×
26.08.2017
217.015.ec3b

Результат интеллектуальной деятельности: Способ получения нанокапсул антибиотиков тетрациклинового ряда в конжаковой камеди

Вид РИД

Изобретение

№ охранного документа
0002627580
Дата охранного документа
09.08.2017
Аннотация: Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул антибиотиков тетрациклинового ряда. Способ характеризуется тем, что антибиотики выбирают из тетрациклина, диоксициклина, миноциклина, при осуществлении способа в суспензию конжаковой камеди в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют порошок антибиотика, затем по каплям добавляют петролейный эфир, который используется в качестве осадителя, причем соотношение количеств антибиотика к количеству конжаковой камеди составляет 1:1, 1:3, 1:5 или 5:1, полученную суспензию нанокапсул отфильтровывают и сушат. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул. 4 ил., 11 пр.

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155 МПК A61K 047/02, A61K 009/16, опубл. 10.10.1997. Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2095055 МПК A61K 9/52, A61K 9/16, A61K 9/10. Российская Федерация, опубл. 10.11.1997 предложен способ получения твердых непористых микросфер включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°С, и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.

В пат. 2076765 МПК B01D 9/02. Российская Федерация, опубл. 10.04.1997 предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.

В пат. 2101010 МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, А61К31/19. Российская Федерация, опубл. 10.01.1998 предложена жевательная форма лекарственного препарата с вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135, описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°С), термическое разложение его в пиролизной печи (650°С при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°С, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.

В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, т. LII, №1, с. 48-57 представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина pH водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.

Недостатком предложенного способа получения микрокапсул является сложность процесса, а отсюда плавающий выход целевых капсул.

В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009, Российская Федерация предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

В пат. WO/2010/076360 ES МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, опубл. 08.07.2010 предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастиц с существенно сфероидальной морфологии.

Недостатком предложенного способа является сложность и длительность процесса.

В пат. WO/2010/119041 ЕР МПК A23L 1/00, опубл. 21.10.2010 предложен способ получения микрошариков, содержащих активный компонент, инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения, и последующее отверждение микрошариков в растворе анионный полисахарид с pH 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является теплоденатурирующим, хотя и другие методы денатурации, также применимы, например, денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°С до 80°С, надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, продкет подлежит фильтрации, который осуществляется через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронный размер пор, например, от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.

Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных данным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.

В пат. 20110223314 МПК B05D 7/00 20060101 B05D 007/00, В05С 3/02 20060101 В05С 003/02; В05С 11/00 20060101 В05С 011/00; B05D 1/18 20060101 B05D 001/18; B05D 3/02 20060101 B05D 003/02; B05D 3/06 20060101 B05D 003/06 от 10.03.2011 US описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.

Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.

В пат. WO/2011/160733 ЕР МПК B01J 13/16, опубл. 29.12.2011 описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°С до формирования микрокапсул.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул антибиотиков тетрациклинового ряда в альгинате натрия, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул антибиотиков тетрациклинового ряда, отличающийся тем, что в качестве оболочки нанокапсул используется конжаковая камедь, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - петролейного эфира.

Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул антибиотиков тетрациклического ряда конжаковой камеди, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - петролейного эфира.

Результатом предлагаемого метода является получение нанокапсул антибиотиков тетрациклического ряда в конжаковой камеди при 25°С в течение 15 минут. Выход нанокапсул составляет 100%.

ПРИМЕР 1. Получение нанокапсул тетрациклина в конжаковой камеди, соотношение ядро : оболочка 1:3

В суспензию 0,6 г конжаковой камеди в бутаноле и 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества, небольшими порциями добавляют 0,2 г порошка тетрациклина. Затем по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 0,8 г белого порошка. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул тетрациклина в альгинате натрия, соотношение ядро:оболочка 1:1

В суспензию 0,5 г конжаковой камеди в бутаноле и 0,01 г препарата в качестве поверхностно-активного вещества, добавляют 0,5 г порошка тетрациклина. Затем по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1 г белого порошка. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул тетрациклина в конжаковой камеди, соотношение ядро : оболочка 1:5

В суспензию 1,5 г конжаковой камеди в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества, добавляют 0,3 г порошка тетрациклина. Затем по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1,8 г белого порошка. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул тетрациклина в конжаковой камеедиия, соотношение ядро:оболочка 5:1

В суспензию 0,1 г конжаковой камеди в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 0,5 г порошка тетрациклина. Затем по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 5. Получение нанокапсул диоксициклина в конжаковой камеди, соотношение ядро:оболочка 1:3

В суспензию 1,5 г конжаковой камеди в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества, добавляют 0,5 г порошка диоксициклина. Затем по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 2 г порошка. Выход составил 100%.

ПРИМЕР 6. Получение нанокапсул диоксициклина в конжаковой камеди, соотношение ядро:оболочка 1:1

В суспензию 0,5 г конжаковой камеди в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 0,5 г порошка диоксициклина. Затем по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1 г порошка. Выход составил 100%.

ПРИМЕР 7. Получение нанокапсул диоксициклина в конжаковой камеди, соотношение ядро:оболочка 1:5

В суспензию 1,5 г конжаковой камеди в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 0,3 г порошка диоксициклина. Затем по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1,8 г порошка. Выход составил 100%.

ПРИМЕР 8. Получение нанокапсул диоксициклина в конжаковой камеди, соотношение ядро:оболочка 5:1

В суспензию 0,2 г конжаковой камеди в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 1,0 г порошка диоксициклина. Затем по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1,2 г порошка. Выход составил 100%.

ПРИМЕР 8. Получение нанокапсул миноциклина в конжаковой камеди, соотношение ядро:оболочка 1:3

В суспензию 1,5 г конжаковой камеди в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 0,5 г порошка миноциклина. Затем по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 2 г порошка. Выход составил 100%.

ПРИМЕР 9. Получение нанокапсул миноциклина в конжаковой камеди, соотношение ядро:оболочка 1:1

В суспензию 0,5 г конжаковой камеди в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 0,5 г порошка миноциклина. Затем по каплям добавляют 5 мл петролейного эфира. Полученную суспензию нанокапсул отфильтровывают и сушат.

Получено 1 г белого порошка. Выход составил 100%.

ПРИМЕР 10. Определение размеров нанокапсул методом NTA

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length:Auto, Min Expected Size: Auto.длительность единичного измерения 215s, использование шприцевого насоса.

Получены нанокапсулы антибиотиков в конжаковой камеди физико-химическим методом осаждения нерастворителем с использованием петролейного эфира в качестве нерастворилеля. Процесс прост в исполнении и длится в течение 15 минут.

Предложенная методика пригодна для фармацевтической промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения нанокапсул антибиотиков в конжаковой камеди.

Способ получения нанокапсул антибиотиков тетрациклинового ряда, выбранных из тетрациклина, диоксициклина, миноциклина, характеризующиеся тем, что в суспензию конжаковой камеди в бутаноле и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют порошок антибиотика, затем по каплям добавляют петролейный эфир, причем соотношение количеств антибиотиков к количеству конжаковой камеди составляет 1:1, 1:3, 1:5 или 5:1, полученную суспензию нанокапсул отфильтровывают и сушат.
Способ получения нанокапсул антибиотиков тетрациклинового ряда в конжаковой камеди
Способ получения нанокапсул антибиотиков тетрациклинового ряда в конжаковой камеди
Способ получения нанокапсул антибиотиков тетрациклинового ряда в конжаковой камеди
Способ получения нанокапсул антибиотиков тетрациклинового ряда в конжаковой камеди
Источник поступления информации: Роспатент

Показаны записи 331-340 из 672.
25.08.2017
№217.015.bd34

Способ получения кефира, обогащенного коэнзимом q

Изобретение относится к молочной промышленности и нанотехнологии. В получаемый продукт в процессе заквашивания вводят наноструктурированную добавку, включающую коэнзим Q в альгинате натрия или наноструктурированную добавку, включающую коэнзим Q в каррагинане, или наноструктурированную добавку...
Тип: Изобретение
Номер охранного документа: 0002616277
Дата охранного документа: 13.04.2017
25.08.2017
№217.015.c045

Способ получения нанокапсул витаминов группы в в геллановой камеди

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности, в частности к способу получения нанокапсул витаминов группы В. Способ характеризуется тем, что в качестве оболочки используется геллановая камедь, при этом витамин группы В добавляют в суспензию геллановой...
Тип: Изобретение
Номер охранного документа: 0002616514
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.c097

Способ получения нанокапсул унаби в конжаковой камеди

Изобретение относится к области нанотехнологии, ветеринарии и пищевой промышленности. Способ получения нанокапсул унаби в конжаковой камеди, в котором порошок ягод унаби диспергируют в суспензию конжаковой камеди в этаноле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного...
Тип: Изобретение
Номер охранного документа: 0002616502
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.c589

Способ получения нанокапсул витаминов группы в в каппа-каррагинане

Изобретение относится к способу получения нанокапсул витаминов группы B в каппа-каррагинане. Указанный способ характеризуется тем, что в качестве оболочки используется каппа-каррагинан, а в качестве ядра - витамины группы В, при массовом соотношении ядро:оболочка 1:3 или 1:1, при этом витамин...
Тип: Изобретение
Номер охранного документа: 0002618449
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c58e

Способ получения нанокапсул лекарственных препаратов группы пенициллинов в каррагинане

Изобретение относится к способу получения нанокапсул лекарственных препаратов группы пенициллинов, выбранных из ампициллина, бензилпенициллина натриевой соли или амоксициллина, в каррагинане. Указанный способ характеризуется тем, что к 0,5 г каррагинана в гексане добавляют 0,01 г препарата...
Тип: Изобретение
Номер охранного документа: 0002618453
Дата охранного документа: 03.05.2017
25.08.2017
№217.015.c8b7

Способ получения нанокапсул умифеновира (арбидола) в альгинате натрия

Изобретение относится в области нанотехнологии, медицины, фармакологии и фармацевтике. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование умифеновира...
Тип: Изобретение
Номер охранного документа: 0002619331
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c8bc

Способ получения нанокапсул антибиотиков в геллановой камеди

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются антибиотики, в качестве оболочки - геллановая камедь при соотношении...
Тип: Изобретение
Номер охранного документа: 0002619328
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c8d6

Способ получения нанокапсул аспирина в альгинате натрия

Изобретение относится к области инкапсуляции. Описан способ получения нанокапсул аспирина. В качестве оболочки нанокапсул используют альгинат натрия. Согласно способу по изобретению аспирин добавляют в суспензию альгината натрия в бутаноле в присутствии препарата Е472с в качестве...
Тип: Изобретение
Номер охранного документа: 0002619329
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.c90f

Способ получения нанокапсул цефалоспориновых антибиотиков в альбумине человеческом сывороточном

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядер нанокапсул используются водорастворимые цефалоспориновые антибиотики, в качестве оболочки альбумин...
Тип: Изобретение
Номер охранного документа: 0002619332
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.cbc4

Способ получения мармелада, содержащего наноструктурированный креатин гидрат

Изобретение относится к кондитерской промышленности. Предложен способ получения мармелада с наноструктурированным креатин гидратом в альгинате натрия, в котором 100 г сахара растворяют в 200 г воды и смесь уваривают в течение 10 минут, затем добавляют 2 г агар-агара и варят еще 5 минут,...
Тип: Изобретение
Номер охранного документа: 0002620272
Дата охранного документа: 24.05.2017
Показаны записи 331-340 из 686.
26.08.2017
№217.015.e0e6

Способ получения нанокапсул антисептика-стимулятора дорогова (асд) 2 фракция в каррагинане

Изобретение относится к способу получения нанокапсул антисептика-стимулятора Дорогова (АСД) 2 фракция в каррагинане. Указанный способ характеризуется тем, что АСД 2 фракция диспергируют в раствор каррагинана в бензоле в присутствии препарата Е472с в качестве поверхностно-активного вещества при...
Тип: Изобретение
Номер охранного документа: 0002625547
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e13a

Способ получения нанокапсул сухого экстракта шиповника

Изобретение относится к способу получения нанокапсул сухого экстракта шиповника. Указанный способ характеризуется тем, что 1 г сухого экстракта шиповника диспергируют в суспензию альгината натрия в бензоле, содержащую 1 г или 3 г указанного полимера, в присутствии 0,01 г препарата Е472с в...
Тип: Изобретение
Номер охранного документа: 0002625501
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e1d2

Способ получения нанокапсул гидрокарбоната натрия в каррагинане

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул гидрокарбоната натрия. Способ характеризуется тем, что гидрокарбонат натрия диспергируют в суспензию каррагинана в петролейном эфире в присутствии 0,01 г...
Тип: Изобретение
Номер охранного документа: 0002625764
Дата охранного документа: 18.07.2017
26.08.2017
№217.015.e470

Способ получения мармелада, содержащего наноструктурированный сухой экстракт шиповника

Изобретение относится к пищевой промышленности. Предложен способ получения мармелада с наноструктурированным экстрактом шиповника в альгинате натрия, в котором 100 г сахара растворяют в 200 г воды и смесь уваривают в течение 10 минут затем добавляют 2 г агар-агара и варят еще 5 мин, наливают 50...
Тип: Изобретение
Номер охранного документа: 0002626563
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e48b

Способ получения мармелада, содержащего наноструктурированный унаби

Изобретение относится к кондитерской промышленности. Предложен способ получения мармелада с наноструктурированным унаби, в котором 100 г сахара растворяют в 200 г воды и смесь уваривают в течение 10 минут, затем добавляют 2 г агар-агара и варят еще 5 минут, наливают 50 г яблочного пюре и...
Тип: Изобретение
Номер охранного документа: 0002626562
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e48e

Способ получения мармелада, содержащего наноструктурированный бетулин

Изобретение относится к кондитерской промышленности. Предложен способ получения мармелада с наноструктурированным бетулином в альгинате натрия, в котором 100 г сахара растворяют в 200 г воды и смесь уваривают в течение 10 минут, затем добавляют 2 г агар-агара и варят еще 5 минут, наливают 50 г...
Тип: Изобретение
Номер охранного документа: 0002626564
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e4dc

Способ получения йогурта, обогащенного витамином е

Изобретение относится в области нанотехнологии и молочной промышленности. В процессе заквашивания в получаемый продукт вводят наноструктурированную добавку, включающую витамин Е в альгинате натрия, или в каррагинане, или в конжаковой камеди, или в геллановой камеди, или в натрий...
Тип: Изобретение
Номер охранного документа: 0002626529
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e4e8

Способ получения кефира с повышенным содержанием цинка

Изобретение относится к области молочной промышленности и нанотехнологии. В процессе заквашивания в получаемый продукт вводят наноструктурированную добавку, включающую сульфат цинка в каррагинане или в конжаковой камеди. Технический результат заключается в повышении пищевой и биологической...
Тип: Изобретение
Номер охранного документа: 0002626530
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e4f7

Способ получения нанокапсул хлоральгидрата в альгинате натрия

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул хлоральгидрата. Способ характеризуется тем, что в суспензию альгината натрия в гексане и 0,01 г препарата Е472с в качестве поверхностно-активного вещества...
Тип: Изобретение
Номер охранного документа: 0002626507
Дата охранного документа: 28.07.2017
26.08.2017
№217.015.e504

Способ получения нанокапсул бетулина

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул бетулина. Способ характеризуется тем, что бетулин добавляют в суспензию агар-агара в петролейном эфире в присутствии 0,01 г. поверхностно-активного вещества E472c,...
Тип: Изобретение
Номер охранного документа: 0002626508
Дата охранного документа: 28.07.2017
+ добавить свой РИД