×
26.08.2017
217.015.eb0b

Результат интеллектуальной деятельности: Способ обеззараживания и нагрева жидкостей и устройство для его осуществления

Вид РИД

Изобретение

Аннотация: Изобретение относится к нагреву и обеззараживанию воды СВЧ-энергией и может быть использовано в пищевой, медицинской, микробиологической, фармацевтической, а также в химической промышленности. Способ обеззараживания и нагрева воды включает воздействие СВЧ-энергией на поток обрабатываемой воды заданного размера, проходящий через прямоугольный волновод под углом к его широкой стенке. В поток добавляют водный раствор ионного серебра из расчета его концентрации в обрабатываемой воде 0,01-0,02 мг/л. Воду пропускают через устройство, включающее СВЧ-генератор, прямоугольный волновод с фланцами, проходящую через него трубку из радиопрозрачного материала, ось которой расположена под углом к широкой стенке волновода, и концевую согласованную поглощающую нагрузку. Трубка, через которую пропускают поток, имеет расширяющуюся форму, при этом ширина W имеет максимальное значение 0,66 размера широкой стенки волновода, высота h на входе в волновод составляет 0,06-0,15 длины волны, а высота Н на выходе из волновода 0,18-0,47 длины волны и установлена широкой стороной к направлению распространения электромагнитной волны. Способ обеспечивает снижение температуры обеззараживания жидкости, увеличение КПД поглощения СВЧ-энергии и производительности, снижение энергозатрат, ускорение процесса СВЧ-обеззараживания и нагрева воды, а также возможность использования меньшей дозы ионного серебра. 2 н.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к технологии обеззараживания и нагрева воды СВЧ-энергией и может быть использовано в пищевой, медицинской, микробиологической, фармацевтической, а также в химической промышленности.

Наиболее эффективно настоящее изобретение может быть использовано в пищевой промышленности для обеззараживания и нагрева воды, используемой, например, при приготовлении соков и других пищевых жидкостей.

Изобретение может быть также использовано в медицинской, микробиологической и фармацевтической промышленности для обеззараживания воды, используемой при приготовлении питательных сред, вакцин, сывороток и жидких лекарственных препаратов.

Кроме того, изобретение может найти применение в химической и золотодобывающей промышленности для нагрева воды в технологических процессах.

В настоящее время проблема производства экологически чистых продуктов питания, включая питьевую воду, без добавления консервантов и химических веществ занимает одно из ведущих мест в мире.

Актуальность обеззараживания и нагрева воды, потребляемой человеком в повседневной жизни, определяется как увеличением количества неблагоприятных территорий и факторов, так и использованием различных консервантов наряду с традиционными методами обеззараживания воды.

Особую значимость обеззараживание и нагрев приобретает при обработке воды, предназначенной для длительного хранения.

В настоящее время известен способ воздействия тяжелых металлов и, в частности, серебра на микроорганизмы с целью их уничтожения (Л.А. Кульский. Серебряная вода. Киев: Наукова думка. 1977, 164 с.).

Скорость отмирания, например, Escherichea coli с исходной концентрацией 104 КОЕ/мл при дозе ионного серебра 1,0 мг/л составляет 3 мин; при дозе 0,5 мг/л - 20 мин; при дозе 0,2 мг/л - 50 мин, а для дозы 0,05 мг/л требуется около 2 час контакта для полного бактерицидного эффекта (Л.А. Кульский. Серебряная вода. Киев: Наукова думка. 1977. С. 20-34).

К неудобствам этого способа и его использования относят значительные дозы ионного серебра для снижения времени воздействия на микроорганизмы, находящиеся в покоящейся воде.

Известны также способы и устройства для обеззараживания и нагрева воды с использованием энергии сверхвысокой частоты (В.В. Игнатов и др. Влияние электромагнитных полей сверхвысокочастотного диапазона на бактериальную клетку. Изд-во СГУ. 1978, 80 с.).

Известен метод и устройство, в котором осуществляют воздействие СВЧ-поля на бактериальную суспензию в пробирке, помещенной в волновод прямоугольного сечения (В.В. Игнатов и др. Влияние электромагнитных полей сверхвысокочастотного диапазона на бактериальную клетку. Изд-во СГУ. 1978, с. 34-35). Этот тип устройства относят к проходному, волноводному, подсоединенному с одной стороны к СВЧ-генератору, а с другой - к концевой согласованной поглощающей нагрузке. Пробирку в устройстве размещают под углом 45° к широкой стенке волновода.

В предложенном варианте исполнения устройство не применяют для обеззараживания и нагрева воды в потоке.

Известен, например, микроволновый аппарат для выпаривания жидких смесей, который включает волновод и микроволновый генератор. В этом аппарате нагреваемую жидкость подают по прозрачной для микроволн трубке, ось которой расположена под углом к широкой стенке волновода, таким образом, что выходящую нагретую жидкость затем подают в камеру, где жидкость распыляют и выпаривают. Образовавшийся пар отделяют и конденсируют, а невыпарившуюся жидкость перемешивают с основным потоком и подают на рецикл (Roger М. Amadon. MICROWAVE APPARATUS FOR EVAPORATING LIQUID MIXTURES. U.S. Patent 3,495,648. Feb. 17.1970. U.S.C1. 159-3).

Наличие оконечной водяной нагрузки в этом устройстве подтверждает тот факт, что не вся микроволновая энергия поглощается нагреваемой жидкостью, а значит исключается из процесса нагрева.

В этом микроволновом аппарате предложены также еще два варианта расположения прозрачных для микроволн трубок в волноводе, по которым подают в камеру жидкость.

Первый вариант представляет собой ряд расположенных под углом к широкой стенке волновода трубок, соединенных последовательно. Во втором варианте трубки соединены параллельно и имеют общий вход и выход жидкости.

Недостатком обоих вариантов микроволнового устройства для нагрева и выпаривания жидких смесей является сложность и громоздкость всей конструкции, которая с оконечной водяной нагрузкой представляет значительные размеры и массу.

Сложность конструкции также выражается в дополнительном экранировании трубок, выходящих за пределы волновода, от проникновения излучения в окружающее пространство.

Это устройство для нагрева микроволновой энергией используют в циркуляционной технологической схеме аппарата для выпаривания и концентрирования фруктовых соков и других термочувствительных жидкостей посредством электромагнитной волновой энергии. Устройство используют для непрерывного нагрева в потоке порции жидкости, находящейся в выпаривателе, и воздействуют на нее до полного выпаривания. Результатом многократного рецикла при повышенной температуре выпаривания возможна значительная потеря витаминов и питательных свойств жидкостей.

Известна система для очистки жидкостей, в которой используют устройство для нагрева и обеззараживания очищаемой жидкости микроволновой энергией (Н. Colman Rosenberg. SYSTEM FOR PURIFYING LIQUIDS. U.S. Patent 4,013,558. Mar. 22. 1977. U.S. C1. 210-149). Это устройство представляет собой расширяющийся волновод (рупор), в конце которого помещают гофрированную трубку, уложенную виток к витку. Такая трубка заполняет открытый конец волновода и практически полностью перекрывает его поперечное сечение. Расход жидкости поддерживают постоянным, а температуру жидкости контролируют датчиками температуры на входе и выходе трубки. Основным недостатком устройства для микроволнового нагрева является неполный обеззараживающий эффект и возможность выпадения осадка и его накопления в гофрах, так же как и микроорганизмов. Это влечет за собой дополнительную операцию по периодической очистке трубки.

Кроме того, использование волновода с открытым концом (рупором) требует защиты всего устройства в целом от излучения микроволновой энергии в окружающее пространство. Это увеличивает габариты устройства и его вес.

Устройство используют в проточной технологической схеме для совершенствования метода обработки жидкостей при дезинфекции и осветлении, которое состоит в перемешивании и поддержании консистенции потока на должном уровне до и во время обработки микроволновой энергией. Результат (99,9%) стерилизации достигают при 65°С для вегетативных форм микроорганизмов.

Наиболее близким к предлагаемому техническому решению является устройство для обеззараживания и нагрева водных сред, включающее СВЧ-генератор, прямоугольный волновод с фланцами, трубку из радиопрозрачного материала, расположенную под углом 30-45° к широкой стенке волновода, концевую согласованную поглощающую нагрузку квазирезонаторного типа, при этом трубка в сечении имеет плоскую форму и установлена широкой стороной к направлению распространения электромагнитной волны, имеет высоту, равную 0,12-0,14 длины волны, а ширину, равную 0,26-0,45 размера широкой стенки волновода (Л.Л. Заблоцкий, С.И. Климарев, А.Г. Лобанов. УСТРОЙСТВО ДЛЯ ОБЕЗЗАРАЖИВАНИЯ И НАГРЕВА ВОДНЫХ СРЕД. Авторское свидетельство СССР №1139439. 15.02.1985 г. МКИ A61L 2/12). Эта трубка плоской формы имеет постоянные размеры в указанных граничных значениях.

Несовершенство известного устройства заключается в недостаточно высоком КПД поглощения СВЧ-энергии в этой трубке, уменьшающийся с увеличением температуры обрабатываемой воды, что приводит к увеличению затрат энергии и снижению производительности. Такое устройство используют в циркуляционно-проточной технологической схеме для обеззараживания и нагрева водных сред в потоке. Результат (100%) воздействия на набор вегетативных форм микроорганизмов достигают при температуре 70°С.

Недостатками этого устройства и его использования являются повышенная температура обеззараживания воды, пониженный КПД поглощения СВЧ-энергии и производительность, излишние затраты энергии.

Технический результат заключается в ускорении процесса, снижении энергозатрат, температуры СВЧ-обеззараживания и нагрева воды, а также дозы ионного серебра, увеличении КПД поглощения СВЧ-энергии.

Поставленная задача в части способ решается путем воздействия СВЧ-энергией на поток обрабатываемой воды заданного размера, проходящий через прямоугольный волновод под углом к его широкой стенке, а в поток обрабатываемой воды добавляют водный раствор ионного серебра из расчета его концентрации в обрабатываемой воде 0,01-0,02 мг/л, поток воды имеет расширяющуюся форму от входа в волновод до выхода из него, при этом ширина потока W имеет максимальное значение 0,66 размера широкой стенки волновода, а высота h на входе в волновод составляет 0,06-0,15 длины волны и высота его Н на выходе из волновода составляет 0,18-0,47 длины волны.

Поставленная задача в части устройство решается также тем, что в устройство для обеззараживания и нагрева воды, включающее СВЧ-генератор, прямоугольный волновод с фланцами, трубку из радиопрозрачного материала, ось которой расположена под углом к широкой стенке волновода, концевую согласованную поглощающую нагрузку, согласно изобретению устанавливают трубку, ширина W которой постоянна и имеет максимальное значение 0,66 размера широкой стенки волновода, трубка имеет расширяющуюся форму и высота ее h на входе в волновод составляет 0,06-0,15 длины волны, а высота Н на выходе из волновода составляет 0,18-0,47 длины волны и установлена широкой стороной к направлению распространения электромагнитной волны.

Краткое описание чертежей и таблиц

Фиг. 1. Устройство для реализации способа, где 1 - трубка расширяющейся формы; 2 - запредельное устройство; 3 - прямоугольный волновод; 4 - фланцы; штуцеры ввода и вывода воды условно не показаны.

Фиг. 2. Циркуляционно-проточная технологическая схема

Схема включает: 1 - трубку расширяющейся формы; 2 - запредельное устройство; 3 -прямоугольный волновод; 4 - фланцы; 5 - СВЧ-генератор; 6 - концевую согласованную поглощающую нагрузку; 7 - трехпозиционный кран (клапан); 8 - емкость с обрабатываемой водой; 9 - центробежный насос; 10 - кран регулируемый (регулятор расхода).

Фиг. 3. Графическое отображение параметров из Табл. 1.

1 и 2 - зависимости КПД и температуры от расхода воды по устройству прототипа.

1' и 2' - зависимости КПД и температуры от расхода воды по предлагаемому техническому решению.

Табл. 1. Технологические параметры обеззараживания и нагрева воды по прототипу и предлагаемому техническому решению.

Знак «-» означает отсутствие микробов в воде.

Знак «±» означает наличие микробов в воде в концентрации до 100 КОЕ/мл.

Знак «+» означает наличие микробов в воде в концентрации выше 100 КОЕ/мл.

КОЕ - колониеобразующая единица.

Технологическая схема (Фиг. 2) включает подключенный к емкости 8 с обрабатываемой водой трубопровод, к которому после центробежного насоса 9 подключен по ходу движения воды кран регулируемый 10, датчик температуры t1, трубка 1 расширяющейся формы, датчик температуры t2, трехпозиционный кран (клапан) 7. Трубопровод по отношению к трубке 1, расположенной в устройстве для обеззараживания и нагрева воды (Фиг. 1), разделен на входную и выходную линии (входная линия расположена перед входом в трубку 1 после крана регулируемого 10, выходная - после трубки расширяющейся формы 1). При этом выходная линия подключена к емкости 8 с обрабатываемой водой через кран регулируемый 10 с образованием замкнутого контура (контура рецикла).

Раствор ионного серебра вводят (Фиг. 2) в емкость 8 с зараженной обрабатываемой водой из расчета конечной дозы в воде 0,01-0,02 мг/л. После этого воду из емкости 8 насосом 9 через кран регулируемый 10 подают на вход трубки 1 расширяющейся формы для нагрева; в период установления заданной температуры воду из трубки 1 через трехпозиционный кран 7 возвращают в емкость 8 с обрабатываемой водой; по достижении заданной температуры воды трехпозиционный кран 7 переключают и обработанную воду используют по назначению, а также отбирают пробы на микробиологический анализ. Контроль температуры воды до и после СВЧ-нагрева осуществляют с помощью датчиков температуры t1 и t2.

В качестве тест-микробов применяют набор Escherichia coli и Pseudomonas aeruginosae в концентрации 106 КОЕ/мл. Регистрацию основных технологических параметров (расход и температуру воды), а также отбор проб на биоконтроль осуществляют при дискретных значениях температуры, а именно 95, 90, 80, 70, 65, 60, 55, 50, 45 и 40°С. Обрабатываемая вода - дехлорированная водопроводная питьевая вода с исходной температурой 20±0,5°С. Для иллюстрации работы устройства используется СВЧ-генератор, генерирующий частоту 2450±50 МГц, мощность 1,0 кВт; основной тип волны - Н10; сечение волновода (a×b) - 90×45 мм; трубка расширяющейся формы имеет постоянную ширину W - 59,4 мм; высоту h на входе - 10 мм; высоту Н на выходе - 32 мм и выполнена из фторопласта.

Интервалы размеров трубки расширяющейся формы определяются экспериментальным путем.

Так, ширину трубки W ограничивают значением 0,66 размера широкой стенки волновода (а). Увеличение ширины трубки выше этого значения не приводит к увеличению поглощения СВЧ-мощности, т.к. ближе к углам внутри волновода СВЧ-энергия практически отсутствует.

Высоту трубки на входе h устанавливают 0,06-0,15 длины волны или 7-18 мм, что обеспечивает оптимальный нагрев воды с исходной температурой, соответствующей окружающей среде от ~ 0°С до 35°С.

Снижение высоты трубки h на входе ниже 0,06 длины волны приводит к прохождению части СВЧ-энергии в концевую согласованную поглощающую нагрузку, т.е. к потерям энергии и снижению КПД устройства. Увеличение высоты трубки h на входе выше 0,15 длины волны не повышает КПД устройства и производительность и не снижает в итоге температуру обеззараживания.

Высоту трубки Н на выходе устанавливают 0,18-0,47 длины волны или 22-58 мм, что обеспечивает температуру нагрева и обеззараживания воды в интервале ~ 45°С-95°С и вплоть до кипения.

Снижение высоты трубки Н на выходе ниже 0,18 длины волны приводит к снижению КПД устройства и производительности, а также к прохождению части СВЧ-энергии в концевую согласованную поглощающую нагрузку. Увеличение высоты трубки Н на выходе выше 0,47 длины волны не снижает температуру обеззараживания и энергозатраты и не увеличивает производительность.

Для примера (см. табл.) в предлагаемом устройстве используется трубка постоянной шириной W - 59,4 мм, высотой h на входе - 10 мм, соответствующей начальной температуре воды ~ 18°С-20°С, и высотой H на выходе - 32 мм, соответствующей конечной температуре обеззараживания и нагрева ~ 65°С.

Результаты опытов показывают, что температура обеззараживания в предлагаемом устройстве составляет 55°С, что на 10°С ниже, чем в устройстве прототипа. При этой температуре КПД поглощения СВЧ-энергии составляет 94% по сравнению с 87% в прототипе. Производительность увеличилась с 0,285 л/мин до 0,385 л/мин; энергозатраты снизились с 51 до 40 Вт⋅ч/л.

Кроме того, в предлагаемом устройстве трубку используют сменной и выбирают под конкретный температурный режим обеззараживания и нагрева воды, что обеспечивает высокую технологичность при использовании предлагаемого устройства в конкретном процессе (технологической схеме).

В установленном интервале температур нагрева (95°С-40°С) СВЧ-энергия не достигает концевой согласованной поглощающей нагрузки, т.е. ее полностью поглощает проходное устройство с трубкой расширяющейся формы. В данном конкретном случае концевой согласованной поглощающей нагрузке отводят роль своеобразного предохранителя, ассимилирующего СВЧ-энергию в том случае, когда в трубке расширяющейся формы по каким-либо причинам случайно отсутствует обрабатываемая вода. Это защищает СВЧ-генератор от выхода из строя.

Из-за неизбежной адсорбции ионного серебра поверхностью емкости и микроорганизмами, а также перехода части его в неактивное, связанное состояние конечная доза ионного серебра в емкости с обрабатываемой водой не остается постоянной. От опыта к опыту эта доза колеблется в пределах 0,01-0,02 мг/л.

Эта принятая минимальная доза ионного серебра обеспечивает эффективное комбинированное воздействие на микроорганизмы в сочетании с СВЧ-энергией в условиях потока воды.

Сама по себе такая доза ионного серебра не оказывает какого-либо заметного влияния на микроорганизмы даже в течение 60 минут.

Итак, анализ приведенных примеров (табл. 1) показывает, что добавление в поток обрабатываемой воды раствора ионного серебра в процессе СВЧ-обеззараживания и нагрева воды и применение устройства с трубкой расширяющейся формы обеспечивает:

- снижение температуры обеззараживания и нагрева воды на 10°С с 65°С до 55°С;

- увеличение КПД поглощения СВЧ-энергии на 7%;

- увеличение производительности на 35,1%;

- снижение энергозатрат на 21,6%.


Способ обеззараживания и нагрева жидкостей и устройство для его осуществления
Способ обеззараживания и нагрева жидкостей и устройство для его осуществления
Способ обеззараживания и нагрева жидкостей и устройство для его осуществления
Способ обеззараживания и нагрева жидкостей и устройство для его осуществления
Источник поступления информации: Роспатент

Показаны записи 11-20 из 29.
10.04.2014
№216.012.af68

Способ повышения уровня когнитивных способностей операторов

Изобретение относится к медицине, а именно к физиологии, восстановительной и профилактической медицине, гигиене труда, и направлено на повышение уровня когнитивных способностей операторов. Сначала определяют чувствительность к гипоксии путем гипоксического воздействия продолжительностью до...
Тип: Изобретение
Номер охранного документа: 0002510619
Дата охранного документа: 10.04.2014
20.06.2014
№216.012.d336

Способ непрерывной стерилизации жидкости и устройство для его осуществления

Заявляемая группа изобретений относится к области стерилизации жидких пищевых продуктов и может быть использована в пищевой, медицинской и микробиологической отраслях промышленности, а также в сфере обслуживания. Задача и технический результат заключаются в повышении надежности стерилизации за...
Тип: Изобретение
Номер охранного документа: 0002519841
Дата охранного документа: 20.06.2014
10.08.2014
№216.012.e6ef

Тренажер с "бегущей" дорожкой для космического аппарата

Изобретение относится к космической технике, более конкретно к устройству для физических упражнений, в частности ходьбы и бега с созданием продольной осевой нагрузки на космонавта, предназначенного для использования в космическом аппарате (КА) в условиях невесомости. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002524912
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e7d6

Способ экспансии мононуклеарных клеток пуповинной крови (пкмнк) ex vivo в присутствии мультипотентных стромальных мезенхимальных клеток (ммск)

Изобретение относится к биотехнологии и медицине. Предложен способ экспансии мононуклеарных клеток пуповинной крови (пкМНК) ex vivo в присутствии мультипатентных мезенхимальных клеток (ММСК), включающий культивирование ММСК из стромально-васкулярной фракции жировой ткани до достижения монослоя...
Тип: Изобретение
Номер охранного документа: 0002525143
Дата охранного документа: 10.08.2014
20.09.2014
№216.012.f67d

Способ обеспечения растений водным и минеральным питанием в условиях невесомости и система для его осуществления

Группа изобретений относится к космической биологии и может быть использована для культивирования растений в условиях космического полета. Способ включает подачу поливной питьевой воды в корневой модуль с иононасыщенным ионитным волокнистым почвозаменителем и обеспечение автокоррекции величины...
Тип: Изобретение
Номер охранного документа: 0002528934
Дата охранного документа: 20.09.2014
27.03.2016
№216.014.c810

Способ ускорения восстановления скелетных мышц от атрофии после длительной алкогольной интоксикации

Изобретение относится к медицине, а именно к физиологии и может быть использовано для устранения негативного последствия атрофии скелетных мышц, вызванной длительной алкогольной интоксикацией. Способ включает введение животным смеси аминокислот с разветвленной боковой цепью из L-лейцина,...
Тип: Изобретение
Номер охранного документа: 0002578463
Дата охранного документа: 27.03.2016
20.04.2016
№216.015.34b2

Тренажер для отработки комплекса задач по исследованию астрономического объекта участниками космической экспедиции

Тренажер для отработки комплекса задач по исследованию астрономического объекта участниками космической экспедиции содержит рабочее место оператора, средства имитации и визуализации реальных условий проведения исследований, графическую станцию, джойстики интерактивного управления объектами,...
Тип: Изобретение
Номер охранного документа: 0002581643
Дата охранного документа: 20.04.2016
10.06.2016
№216.015.4482

Способ оценки адаптационного риска в донозологической диагностике

Изобретение относится к медицине, а именно к профилактической медицине. Определяют степень напряжения (СН) регуляторных механизмов и их функциональный резерв (ФР) по уравнению канонической дискриминантной функции. Затем с использованием уравнений дискриминантных функций рассчитывают значения...
Тип: Изобретение
Номер охранного документа: 0002586041
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.aa52

Способ определения момента аэробно-анаэробного перехода по зависимости содержания дезоксигенированной формы гемоглобина в мышце от ее электромиографической активности во время теста с линейно возрастающей мощностью нагрузки

Изобретение относится к области медицины и может быть использовано в спорте и восстановительной практике. Мощность нагрузки определяют как момент аэробно-анаэробного перехода при выполнении теста с линейно возрастающей мощностью нагрузки. Аэробно-анаэробный переход определяют по точке на...
Тип: Изобретение
Номер охранного документа: 0002611915
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.b31b

Способ определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии

Изобретение относится к диагностике, а именно к способу определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии. Способ определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии, включающий определение ацетола (гидрооксиацетона C3H6O2 GAS116-09-6) в выдыхаемом...
Тип: Изобретение
Номер охранного документа: 0002613910
Дата охранного документа: 21.03.2017
Показаны записи 11-20 из 32.
20.06.2014
№216.012.d336

Способ непрерывной стерилизации жидкости и устройство для его осуществления

Заявляемая группа изобретений относится к области стерилизации жидких пищевых продуктов и может быть использована в пищевой, медицинской и микробиологической отраслях промышленности, а также в сфере обслуживания. Задача и технический результат заключаются в повышении надежности стерилизации за...
Тип: Изобретение
Номер охранного документа: 0002519841
Дата охранного документа: 20.06.2014
10.08.2014
№216.012.e6ef

Тренажер с "бегущей" дорожкой для космического аппарата

Изобретение относится к космической технике, более конкретно к устройству для физических упражнений, в частности ходьбы и бега с созданием продольной осевой нагрузки на космонавта, предназначенного для использования в космическом аппарате (КА) в условиях невесомости. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002524912
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e7d6

Способ экспансии мононуклеарных клеток пуповинной крови (пкмнк) ex vivo в присутствии мультипотентных стромальных мезенхимальных клеток (ммск)

Изобретение относится к биотехнологии и медицине. Предложен способ экспансии мононуклеарных клеток пуповинной крови (пкМНК) ex vivo в присутствии мультипатентных мезенхимальных клеток (ММСК), включающий культивирование ММСК из стромально-васкулярной фракции жировой ткани до достижения монослоя...
Тип: Изобретение
Номер охранного документа: 0002525143
Дата охранного документа: 10.08.2014
20.09.2014
№216.012.f67d

Способ обеспечения растений водным и минеральным питанием в условиях невесомости и система для его осуществления

Группа изобретений относится к космической биологии и может быть использована для культивирования растений в условиях космического полета. Способ включает подачу поливной питьевой воды в корневой модуль с иононасыщенным ионитным волокнистым почвозаменителем и обеспечение автокоррекции величины...
Тип: Изобретение
Номер охранного документа: 0002528934
Дата охранного документа: 20.09.2014
27.03.2016
№216.014.c810

Способ ускорения восстановления скелетных мышц от атрофии после длительной алкогольной интоксикации

Изобретение относится к медицине, а именно к физиологии и может быть использовано для устранения негативного последствия атрофии скелетных мышц, вызванной длительной алкогольной интоксикацией. Способ включает введение животным смеси аминокислот с разветвленной боковой цепью из L-лейцина,...
Тип: Изобретение
Номер охранного документа: 0002578463
Дата охранного документа: 27.03.2016
20.04.2016
№216.015.34b2

Тренажер для отработки комплекса задач по исследованию астрономического объекта участниками космической экспедиции

Тренажер для отработки комплекса задач по исследованию астрономического объекта участниками космической экспедиции содержит рабочее место оператора, средства имитации и визуализации реальных условий проведения исследований, графическую станцию, джойстики интерактивного управления объектами,...
Тип: Изобретение
Номер охранного документа: 0002581643
Дата охранного документа: 20.04.2016
10.06.2016
№216.015.4482

Способ оценки адаптационного риска в донозологической диагностике

Изобретение относится к медицине, а именно к профилактической медицине. Определяют степень напряжения (СН) регуляторных механизмов и их функциональный резерв (ФР) по уравнению канонической дискриминантной функции. Затем с использованием уравнений дискриминантных функций рассчитывают значения...
Тип: Изобретение
Номер охранного документа: 0002586041
Дата охранного документа: 10.06.2016
25.08.2017
№217.015.aa52

Способ определения момента аэробно-анаэробного перехода по зависимости содержания дезоксигенированной формы гемоглобина в мышце от ее электромиографической активности во время теста с линейно возрастающей мощностью нагрузки

Изобретение относится к области медицины и может быть использовано в спорте и восстановительной практике. Мощность нагрузки определяют как момент аэробно-анаэробного перехода при выполнении теста с линейно возрастающей мощностью нагрузки. Аэробно-анаэробный переход определяют по точке на...
Тип: Изобретение
Номер охранного документа: 0002611915
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.b31b

Способ определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии

Изобретение относится к диагностике, а именно к способу определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии. Способ определения тканевой гипоксии скелетных мышц и миокарда при гиподинамии, включающий определение ацетола (гидрооксиацетона C3H6O2 GAS116-09-6) в выдыхаемом...
Тип: Изобретение
Номер охранного документа: 0002613910
Дата охранного документа: 21.03.2017
26.08.2017
№217.015.de02

Способ оценки уровня компенсаторно-приспособительных и адаптационных возможностей организма космонавтов

Изобретение относится к области медицины, а именно к авиакосмической медицине, и может быть использовано для оценки оптимального уровня компенсаторно-приспособительных и адаптационных возможностей организма космонавтов в условиях космического полета. Способ включает получение препарата...
Тип: Изобретение
Номер охранного документа: 0002624860
Дата охранного документа: 07.07.2017
+ добавить свой РИД