×
26.08.2017
217.015.ed8d

Результат интеллектуальной деятельности: СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ

Вид РИД

Изобретение

Аннотация: Способ обнаружения локальных дополнительных потерь в оптическом волокне методом обратного рассеяния заключается в формировании коротких зондирующих импульсов и преобразовании их в оптические импульсы, вводе их в оптическое волокно, приеме с волокна обратно-рассеянного и отраженных сигналов, которые преобразуют в электрический сигнал, после чего усиливают, преобразуют его в цифровую форму и вычисляют его среднее значение, из которого формируют рефлектограмму. На основании анализа рефлектограммы определяют величину дополнительных потерь. Местоположение дефекта определяют с учётом периода следования зондирующих импульсов, выбранного на основании отношения заданного времени обнаружения нарушения и требуемого количества вычислений среднего значения принятых сигналов для обеспечения заданного отношения сигнал/шум. Технический результат заключается в уменьшении периода следования зондирующих импульсов для обеспечения заданной инерционности. 3 ил.

Изобретение относится к способам обнаружения локальных дополнительных потерь в оптическом волокне методом обратного рассеяния и может быть использовано в технических средствах защиты информации (ТСЗИ) волоконно-оптических систем передачи (ВОСП),

Известен способ обнаружения локальных дополнительных потерь в оптическом волокне методом обратного рассеяния, который используется в «Оптическом рефлектометре» (см. патент РФ №2339929 от 26.01.2007 г., опубликованный в Б.И. №33 от 27.11.2008 г.). Способ состоит в формировании микроконтроллером на одном из своих выходов импульса напряжения. Сформированный импульс поступает на первый вход формирователя импульсов. Формирователь по фронту сигнала на его входе вырабатывает импульс тока накачки полупроводникового источника излучения с заданной длительностью. Полупроводниковый источник оптического излучения генерирует оптический импульс. Импульс направляется в отрезок оптического волокна, задерживается в нем на время, зависящее от его длины. Далее пройдя оптический Y-образный разветвитель и розетку оптического соединителя, оптический импульс направляется на вход измеряемого волоконно-оптического тракта. Обратное излучение, состоящее из обратно-рассеянного излучения и излучения отражений от локальных неоднородностей, направляется оптическим Y-образным разветвителем на оптический вход фотоприемника. Выходное напряжение фотоприемника подается на вход аналогового коммутатора. Далее сигнал преобразуется расширителем импульсов в уровень, который регистрируется АЦП. По полученным данным персональный компьютер, соединенный с микроконтроллером, строит рефлектограмму оптического волокна.

Период следования зондирующих импульсов Тп определяется временем прохождения по длине оптического волокна в обе стороны. Необходимо, чтобы период следования зондирующих импульсов был больше длительности обратно рассеянного сигнала. Длительность периода следования зондирующих импульсов в этом случае должна быть больше:

где С - скорость света в вакууме, км/с;

L - длина оптического волокна, км;

nc - показатель преломления сердцевины оптического волокна.

Микроконтроллер продолжает формировать зондирующие импульсы до тех пор, пока не будет получено заданное отношение сигнал/шум за счет накопления и усреднения сигналов, реализованное в микроконтроллере. На это уходит время, которое определяет инерционность устройства, вычисляемое по формуле:

где Тп - период следования зондирующих импульсов;

М - требуемое количество усреднений.

При появлении локальных дополнительных потерь Ад их амплитуда отражается на рефлектограмме, а местоположение z от входного полюса оптического волокна определяется по формуле:

где t - время на рефлектограмме от посылки зондирующего импульса до локального дефекта, с.

Устройство является наиболее близким по технической сущности к заявляемому устройству и поэтому выбрано в качестве прототипа.

Недостатком вышеуказанного способа является инерционность, обусловленная большим периодом следования зондирующих импульсов.

Решаемой технической задачей является создание способа обнаружения локальных дополнительных потерь в оптическом волокне методом обратного рассеяния с заданной инерционностью за счет уменьшения периода следования зондирующих импульсов с сохранением функции определения величины потерь и их местоположения.

Достигаемым техническим результатом является способ обнаружения величины и местоположения локальных дополнительных потерь методом обратного рассеяния с заданной величиной инерционности.

Для достижения технического результата в способе обнаружения локальных дополнительных потерь в оптическом волокне методом обратного рассеяния, заключающимся в формировании коротких зондирующих импульсов и преобразовании их в оптические импульсы, вводе их в оптическое волокно, приеме с волокна обратно-рассеянного и отраженных сигналов, которые преобразуют в электрический сигнал, после чего усиливают, преобразуют его в цифровую форму и вычисляют его среднее значение, из которого формируют рефлектограмму, новым является то, что период следования коротких зондирующих импульсов Тп выбирают из условия:

где Т - заданное время обнаружения нарушения;

М - требуемое количество вычислений среднего значения,

величину локальных дополнительных потерь определяют для участка на рефлектограмме до обратно-отраженного импульса по формуле:

а для участка на рефлектограмме после обратно-отраженного импульса по формуле:

где N=Тлп - количество зондирующих импульсов, посланных за время прихода обратно - рассеянного сигнала с округлением до меньшего значения;

Тл - длительность обратно-рассеянного сигнала;

n - текущий номер участка обратно-рассеянного сигнала, начиная с рассматриваемого участка с отсчетом в обратную сторону;

k - номер участка обратно-рассеянного сигнала, на котором обнаружены локальные дополнительные потери;

С - скорость света в вакууме;

α - коэффициент затухания в волокне на рабочей длине волны;

nc - показатель преломления сердцевины оптического волокна на рабочей длине волны,

а местоположение локальных дополнительных потерь определяют по формуле:

где t - время от посылки зондирующего импульса до появления локальных дополнительных потерь.

Новая совокупность существенных признаков в заявляемом способе позволяет за заданный промежуток времени обнаружить локальные дополнительные потери, определить их величину и местонахождение.

На фигуре 1 представлена структурная схема устройства, реализующего заявляемый способ.

На фигуре 2 приведены временные диаграммы работы заявляемого способа.

На фигуре 3 представлена рефлектограмма, полученная экспериментально с использованием заявляемого способа.

Устройство, в котором реализован заявляемый способ, работает следующим образом. После включения напряжения питания микроконтроллер 1 (см. фиг. 1) на выходе формирует короткие зондирующие импульсы длительностью Ти с периодом следования Тп, который определяется по формуле (4) (Ти<<Тп).

После этого оптический передатчик 2 преобразует их в оптические импульсы, которые поступают на вход циркулятора 3, с выхода которого оптические импульсы через разъемное соединение 4 поступают в оптическое волокно 5. После отражения от оптического соединителя 6, расположенного на другом конце линии, сигнал, представляющий собой сумму отраженных от концов оптического волокна импульсов и обратно-рассеянного по длине волокна 5, поступает обратно на оптический полюс 4. После этого, через оптический циркулятор 3 оптический сигнал поступает на вход оптического приемника 7 с логарифмической характеристикой, где преобразуются в электрический сигнал, напряжение которого пропорционально логарифму потерь в оптическом волокне 5. Сигнал поступает на вход микроконтроллера 1, где с помощью АЦП преобразуется в цифровую форму. В памяти микроконтроллера I происходит накопление и усреднение М принятых сигналов до получения требуемого значение отношения сигнал/шум. После этого на экране осциллографа 8 формируется рефлектограмма.

В случае появления на каком-либо участке оптического волокна локального дефекта с потерями Ад они отображаются на рефлектограмме, но с различной амплитудой Адо. Это обусловлено тем, что мощности обратно-рассеянных сигналов от различных зондирующих импульсов складываются друг с другом (см. фиг. 2). Относительная мощность обратно рассеянного сигнала на входе оптического приемника может быть вычислена по формуле:

где n - текущий номер участка обратно-рассеянного сигнала, начиная с рассматриваемого с отсчетом в обратную сторону;

С - скорость света в вакууме, км/с;

α - коэффициент затухания оптического сигнала в волокне на рабочей длине волны, дБ/км;

nc - показатель преломления сердцевины оптического волокна на рабочей длине волны;

t - время на рефлектограмме от посылки зондирующего импульса до локального дефекта, с;

Тп - период следования зондирующих импульсов, с.

Здесь и далее коэффициент затухания оптического сигнала в волокне на рабочей длине волны а является средним значением по всей длине волокна.

Суммарная относительная мощность Рн определяется как корень квадратный от суммы квадратов мощностей обратно-рассеянных сигналов от разных зондирующих импульсов. Для участка на рефлектограмме до обратно-отраженного импульса суммарная относительная мощность равна:

для участка на рефлектограмме после обратно-отраженного импульса:

где N=Тлп - количество зондирующих импульсов посланных за время длительности обратно - рассеянного сигнала с округлением до меньшего значения;

Тл - длительность обратно-рассеянного сигнала, с;

n - текущий номер участка обратно-рассеянного сигнала, начиная с рассматриваемого с отсчетом в обратную сторону.

После появления локального дефекта на любом участке оптического волокна суммарная относительная мощность Ра составит: для участков на рефлектограмме до (8) и после (9) обратно-отраженного импульса:

где k - номер участка обратно-рассеянного сигнала, на котором обнаружены локальные дополнительные потери.

Величина локальных дополнительных потерь Адо вычисляется по формуле:

Применяя свойства преобразования логарифмов, получаем итоговую формулу для вычисления локальных дополнительных потерь Адо для участков на рефлектограмме до (11) и после (12) обратно-отраженного импульса:

Местоположение дефекта может быть определено по формуле:

Таким образом, функция обнаружения амплитуды и местоположения локального дефекта сохраняется.

Для проверки работоспособности заявляемого устройства был собран макет. Оптический передатчик был выполнен на излучателе LDI-DFB-1550-20/70, в качестве фотодиода использовался фотодиод APDI-55, (изготовитель «LasersCom», г. Минск). Логарифмический усилитель был выполнен на микросхеме LOG 114. Рефлектограммы с выхода логарифмического усилителя отображались на экране осциллографа Fluke 190-202.

Испытания макета устройства подтвердили работоспособность заявляемого технического решения. На фиг. 3 приведена экспериментальная рефлектограмма, полученная при внесении дополнительных потерь 4,53 дБ с помощью ответвителя-прищепки FOD-5503 на оптическом волокне SFM-28e длиной 50,5 км на расстоянии 25,25 км от начала линии. Зондирование проводилось импульсами с периодом следования 200 мкс. Измеренные потери совпадают с расчетной величиной.


СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ
СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ
СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ
СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ
СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ
СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ
Источник поступления информации: Роспатент

Показаны записи 821-830 из 1 004.
17.10.2019
№219.017.d6a9

Высоковольтный преобразователь уровня напряжения

Изобретение относится к вычислительной технике и может быть использовано для построения быстродействующих высоковольтных преобразователей уровня напряжения, в том числе при сопряжении элементов электронных систем с несколькими источниками питания. Технический результат – повышение...
Тип: Изобретение
Номер охранного документа: 0002702979
Дата охранного документа: 14.10.2019
17.10.2019
№219.017.d6c2

Способ определения скорости объекта метания конической формы большого удлинения

Изобретение относится к области измерений и испытаний, а именно к измерениям линейной скорости с помощью фотографических средств. Способ определения скорости объекта метания (ОМ) конической формы включает оптическую регистрацию положения, движущегося со сверхзвуковой скоростью ОМ и созданной им...
Тип: Изобретение
Номер охранного документа: 0002702955
Дата охранного документа: 14.10.2019
24.10.2019
№219.017.daaa

Электрический разъединитель

Представлен электрический разъединитель. В корпусе разъединителя установлены неподвижные контакты, замыкаемые/размыкаемые подвижным контактом. Мембрана, посредством которой подвижный контакт соединен с корпусом, делит объем корпуса на верхний и нижний объемы, заполненные газом под разными...
Тип: Изобретение
Номер охранного документа: 0002703989
Дата охранного документа: 23.10.2019
01.11.2019
№219.017.dc0c

Оптический волоконный датчик

Изобретение относится к оптическим элементам, в частности к компактным элементам фокусировки и сбора лазерного излучения. Оптический волоконный датчик включает фокусирующий и собирающий элемент, которые сформированы из оптического волокна датчика путем оплавления торца с приданием ему...
Тип: Изобретение
Номер охранного документа: 0002704560
Дата охранного документа: 29.10.2019
01.11.2019
№219.017.dc35

Способ калибровки и стабилизации параметров спектрометра γ-излучения

Использование: для калибровки и стабилизации параметров спектрометра γ-излучения. Сущность изобретения заключается в том, что калибровку и стабилизацию осуществляют от одного и того же встроенного в блок реперного источника γ-излучения, в качестве которого используют радионуклид Th с...
Тип: Изобретение
Номер охранного документа: 0002704564
Дата охранного документа: 29.10.2019
01.11.2019
№219.017.dc6a

Способ установки термоэлектрических модулей

Изобретение относится к приборостроению и может быть использовано для разработки устройств, в том числе лазерных, особенно при их серийном производстве и эксплуатируемых в условиях ударных и вибрационных нагрузок. Технический эффект, заключающийся в исключении влияния динамических нагрузок на...
Тип: Изобретение
Номер охранного документа: 0002704568
Дата охранного документа: 29.10.2019
02.11.2019
№219.017.dd7e

Устройство адаптивного преобразования данных в режиме реального времени

Изобретение относится к области вычислительной техники. Технический результат заключается в расширении функциональных возможностей. Устройство адаптивного преобразования данных в режиме реального времени содержит: блок кодирования, вычислительное ядро, первая группа входов/выходов которого...
Тип: Изобретение
Номер охранного документа: 0002704879
Дата охранного документа: 31.10.2019
07.11.2019
№219.017.dedd

Взрывное устройство

Изобретение относится к области боеприпасов и взрывной техники, используемой в мирных целях. Взрывное устройство содержит корпус с прижимной крышкой, размещенный между ними заряд взрывчатого вещества, систему инициирования и пружинную систему температурной компенсации, установленную между...
Тип: Изобретение
Номер охранного документа: 0002705122
Дата охранного документа: 05.11.2019
08.11.2019
№219.017.df6e

Ускоритель электронов на основе сегнетоэлектрического плазменного катода

Изобретение относится к области ускорительной техники, физике плазмы, радиационной физике, и может быть использовано в атомной физике, медицине, химии, физике твердого тела, где важным является получение пучков заряженных частиц с необходимыми энергетическими параметрами и регулируемой...
Тип: Изобретение
Номер охранного документа: 0002705207
Дата охранного документа: 06.11.2019
13.11.2019
№219.017.e107

Устройство разделения плавучего прибора на герметичные отсеки

Изобретение относится к области подводной техники и может быть использовано в составе дрейфующего автономного гидроакустического прибора. Устройство разделения плавучего прибора на герметичные отсеки содержит герметичный силовой корпус, состоящий из отсеков - аппаратурного и буйкового, поршня,...
Тип: Изобретение
Номер охранного документа: 0002705722
Дата охранного документа: 11.11.2019
Показаны записи 531-535 из 535.
09.06.2019
№219.017.7923

Способ повышения вероятности обнаружения вывода излучения из оптического волокна

Изобретение относится к способам обнаружения нарушения работоспособности защищенных волоконно-оптических систем передачи (ВОСП) информации ограниченного доступа и может быть использовано в качестве способа постоянного контроля волоконно-оптической линии передачи (ВОЛП) от утечки по оптическому...
Тип: Изобретение
Номер охранного документа: 0002349039
Дата охранного документа: 10.03.2009
09.06.2019
№219.017.7aa3

Способ устранения ложных срабатываний при включении защищенных волоконно-оптических систем

Изобретение относится к способам снижения вероятности ложных срабатываний в защищенных волоконно-оптических системах передачи (ВОСП) информации ограниченного доступа, оснащенных системами постоянного контроля волоконно-оптической линии передачи (ВОЛП). Техническим результатом является задержка...
Тип: Изобретение
Номер охранного документа: 0002350019
Дата охранного документа: 20.03.2009
28.06.2019
№219.017.9959

Оптический мультиплексор ввода/вывода

Изобретение относится к оптическим мультиплексорам ввода/вывода оптических сигналов по технологиям волнового уплотнения (CWDM, DWDM) и может быть использовано для ввода/вывода сигналов отдельных каналов из мультиплексированного сигнала в волоконно-оптические системы передачи (ВОЛП) на любом ее...
Тип: Изобретение
Номер охранного документа: 0002692693
Дата охранного документа: 26.06.2019
17.10.2019
№219.017.d6a9

Высоковольтный преобразователь уровня напряжения

Изобретение относится к вычислительной технике и может быть использовано для построения быстродействующих высоковольтных преобразователей уровня напряжения, в том числе при сопряжении элементов электронных систем с несколькими источниками питания. Технический результат – повышение...
Тип: Изобретение
Номер охранного документа: 0002702979
Дата охранного документа: 14.10.2019
31.01.2020
№220.017.fb62

Высоковольтный преобразователь уровня напряжения

Изобретение относится к вычислительной технике. Технический результат заключается в повышении быстродействия Цифровой КМОП схемы сдвига. Технический результат достигается за счёт схемы Высоковольтного преобразователя уровня напряжения, которая содержит: семь полевых транзисторов Р-типа (1-7) и...
Тип: Изобретение
Номер охранного документа: 0002712422
Дата охранного документа: 28.01.2020
+ добавить свой РИД