×
26.08.2017
217.015.ed8d

Результат интеллектуальной деятельности: СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ

Вид РИД

Изобретение

Аннотация: Способ обнаружения локальных дополнительных потерь в оптическом волокне методом обратного рассеяния заключается в формировании коротких зондирующих импульсов и преобразовании их в оптические импульсы, вводе их в оптическое волокно, приеме с волокна обратно-рассеянного и отраженных сигналов, которые преобразуют в электрический сигнал, после чего усиливают, преобразуют его в цифровую форму и вычисляют его среднее значение, из которого формируют рефлектограмму. На основании анализа рефлектограммы определяют величину дополнительных потерь. Местоположение дефекта определяют с учётом периода следования зондирующих импульсов, выбранного на основании отношения заданного времени обнаружения нарушения и требуемого количества вычислений среднего значения принятых сигналов для обеспечения заданного отношения сигнал/шум. Технический результат заключается в уменьшении периода следования зондирующих импульсов для обеспечения заданной инерционности. 3 ил.

Изобретение относится к способам обнаружения локальных дополнительных потерь в оптическом волокне методом обратного рассеяния и может быть использовано в технических средствах защиты информации (ТСЗИ) волоконно-оптических систем передачи (ВОСП),

Известен способ обнаружения локальных дополнительных потерь в оптическом волокне методом обратного рассеяния, который используется в «Оптическом рефлектометре» (см. патент РФ №2339929 от 26.01.2007 г., опубликованный в Б.И. №33 от 27.11.2008 г.). Способ состоит в формировании микроконтроллером на одном из своих выходов импульса напряжения. Сформированный импульс поступает на первый вход формирователя импульсов. Формирователь по фронту сигнала на его входе вырабатывает импульс тока накачки полупроводникового источника излучения с заданной длительностью. Полупроводниковый источник оптического излучения генерирует оптический импульс. Импульс направляется в отрезок оптического волокна, задерживается в нем на время, зависящее от его длины. Далее пройдя оптический Y-образный разветвитель и розетку оптического соединителя, оптический импульс направляется на вход измеряемого волоконно-оптического тракта. Обратное излучение, состоящее из обратно-рассеянного излучения и излучения отражений от локальных неоднородностей, направляется оптическим Y-образным разветвителем на оптический вход фотоприемника. Выходное напряжение фотоприемника подается на вход аналогового коммутатора. Далее сигнал преобразуется расширителем импульсов в уровень, который регистрируется АЦП. По полученным данным персональный компьютер, соединенный с микроконтроллером, строит рефлектограмму оптического волокна.

Период следования зондирующих импульсов Тп определяется временем прохождения по длине оптического волокна в обе стороны. Необходимо, чтобы период следования зондирующих импульсов был больше длительности обратно рассеянного сигнала. Длительность периода следования зондирующих импульсов в этом случае должна быть больше:

где С - скорость света в вакууме, км/с;

L - длина оптического волокна, км;

nc - показатель преломления сердцевины оптического волокна.

Микроконтроллер продолжает формировать зондирующие импульсы до тех пор, пока не будет получено заданное отношение сигнал/шум за счет накопления и усреднения сигналов, реализованное в микроконтроллере. На это уходит время, которое определяет инерционность устройства, вычисляемое по формуле:

где Тп - период следования зондирующих импульсов;

М - требуемое количество усреднений.

При появлении локальных дополнительных потерь Ад их амплитуда отражается на рефлектограмме, а местоположение z от входного полюса оптического волокна определяется по формуле:

где t - время на рефлектограмме от посылки зондирующего импульса до локального дефекта, с.

Устройство является наиболее близким по технической сущности к заявляемому устройству и поэтому выбрано в качестве прототипа.

Недостатком вышеуказанного способа является инерционность, обусловленная большим периодом следования зондирующих импульсов.

Решаемой технической задачей является создание способа обнаружения локальных дополнительных потерь в оптическом волокне методом обратного рассеяния с заданной инерционностью за счет уменьшения периода следования зондирующих импульсов с сохранением функции определения величины потерь и их местоположения.

Достигаемым техническим результатом является способ обнаружения величины и местоположения локальных дополнительных потерь методом обратного рассеяния с заданной величиной инерционности.

Для достижения технического результата в способе обнаружения локальных дополнительных потерь в оптическом волокне методом обратного рассеяния, заключающимся в формировании коротких зондирующих импульсов и преобразовании их в оптические импульсы, вводе их в оптическое волокно, приеме с волокна обратно-рассеянного и отраженных сигналов, которые преобразуют в электрический сигнал, после чего усиливают, преобразуют его в цифровую форму и вычисляют его среднее значение, из которого формируют рефлектограмму, новым является то, что период следования коротких зондирующих импульсов Тп выбирают из условия:

где Т - заданное время обнаружения нарушения;

М - требуемое количество вычислений среднего значения,

величину локальных дополнительных потерь определяют для участка на рефлектограмме до обратно-отраженного импульса по формуле:

а для участка на рефлектограмме после обратно-отраженного импульса по формуле:

где N=Тлп - количество зондирующих импульсов, посланных за время прихода обратно - рассеянного сигнала с округлением до меньшего значения;

Тл - длительность обратно-рассеянного сигнала;

n - текущий номер участка обратно-рассеянного сигнала, начиная с рассматриваемого участка с отсчетом в обратную сторону;

k - номер участка обратно-рассеянного сигнала, на котором обнаружены локальные дополнительные потери;

С - скорость света в вакууме;

α - коэффициент затухания в волокне на рабочей длине волны;

nc - показатель преломления сердцевины оптического волокна на рабочей длине волны,

а местоположение локальных дополнительных потерь определяют по формуле:

где t - время от посылки зондирующего импульса до появления локальных дополнительных потерь.

Новая совокупность существенных признаков в заявляемом способе позволяет за заданный промежуток времени обнаружить локальные дополнительные потери, определить их величину и местонахождение.

На фигуре 1 представлена структурная схема устройства, реализующего заявляемый способ.

На фигуре 2 приведены временные диаграммы работы заявляемого способа.

На фигуре 3 представлена рефлектограмма, полученная экспериментально с использованием заявляемого способа.

Устройство, в котором реализован заявляемый способ, работает следующим образом. После включения напряжения питания микроконтроллер 1 (см. фиг. 1) на выходе формирует короткие зондирующие импульсы длительностью Ти с периодом следования Тп, который определяется по формуле (4) (Ти<<Тп).

После этого оптический передатчик 2 преобразует их в оптические импульсы, которые поступают на вход циркулятора 3, с выхода которого оптические импульсы через разъемное соединение 4 поступают в оптическое волокно 5. После отражения от оптического соединителя 6, расположенного на другом конце линии, сигнал, представляющий собой сумму отраженных от концов оптического волокна импульсов и обратно-рассеянного по длине волокна 5, поступает обратно на оптический полюс 4. После этого, через оптический циркулятор 3 оптический сигнал поступает на вход оптического приемника 7 с логарифмической характеристикой, где преобразуются в электрический сигнал, напряжение которого пропорционально логарифму потерь в оптическом волокне 5. Сигнал поступает на вход микроконтроллера 1, где с помощью АЦП преобразуется в цифровую форму. В памяти микроконтроллера I происходит накопление и усреднение М принятых сигналов до получения требуемого значение отношения сигнал/шум. После этого на экране осциллографа 8 формируется рефлектограмма.

В случае появления на каком-либо участке оптического волокна локального дефекта с потерями Ад они отображаются на рефлектограмме, но с различной амплитудой Адо. Это обусловлено тем, что мощности обратно-рассеянных сигналов от различных зондирующих импульсов складываются друг с другом (см. фиг. 2). Относительная мощность обратно рассеянного сигнала на входе оптического приемника может быть вычислена по формуле:

где n - текущий номер участка обратно-рассеянного сигнала, начиная с рассматриваемого с отсчетом в обратную сторону;

С - скорость света в вакууме, км/с;

α - коэффициент затухания оптического сигнала в волокне на рабочей длине волны, дБ/км;

nc - показатель преломления сердцевины оптического волокна на рабочей длине волны;

t - время на рефлектограмме от посылки зондирующего импульса до локального дефекта, с;

Тп - период следования зондирующих импульсов, с.

Здесь и далее коэффициент затухания оптического сигнала в волокне на рабочей длине волны а является средним значением по всей длине волокна.

Суммарная относительная мощность Рн определяется как корень квадратный от суммы квадратов мощностей обратно-рассеянных сигналов от разных зондирующих импульсов. Для участка на рефлектограмме до обратно-отраженного импульса суммарная относительная мощность равна:

для участка на рефлектограмме после обратно-отраженного импульса:

где N=Тлп - количество зондирующих импульсов посланных за время длительности обратно - рассеянного сигнала с округлением до меньшего значения;

Тл - длительность обратно-рассеянного сигнала, с;

n - текущий номер участка обратно-рассеянного сигнала, начиная с рассматриваемого с отсчетом в обратную сторону.

После появления локального дефекта на любом участке оптического волокна суммарная относительная мощность Ра составит: для участков на рефлектограмме до (8) и после (9) обратно-отраженного импульса:

где k - номер участка обратно-рассеянного сигнала, на котором обнаружены локальные дополнительные потери.

Величина локальных дополнительных потерь Адо вычисляется по формуле:

Применяя свойства преобразования логарифмов, получаем итоговую формулу для вычисления локальных дополнительных потерь Адо для участков на рефлектограмме до (11) и после (12) обратно-отраженного импульса:

Местоположение дефекта может быть определено по формуле:

Таким образом, функция обнаружения амплитуды и местоположения локального дефекта сохраняется.

Для проверки работоспособности заявляемого устройства был собран макет. Оптический передатчик был выполнен на излучателе LDI-DFB-1550-20/70, в качестве фотодиода использовался фотодиод APDI-55, (изготовитель «LasersCom», г. Минск). Логарифмический усилитель был выполнен на микросхеме LOG 114. Рефлектограммы с выхода логарифмического усилителя отображались на экране осциллографа Fluke 190-202.

Испытания макета устройства подтвердили работоспособность заявляемого технического решения. На фиг. 3 приведена экспериментальная рефлектограмма, полученная при внесении дополнительных потерь 4,53 дБ с помощью ответвителя-прищепки FOD-5503 на оптическом волокне SFM-28e длиной 50,5 км на расстоянии 25,25 км от начала линии. Зондирование проводилось импульсами с периодом следования 200 мкс. Измеренные потери совпадают с расчетной величиной.


СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ
СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ
СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ
СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ
СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ
СПОСОБ ОБНАРУЖЕНИЯ ЛОКАЛЬНЫХ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ В ОПТИЧЕСКОМ ВОЛОКНЕ МЕТОДОМ ОБРАТНОГО РАССЕЯНИЯ
Источник поступления информации: Роспатент

Показаны записи 321-330 из 1 004.
12.01.2017
№217.015.62da

Перерезающее устройство

Изобретение относится к средствам, предназначенным для использования в ядерной технике с целью предотвращения аварийных ситуаций путем разрыва электрической цепи. Устройство содержит размещенные в корпусе исполнительный механизм, выполненный в виде режущего инструмента, и пусковой механизм,...
Тип: Изобретение
Номер охранного документа: 0002588963
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6472

Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации

Изобретение относится к лазерной технике. Устройство, реализующее способ формирования объемного разряда в импульсно-периодическом газовом лазере, содержит генератор импульсного напряжения, рабочую камеру с установленными в ней электродами, формирующими объемный разряд, а также систему для...
Тип: Изобретение
Номер охранного документа: 0002589471
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.64b0

Устройство для замыкания сильноточных электрических цепей

Устройство для замыкания сильноточных электрических цепей включает полый цилиндрический корпус и размещенные в нем неподвижные, установленные с зазором относительно друг друга, контактные элементы, заряд пиротехнических средств (ПТС) и средство его воспламенения, генерирующее...
Тип: Изобретение
Номер охранного документа: 0002589035
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.676f

Логарифмический контроллер защиты волоконно-оптических линий

Изобретение относится к контроллерам защиты волоконно-оптических линий передачи (ВОЛП) от попыток отвода оптического сигнала и может быть использовано в качестве универсального технического средства защиты информации (ТСЗИ) ограниченного доступа, передаваемой по неконтролируемой территории....
Тип: Изобретение
Номер охранного документа: 0002591843
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6a06

Установка диффузионного цинкования металлических деталей

Изобретение относится к области технологий и устройств для нанесения защитных антикоррозионных покрытий, может быть использовано для коррозионно-защитной обработки прецизионных деталей крепежа для авиационной, автомобильной, космической техники и машиностроения. Установка для диффузионного...
Тип: Изобретение
Номер охранного документа: 0002591919
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6a8d

Криостат сверхпроводящего трансформатора

Изобретение относится к электротехнике и может быть использовано для криостатирования сверхпроводящих обмоток многофазных силовых трансформаторов с плоской магнитной системой. Техническим результатом является повышение КПД за счет сокращения теплопритоков из окружающей среды через внешнюю...
Тип: Изобретение
Номер охранного документа: 0002593151
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6cee

Способ определения наличия подрыва заряда взрывчатого вещества, содержащегося в объекте испытания, и задержки его подрыва от момента контакта объекта испытания с преградой и устройство для его осуществления

Изобретения относятся к области испытательной и измерительной техники. Способ включает регистрацию оптического излучения в спектре чувствительности фотодиода, сопровождающего инициирование заряда взрывчатого вещества (ВВ), находящегося в объекте испытания (ОИ). Регистрацию оптического...
Тип: Изобретение
Номер охранного документа: 0002597034
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6d58

Устройство для имитации магнитного поля молниевых разрядов

Изобретение относится к импульсной технике и может быть использовано для воспроизведения импульсного магнитного поля разрядов молнии при испытаниях технических систем на воздействие близких ударов молнии. Устройство содержит емкостный накопитель энергии, первый вывод которого соединен через...
Тип: Изобретение
Номер охранного документа: 0002597025
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e76

Устройство формирования объемного разряда

Использование: для формирования объемного самостоятельного разряда в электроразрядных импульсно-периодических газовых лазерах. Сущность изобретения заключается в том, что устройство формирования объемного разряда включает разрядную камеру с рабочим газом, по меньшей мере, с одной электродной...
Тип: Изобретение
Номер охранного документа: 0002596908
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7119

Способ концентрирования радиоактивных отходов

Изобретение относится к способу концентрирования радиоактивных отходов. Заявленный способ включает разрушение ионов аммония и/или азотной кислоты по реакции с формалином и ее регенерацию путем абсорбции и ректификации. Перерабатываемые растворы могут образовываться в различных...
Тип: Изобретение
Номер охранного документа: 0002596816
Дата охранного документа: 10.09.2016
Показаны записи 321-330 из 535.
12.01.2017
№217.015.6472

Способ формирования объемного разряда в импульсно-периодическом газовом лазере и устройство для его реализации

Изобретение относится к лазерной технике. Устройство, реализующее способ формирования объемного разряда в импульсно-периодическом газовом лазере, содержит генератор импульсного напряжения, рабочую камеру с установленными в ней электродами, формирующими объемный разряд, а также систему для...
Тип: Изобретение
Номер охранного документа: 0002589471
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.64b0

Устройство для замыкания сильноточных электрических цепей

Устройство для замыкания сильноточных электрических цепей включает полый цилиндрический корпус и размещенные в нем неподвижные, установленные с зазором относительно друг друга, контактные элементы, заряд пиротехнических средств (ПТС) и средство его воспламенения, генерирующее...
Тип: Изобретение
Номер охранного документа: 0002589035
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.676f

Логарифмический контроллер защиты волоконно-оптических линий

Изобретение относится к контроллерам защиты волоконно-оптических линий передачи (ВОЛП) от попыток отвода оптического сигнала и может быть использовано в качестве универсального технического средства защиты информации (ТСЗИ) ограниченного доступа, передаваемой по неконтролируемой территории....
Тип: Изобретение
Номер охранного документа: 0002591843
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6a06

Установка диффузионного цинкования металлических деталей

Изобретение относится к области технологий и устройств для нанесения защитных антикоррозионных покрытий, может быть использовано для коррозионно-защитной обработки прецизионных деталей крепежа для авиационной, автомобильной, космической техники и машиностроения. Установка для диффузионного...
Тип: Изобретение
Номер охранного документа: 0002591919
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6a8d

Криостат сверхпроводящего трансформатора

Изобретение относится к электротехнике и может быть использовано для криостатирования сверхпроводящих обмоток многофазных силовых трансформаторов с плоской магнитной системой. Техническим результатом является повышение КПД за счет сокращения теплопритоков из окружающей среды через внешнюю...
Тип: Изобретение
Номер охранного документа: 0002593151
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6cee

Способ определения наличия подрыва заряда взрывчатого вещества, содержащегося в объекте испытания, и задержки его подрыва от момента контакта объекта испытания с преградой и устройство для его осуществления

Изобретения относятся к области испытательной и измерительной техники. Способ включает регистрацию оптического излучения в спектре чувствительности фотодиода, сопровождающего инициирование заряда взрывчатого вещества (ВВ), находящегося в объекте испытания (ОИ). Регистрацию оптического...
Тип: Изобретение
Номер охранного документа: 0002597034
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6d58

Устройство для имитации магнитного поля молниевых разрядов

Изобретение относится к импульсной технике и может быть использовано для воспроизведения импульсного магнитного поля разрядов молнии при испытаниях технических систем на воздействие близких ударов молнии. Устройство содержит емкостный накопитель энергии, первый вывод которого соединен через...
Тип: Изобретение
Номер охранного документа: 0002597025
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e76

Устройство формирования объемного разряда

Использование: для формирования объемного самостоятельного разряда в электроразрядных импульсно-периодических газовых лазерах. Сущность изобретения заключается в том, что устройство формирования объемного разряда включает разрядную камеру с рабочим газом, по меньшей мере, с одной электродной...
Тип: Изобретение
Номер охранного документа: 0002596908
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7119

Способ концентрирования радиоактивных отходов

Изобретение относится к способу концентрирования радиоактивных отходов. Заявленный способ включает разрушение ионов аммония и/или азотной кислоты по реакции с формалином и ее регенерацию путем абсорбции и ректификации. Перерабатываемые растворы могут образовываться в различных...
Тип: Изобретение
Номер охранного документа: 0002596816
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7292

Способ автономной навигации летательных аппаратов

Изобретение относится к области радиолокационной техники и может быть использовано при построении радиолокационных рельефометрических систем, предназначенных для определения местоположения летательных аппаратов (ЛА) с использованием радиоволн. Достигаемый технический результат изобретения -...
Тип: Изобретение
Номер охранного документа: 0002598000
Дата охранного документа: 20.09.2016
+ добавить свой РИД