степенью обжатия 20% и отжига при температуре 450°C в течение 1 часа. Визуальное наблюдение показывает, что структура обладает высокой степенью неоднородности, оценка которой с помощью ранее известных способов оказывается затруднительной, поскольку зерна имеют форму с высокой степенью разветвленности. Изображение микроструктуры разделим на 9 прямоугольных фрагментов. Для простоты и наглядности на каждом фрагменте указано количество зерен, которое можно обнаружить визуально. При этом некоторые зерна распространяются своими участками на несколько фрагментов.

Рассчитаем среднюю величину зерна в каждом фрагменте. Размеры фрагментов одинаковы и равны: высота 3,5 см, ширина 4,3 см. С учетом увеличения 70 крат, действительные размеры прямоугольных фрагментов составляют: высота 3,5 см/70=0,05 см=0,5 мм, ширина 4,3 см/70=0,06 см=0,6 мм. Площадь каждого прямоугольного фрагмента составляет F=0,5 мм*0,6 мм=0,03 мм2. Далее находим среднюю площадь зерна как отношение площади фрагмента 0,03 мм2 к количеству зерен, затем извлекаем из этого числа квадратный корень.

Результаты расчета величины зерна представлены в таблице 2.

Построим график вероятности величины зерна (фиг. 4), на котором указаны координаты точек. Используя формулу для определения коэффициента неоднородности, находим: .

Полученные значения показывают, что в примере 2 зеренная структура более однородна, чем в примере 1. Этот результат подтверждается меньшими значениями стандартного отклонения по сравнению с результатами примера 1.

Пример 3 использования изобретения.

На фиг. 5 представлена микроструктура сплава АМг2 после пластической деформации со степенью обжатия 20% и отжига при температуре 350°C в течение 1 часа. Визуальное наблюдение показывает, что структура обладает высокой степенью однородности, по сравнению с примером 2. Зерна также имеют форму с высокой степенью разветвленности, что затрудняет расчет с помощью способа, взятого за прототип. Рассчитаем среднюю величину зерна в каждом фрагменте, как сделано в примере 2. Изображение микроструктуры разделим на 12 фрагментов, т.к. наблюдаемая микроструктура мелкозернистая, поэтому расчет размера зерен во фрагменте, меньшем по площади, будет упрощен. Размеры фрагментов одинаковы и равны: высота 42,5 мм, ширина 38,9 мм. С учетом увеличения 140 крат, действительные размеры прямоугольных фрагментов составляют: высота 42,5 мм/140=0,30 мм, ширина 38,9 мм/140=0,28 мм. Площадь каждого прямоугольного фрагмента составляет 0,30 мм*0,28 мм=0,084 мм2. Далее находим среднюю площадь зерна как отношение площади фрагмента 0,084 мм2 к количеству зерен, затем извлекаем из этого числа квадратный корень. Результаты расчета величины зерна представлены в таблице 3.

Построим график вероятности величины зерна (фиг. 6), на котором указаны координаты точек. Используя формулу для определения коэффициента неоднородности, находим: .

Полученные значения показывают, что в примере 3 зеренная структура более однородна, чем в примере 2. Этот результат подтверждается меньшими значениями стандартного отклонения по сравнению с результатами примера 2 и визуальная оценка неоднородности величины зерна в примере 2.


Способ количественной оценки неоднородности зёренной структуры листовых металлических материалов
Способ количественной оценки неоднородности зёренной структуры листовых металлических материалов
Способ количественной оценки неоднородности зёренной структуры листовых металлических материалов
Способ количественной оценки неоднородности зёренной структуры листовых металлических материалов
Способ количественной оценки неоднородности зёренной структуры листовых металлических материалов
Источник поступления информации: Роспатент

Показаны записи 21-30 из 32.
02.08.2018
№218.016.77e2

Динамический испаритель твердых растворов

Изобретение относится к области формирования тонких пленок сложного состава в вакууме и может быть использовано в микроэлектронике. Испаритель твердых растворов, используемый для формирования тонких пленок в вакууме, содержит корпус в виде стакана и заслонку в виде крышки, внутренняя часть...
Тип: Изобретение
Номер охранного документа: 0002662914
Дата охранного документа: 31.07.2018
Тип: Изобретение
Номер охранного документа: 0002665789
Дата охранного документа: 04.09.2018
15.12.2018
№218.016.a78e

Устройство для малоракурсной томографической диагностики параметров индуцированных плазменных образований в условиях ближнего космоса

Изобретение относится к оптической томографии, физике космических лучей и может быть использовано для определения трехмерных функций распределения различных параметров низкотемпературной плазмы, индуцированной газовым разрядом вокруг исследуемого объекта в условиях влияния космических факторов...
Тип: Изобретение
Номер охранного документа: 0002675079
Дата охранного документа: 14.12.2018
07.02.2019
№219.016.b7bc

Способ бесконтактного определения технического состояния зубчатых колес и устройство для его реализации

Предлагаемое изобретение предназначено для контроля технического состояния зубчатых колес и может быть использовано для диагностики рабочего состояния редукторных систем в процессе их эксплуатации. Способ бесконтактного контроля рабочего состояния редукторных систем в процессе их эксплуатации...
Тип: Изобретение
Номер охранного документа: 0002678929
Дата охранного документа: 04.02.2019
29.04.2019
№219.017.3e28

Способ нанесения двухслойного покрытия на детали газотурбинного двигателя

Изобретение относится к нанесению двухслойного покрытия и может быть использовано при повышении эксплуатационных свойств деталей, например, в авиадвигателестроении. Способ нанесения двухслойного покрытия на детали газотурбинного двигателя включает напыление подслоя из никель-алюминиевого сплава...
Тип: Изобретение
Номер охранного документа: 0002686429
Дата охранного документа: 25.04.2019
19.06.2019
№219.017.83d0

Микрохроматограф с бинарными колонками на плоскости

Изобретение относится к газовой хроматографии и может быть использовано для эффективного экспресс-анализа сложных смесей веществ природного и техногенного происхождения. Микрохроматограф содержит сменные независимо управляемые аналитические модули для анализа компонентов сложных смесей, каждый...
Тип: Изобретение
Номер охранного документа: 0002691666
Дата охранного документа: 17.06.2019
02.10.2019
№219.017.d0b4

Способ контроля целостности лопастей несущих винтов вертолёта в соосной схеме их расположения и устройство для его осуществления

Группа изобретений относится к способу и устройству контроля целостности лопастей несущих винтов вертолета в соосной схеме их расположения. Для реализации способа используют зондирующее излучение СВЧ диапазона для измерения колебательных параметров перемещения лопастей, фазовый метод...
Тип: Изобретение
Номер охранного документа: 0002700535
Дата охранного документа: 17.09.2019
12.04.2023
№223.018.44ee

Способ плакирования порошковой композиции расплавом металла

Изобретение относится к порошковой металлургии, в частности к технологии плакирования композиционных порошковых материалов. Перед загрузкой порошковой композиции в оболочку с одной из ее сторон устанавливают заглушку. После загрузки порошковой композиции устанавливают заглушку с другой стороны...
Тип: Изобретение
Номер охранного документа: 0002760010
Дата охранного документа: 22.11.2021
12.04.2023
№223.018.469f

Система заправки ракеты жидким кислородом

Изобретение относится, главным образом, к стационарному заправочному оборудованию авиационно-космической техники. Жидкий кислород из резервуаров хранилища с помощью центробежных насосов и системы наддува по трубопроводу подается в систему заправки ракеты. Система наддува содержит баллон с...
Тип: Изобретение
Номер охранного документа: 0002767405
Дата охранного документа: 17.03.2022
09.05.2023
№223.018.52d3

Парогазовая установка с полузамкнутой газотурбинной установкой

Парогазовая установка с полузамкнутой газотурбинной установкой относится к области энергетики. Она содержит агрегат наддува с компрессором низкого давления и противодавленческой паровой турбиной, полузамкнутую газотурбинную установку с компрессором высокого давления, компрессором балластного...
Тип: Изобретение
Номер охранного документа: 0002795147
Дата охранного документа: 28.04.2023
Показаны записи 11-17 из 17.
20.01.2018
№218.016.1190

Минитермостат для планарных микрохроматографических колонок

Изобретение относится к газовой хроматографии и может быть использовано для эффективного экспресс-анализа сложных смесей веществ природного и техногенного происхождения в различных отраслях промышленности: химической, нефтяной, газовой, медицине, экологии и др. Заявленный миниатюрный термостат...
Тип: Изобретение
Номер охранного документа: 0002634095
Дата охранного документа: 23.10.2017
13.02.2018
№218.016.1fa2

Способ работы двигателя внутреннего сгорания с регенерацией тепла в цикле и двигатель для его осуществления

Изобретение относится к двигателестроению. Техническим результатом является повышение коэффициента полезного действия двигателя внутреннего сгорания. Сущность изобретения заключается в том, что в двигателе, содержащем как минимум два цилиндра, воздух сжимается в компрессорном цилиндре,...
Тип: Изобретение
Номер охранного документа: 0002641180
Дата охранного документа: 16.01.2018
13.02.2018
№218.016.2612

Способ формовки из плоской круглой заготовки конических деталей

Изобретение относится к области холодной листовой штамповки, в частности, может быть использовано при изготовлении крупногабаритных тонкостенных деталей усеченной сужающейся формы. На первой стадии с помощью пуансона с конической рабочей частью осуществляют формовку свободной части заготовки до...
Тип: Изобретение
Номер охранного документа: 0002644209
Дата охранного документа: 08.02.2018
17.02.2018
№218.016.2d98

Способ оценки деформируемости плоских образцов, изготовленных методом селективного лазерного спекания

Изобретение относится к области технологических испытаний материалов, а именно к методам оценки деформируемости изделий, полученных селективным лазерным спеканием. Сущность: образцы подвергают деформации. За меру деформируемости берут отношение величины пластической деформации к величине,...
Тип: Изобретение
Номер охранного документа: 0002643698
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.347e

Отсек фюзеляжа летательного аппарата с вырезом под люк

Изобретение относится к авиации и касается обрамления выреза под люк в отсеке фюзеляжа летательного аппарата (ЛА). Отсек фюзеляжа ЛА с вырезом под люк содержит наружную обшивку с накладками, рядовые шпангоуты и усиленные шпангоуты, расположенные по поперечным краям выреза. При этом отсек...
Тип: Изобретение
Номер охранного документа: 0002646175
Дата охранного документа: 01.03.2018
11.07.2019
№219.017.b254

Способ количественной оценки распределения дисперсных фаз листовых алюминиевых сплавов

Изобретение относится к области металлографических исследований и анализа материалов применительно к определению неоднородности распределения частиц дисперсных фаз в листовых металлах и сплавах. Способ включает получение металлографического шлифа, его травление для выявления фаз, затем с...
Тип: Изобретение
Номер охранного документа: 0002694212
Дата охранного документа: 09.07.2019
06.02.2020
№220.017.ff7c

Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава

Изобретение относится к формированию композиционного материала в виде покрытия на поверхности изделия из титанового сплава. Способ включает нанесение на поверхность изделия порошковой композиции, содержащей следующие компоненты, вес.%: Аl - 3,91, Со - 15,6, Сr - 11,1, Fe - 0,06, Mo - 4,48, Nb -...
Тип: Изобретение
Номер охранного документа: 0002713255
Дата охранного документа: 04.02.2020
+ добавить свой РИД