×
26.08.2017
217.015.e8d6

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, в частности для определения качества нефтепродуктов, и может быть применено для контроля температурной стойкости и термоокислительной стабильности смазочных материалов. Заявлен способ определения термоокислительной стойкости смазочных материалов, включающий нагревание пробы испытуемого смазочного материала постоянной массы в присутствии воздуха, перемешивание, фотометрирование, определение массы испарившейся пробы при испытании, построение графических зависимостей, по которым определяют параметры процесса окисления. Согласно изобретению испытания проводят в двух циклах изменения температуры. Одну пробу испытывают при ступенчатом увеличении температуры на 10°C от минимального до максимального значения, зависимого от назначения смазочного материала, а другую пробу испытывают при ступенчатом уменьшении температуры на 10°C от принятой максимальной величины до минимальной. Причем через равные промежутки времени испытания для каждой температуры окисленную пробу взвешивают, определяют массу испарившегося смазочного материала и коэффициент испаряемости как отношение массы испарившегося смазочного материала к массе пробы до испытания. Отбирают часть окисленной пробы для определения оптической плотности и по полученным данным определяют показатель термоокислительной стойкости как сумму оптической плотности и коэффициента испаряемости. Строят графические зависимости показателя термоокислительной стойкости, оптической плотности и испаряемости от циклов повышения и понижения температуры испытания, определяют регрессионные уравнения данных зависимостей, которые используют для определения параметров термоокислительной стойкости. По уравнениям зависимостей показателя термоокислительной стойкости определяют температуру начала процессов преобразования в испытуемом смазочном материале в цикле повышения температуры испытания и критическую температуру в цикле понижения температуры испытания, а по координате абсциссы пересечения данных зависимостей определяют предельную температуру работоспособности. При этом значения этих параметров используют в качестве параметров термоокислительной стойкости. Технический результат - повышение информативности контроля качества смазочных материалов за счет определения предельно допустимой температуры работоспособности. 1 з.п. ф-лы, 2 табл., 3 ил.

Изобретение относится к измерительной технике, в частности для определения качества нефтепродуктов, и может быть применено для контроля температурной стойкости и термоокислительной стабильности смазочных материалов.

Известен способ определения термоокислительной стабильности смазочных материалов, включающий нагревание смазочного материала в присутствии воздуха, перемешивание, определение параметров процесса окисления. При этом испытанию подвергают пробу путем нагревания через определенные интервалы времени до определенной температуры с увеличением температуры в начале интервала с выдержкой ее в течение интервала, определяют оптическую плотность в конце каждого интервала времени, строят графическую зависимость оптической плотности от температуры окисления, по точке перегиба которой определяют температуру окисления (Патент РФ №2057326, дата приоритета 04.06.1992, дата публикации 27.03.1996, авторы: Ковальский Б.И. и др., RU).

Наиболее близким по технической сущности и достигаемому результату к заявленному является способ определения термоокислительной стабильности смазочных материалов, заключающийся в том, что смазочный материал постоянной массы нагревают в термостойком стеклянном стакане, как минимум при трех температурах, превышающих температуру начала окисления, и перемешивают стеклянной мешалкой с постоянной скоростью вращения в течение не более 12 часов, причем через равные промежутки времени отбирают пробы для фотометрирования, определяют коэффициент поглощения светового потока окисленным маслом и испаряемость взвешиванием пробы до и после испытания, строят графические зависимости этих параметров от температуры испытания, а термоокислительную стабильность смазочного материала определяют по критической температуре работоспособности, температуре начала окисления и температуре начала испарения (Патент РФ №2274850, дата приоритета 30.08.2004, дата публикации 20.04.2006, авторы: Ковальский Б.И. и др., RU, прототип).

Недостатком известного аналога и прототипа является недостаточная их информативность, так как известные способы не позволяют определить предельно допустимую температуру работоспособности смазочных материалов, позволяющую классифицировать их по группам эксплуатационных свойств.

Задачей изобретения является повышение информативности контроля качества смазочных материалов за счет определения предельно допустимой температуры работоспособности.

Для решения поставленной задачи в способе определения термоокислительной стойкости смазочных материалов, включающем нагревание пробы испытуемого смазочного материала постоянной массы в присутствии воздуха, перемешивание, фотометрирование, определение массы испарившейся пробы при испытании, построение графических зависимостей, по которым определяют параметры процесса окисления, согласно изобретению, испытания проводят в двух циклах изменения температуры, одну пробу испытывают при ступенчатом увеличении температуры на 10°C от минимального до максимального значения, зависимого от назначения смазочного материала, а другую пробу испытывают при ступенчатом уменьшении температуры на 10°C от принятой максимальной величины до минимальной, причем через равные промежутки времени испытания для каждой температуры окисленную пробу взвешивают, определяют массу испарившегося смазочного материала и коэффициент испаряемости, как отношение массы испарившегося смазочного материала к массе пробы до испытания, отбирают часть окисленной пробы для определения оптической плотности, по полученным данным определяют показатель термоокислительной стойкости как сумму оптической плотности и коэффициента испаряемости, строят графические зависимости показателя термоокислительной стойкости, оптической плотности и испаряемости от циклов повышения и понижения температуры испытания, определяют регрессионные уравнения данных зависимостей, которые используют для определения параметров термоокислительной стойкости, причем по уравнениям зависимостей показателя термоокислительной стойкости определяют температуру начала процессов преобразования в испытуемом смазочном материале, в цикле повышения температуры испытания, и критическую температуру, в цикле понижения температуры испытания, а по координате абсциссы пересечения данных зависимостей определяют предельную температуру работоспособности, при этом значения этих параметров используют в качестве параметров термоокислительной стойкости.

Согласно изобретению, по уравнениям зависимостей оптической плотности и испаряемости в циклах повышения температуры испытания смазочного материала определяют температуры начала процессов окисления и испарения, а в циклах понижения температуры испытания определяют критическую температуру окисления и испарения, а по координате абсцисс пересечения этих зависимостей определяют предельно допустимые температуры окисления и испарения испытуемого смазочного материала, которые дополнительно используют в качестве параметров термоокислительной стойкости.

Сущность способа поясняется графически.

На фиг. 1 (а, б, в) представлены зависимости оптической плотности (D), испаряемости (G) и показателя термоокислительной стойкости (Птос) в циклах повышения и понижения температуры испытания частично синтетического моторного масла Castrol Magnatec 10W-40 Sl/CF в температурном интервале от 150 до 180°C (кривая 1) и от 180 доя 150°C (кривая 2); на фиг. 2 (а, б, в) - зависимости оптической плотности, испаряемости и показателя термоокислительной стойкости в циклах повышения и понижения температуры испытания частично синтетического моторного масла Лукойл Люкс 5W-40 SL/CF соответственно в температурном интервале от 150 до 180°C (кривая 1) и от 180 до 150°C (кривая 2); фиг. 3 (а, б, в) - зависимости оптической плотности, испаряемости и показателя термоокислительной стойкости в циклах повышения и понижения температуры испытания минерального моторного масла Zic HIFLO 10W-40 SL в температурном интервале от 150 до 180°C (кривая 1) и от 180 до 150°C (кривая 2).

Способ определения термоокислительной стойкости смазочных материалов осуществляется следующим образом. Пробу исследуемого смазочного материала постоянной массы (100±0,1 г) помещают в прибор для термостатирования и термостатируют последовательно при температурах, например для моторных масел 150, 160, 170, 180°C в течение постоянного времени, например, 8 часов для каждой температуры. При термостатировании проба смазочного материала перемешивается с помощью мешалки с постоянной частотой вращения, температура испытания поддерживается автоматически с точностью ±1°C. После каждой температуры проба взвешивается, определяется масса испарившегося смазочного материала и коэффициент испаряемости KG:

KG=m/М,

где m - масса испарившегося смазочного материала, г; М - масса пробы до испытания, г.

Отбирается часть пробы окисленного масла для фотометрирования и определения оптической плотности D:

где Ф - световой поток, падающий на слой смазочного материала; Ф0 - световой поток, прошедший через слой окисленного смазочного материала.

Определяется показатель термоокислительной стойкости (Птос), как сумма оптической плотности и коэффициента испаряемости:

Птос=D+KG

Аналогичная технология термостатирования применяется для других температур. Испытания смазочного материала при увеличении температуры осуществляются в цикле повышения температуры.

Новая проба исследуемого смазочного материала постоянной массы (100±0,1 г) испытывается в цикле понижения температуры испытания от 180 до 150°C с понижением на 10°C по той же технологии. По полученным экспериментальным данным строятся графические зависимости показателя термоокислительной стойкости Птос, оптической плотности D и испаряемости G в циклах повышения и понижения температуры испытания, определяются регрессионные уравнения этих зависимостей от температуры испытания в циклах повышения и понижения температуры, которые описываются полиномом второго порядка:

Птос=аТ2+bT+с;

D=аТ2+bT+с;

G=аТ2+bT+с.

Приравнивая параметры Птос, D, G к нулю и решая эти уравнения для циклов повышения температуры испытания, определяют температуры начала процессов окисления, испарения и температурных преобразований, учитывающих совместно температуры окисления и испарения, а решая уравнения зависимостей показателей в цикле понижения температуры испытания, определяют критические температуры окисления, испарения и температурных преобразований. Предельную температуру работоспособности исследуемого смазочного материала определяют по координате абсциссы пересечения графических зависимостей Птос=ƒ(T), D=ƒ(T) и G=ƒ(T) в циклах повышения и понижения температуры испытания. Более точное определение предельной температуры работоспособности исследуемого смазочного материала производят путем приравнивания уравнений Птос=ƒ(T), D=ƒ(T) и G=ƒ(Т) в циклах повышения и понижения температуры испытания к нулю и определения корней уравнений.

Результаты испытания частично синтетических моторных масел Castrol Magnatec 10W-40 Sl/CF, Лукойл Люкс 5W-40 SL/CF и минерального Zic HIFLO 10W-40 SL сведены в таблицу 1.

Сводные данные температурных показателей исследованных масел сведены в таблицу 2.

Исследованные масла относятся к одной группе эксплуатационных свойств SL для бензиновых двигателей, что подтверждено результатами исследования по предельным температурам работоспособности, по оптической плотности D, испаряемости G и показателю термоокислительной стойкости Птос.

Для сравнения смазочных масел одного назначения необходимо их исследовать в одинаковых температурных диапазонах, например, для моторных масел использовать температурный диапазон от 150 до 180°C в цикле повышения температуры на 10°C, кроме того, время испытания должно быть постоянным. Для трансмиссионных масел этот диапазон температур должен составлять от 120 до 150°C.

Предлагаемое техническое решение позволяет получить расширенную информацию по термоокислительной стойкости смазочных масел по таким показателям, как температуры начала процессов окисления, испарения и их совместного проявления; критические температуры процессов окисления, испарения и их совместного проявления и предельные температуры работоспособности, определяемые по оптической плотности, испаряемости и показателю термоокислительной стойкости, а также промышленно применимо при назначении и контроле группы эксплуатационных свойств.


СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕРМООКИСЛИТЕЛЬНОЙ СТОЙКОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 335.
13.01.2017
№217.015.65e1

Способ выделения и определения осмия (viii) в газовой фазе

Изобретение относится к области аналитической химии элементов и может быть использовано для выделения и определения осмия в объектах различного вещественного состава. В способе определения осмия в газовой фазе, включающем его окисление и отгонку из раствора, улавливание сорбентом,...
Тип: Изобретение
Номер охранного документа: 0002592208
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.682d

Сплав припойный на основе палладия 850 пробы

Изобретение может быть использовано при изготовлении ювелирных изделий из сплавов палладия 850 пробы с использованием пайки. Сплав припойный на основе палладия 850 пробы содержит компоненты в следующем соотношении, мас.%: палладий 85,0-85,5, медь 11,0-12,0, бор 3,4-3,6. Сплав имеет пониженную...
Тип: Изобретение
Номер охранного документа: 0002591900
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.693c

Асфальтобетонная смесь

Изобретение относится к дорожному строительству, а именно к составам асфальтобетонной смеси. Асфальтобетонная смесь включает вяжущее на битумной основе и минеральную часть, содержащую щебень, шлаковый песок размером 0-5 мм и минеральный порошок, при этом вяжущее дополнительно включает серу при...
Тип: Изобретение
Номер охранного документа: 0002591938
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6a9a

Полимерная композиция для пенопласта

Изобретение относится к многоцелевой полимерной композиции для получения карбамидного пенопласта с расширенным диапазоном функционально-технологических возможностей, используемого для защиты от промерзания карьеров, сырьевых материалов, как противопожарные средство, а также при обработке и...
Тип: Изобретение
Номер охранного документа: 0002593160
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.7231

Балка с перфорированной стенкой

Изобретение относится к области строительства, в частности к перфорированной балке конструкций покрытий и перекрытий здания. Технический результат заключается в повышении несущей способности балки. Балка с перфорированной стенкой содержит соединенные между собой два элемента с тавровыми...
Тип: Изобретение
Номер охранного документа: 0002598101
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7309

Способ разработки обводненных россыпных месторождений полезных ископаемых

Изобретение относится к горнодобывающей промышленности. Техническим результатом является повышение производительности горнодобывающего оборудования и увеличение продолжительности добычного сезона. Способ включает подготовительные и добычные работы, обогащение и отвалообразование и до...
Тип: Изобретение
Номер охранного документа: 0002598100
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7332

Способ разработки обводненных россыпей драгами

Изобретение относится к горнодобывающей промышленности, в частности к разработке обводненных россыпных месторождений и техногенных накоплений минерального сырья в условиях продолжительной отрицательной температуры. Техническим результатом является продление добычного сезона драги при разработке...
Тип: Изобретение
Номер охранного документа: 0002598099
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7445

Рабочее оборудование экскаватора-драглайна

Изобретение относится к землеройной технике. Рабочее оборудование экскаватора-драглайна включает стрелу с головными блоками, ковш, лебедки с системой канатов. Стрела снабжена двумя симметрично установленными относительно ковша захватами, выполненными с возможностью перемещения вдоль...
Тип: Изобретение
Номер охранного документа: 0002597895
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7453

Рабочее оборудование экскаватора-драглайна

Изобретение относится к землеройной технике и может быть использовано преимущественно в области горной промышленности при разработке месторождений полезных ископаемых открытым способом. Рабочее оборудование экскаватора-драглайна включает стрелу с ковшом, подвешенным к ней с помощью подъемных...
Тип: Изобретение
Номер охранного документа: 0002597896
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7610

Способ определения термоокислительной стабильности смазочных материалов

Изобретение относится к технологии определения качества смазочных масел, в частности к определению влияния продуктов окисления на индекс вязкости. Способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с...
Тип: Изобретение
Номер охранного документа: 0002598624
Дата охранного документа: 27.09.2016
Показаны записи 41-50 из 135.
13.01.2017
№217.015.65e1

Способ выделения и определения осмия (viii) в газовой фазе

Изобретение относится к области аналитической химии элементов и может быть использовано для выделения и определения осмия в объектах различного вещественного состава. В способе определения осмия в газовой фазе, включающем его окисление и отгонку из раствора, улавливание сорбентом,...
Тип: Изобретение
Номер охранного документа: 0002592208
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.682d

Сплав припойный на основе палладия 850 пробы

Изобретение может быть использовано при изготовлении ювелирных изделий из сплавов палладия 850 пробы с использованием пайки. Сплав припойный на основе палладия 850 пробы содержит компоненты в следующем соотношении, мас.%: палладий 85,0-85,5, медь 11,0-12,0, бор 3,4-3,6. Сплав имеет пониженную...
Тип: Изобретение
Номер охранного документа: 0002591900
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.693c

Асфальтобетонная смесь

Изобретение относится к дорожному строительству, а именно к составам асфальтобетонной смеси. Асфальтобетонная смесь включает вяжущее на битумной основе и минеральную часть, содержащую щебень, шлаковый песок размером 0-5 мм и минеральный порошок, при этом вяжущее дополнительно включает серу при...
Тип: Изобретение
Номер охранного документа: 0002591938
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6a9a

Полимерная композиция для пенопласта

Изобретение относится к многоцелевой полимерной композиции для получения карбамидного пенопласта с расширенным диапазоном функционально-технологических возможностей, используемого для защиты от промерзания карьеров, сырьевых материалов, как противопожарные средство, а также при обработке и...
Тип: Изобретение
Номер охранного документа: 0002593160
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.7231

Балка с перфорированной стенкой

Изобретение относится к области строительства, в частности к перфорированной балке конструкций покрытий и перекрытий здания. Технический результат заключается в повышении несущей способности балки. Балка с перфорированной стенкой содержит соединенные между собой два элемента с тавровыми...
Тип: Изобретение
Номер охранного документа: 0002598101
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7309

Способ разработки обводненных россыпных месторождений полезных ископаемых

Изобретение относится к горнодобывающей промышленности. Техническим результатом является повышение производительности горнодобывающего оборудования и увеличение продолжительности добычного сезона. Способ включает подготовительные и добычные работы, обогащение и отвалообразование и до...
Тип: Изобретение
Номер охранного документа: 0002598100
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7332

Способ разработки обводненных россыпей драгами

Изобретение относится к горнодобывающей промышленности, в частности к разработке обводненных россыпных месторождений и техногенных накоплений минерального сырья в условиях продолжительной отрицательной температуры. Техническим результатом является продление добычного сезона драги при разработке...
Тип: Изобретение
Номер охранного документа: 0002598099
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7445

Рабочее оборудование экскаватора-драглайна

Изобретение относится к землеройной технике. Рабочее оборудование экскаватора-драглайна включает стрелу с головными блоками, ковш, лебедки с системой канатов. Стрела снабжена двумя симметрично установленными относительно ковша захватами, выполненными с возможностью перемещения вдоль...
Тип: Изобретение
Номер охранного документа: 0002597895
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7453

Рабочее оборудование экскаватора-драглайна

Изобретение относится к землеройной технике и может быть использовано преимущественно в области горной промышленности при разработке месторождений полезных ископаемых открытым способом. Рабочее оборудование экскаватора-драглайна включает стрелу с ковшом, подвешенным к ней с помощью подъемных...
Тип: Изобретение
Номер охранного документа: 0002597896
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7610

Способ определения термоокислительной стабильности смазочных материалов

Изобретение относится к технологии определения качества смазочных масел, в частности к определению влияния продуктов окисления на индекс вязкости. Способ определения термоокислительной стабильности смазочных материалов, при котором испытывают пробу смазочного материала в присутствии воздуха с...
Тип: Изобретение
Номер охранного документа: 0002598624
Дата охранного документа: 27.09.2016
+ добавить свой РИД