×
26.08.2017
217.015.e7e4

Результат интеллектуальной деятельности: Многоканальное устройство для измерения временных интервалов

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной и вычислительной техники и может использоваться, например, в многолучевых лазерных дальномерах и лазерных локаторах для измерения времени распространения лазерного излучения. Устройство включает канал измерения, состоящий из двух триггеров фиксации границ временного интервала, подключенных соответственно к управляющим входам двух мультивибраторов, выходы которых подключены к входам счетчиков импульсов и к входу фазового детектора, выход которого соединен со входом сброса триггеров фиксации границ временного интервала. Также в устройство введены генератор секундных импульсов, генератор опорной частоты, блок измерения опорной частоты, ко входам которого подключены выходы генератора секундных импульсов и генератора опорной частоты, контроллер, ко входам которого подключены выход блока измерения опорной частоты, выход фазового детектора и выходы счетчиков. Первый выход контроллера подключен ко вторым входам мультивибраторов для включения режима принудительной генерации, а второй выход контроллера является выходом измерителя временных интервалов, блок измерения частоты мультивибраторов, ко входам которого подключены выходы мультивибраторов и выход генератора опорной частоты, а выход блока измерения частоты мультивибраторов подключен к входу контроллера, который производит вычисление измеренного временного интервала. Технический результат заключается в упрощении устройства. 1 з.п. ф-лы, 3 ил.

Многоканальное устройство для измерения временных интервалов относится к области измерительной и вычислительной техники и может использоваться, например, в многолучевых лазерных дальномерах и лазерных локаторах для измерения времени распространения лазерного излучения.

Известны одноканальные и многоканальные измерители временных интервалов, принцип работы которых основан на прямом подсчете многоразрядными счетчиками числа импульсов опорной частоты, укладывающихся в измеряемый временной интервал (см., например, патент РФ №2455672 «Многоканальный измеритель временных интервалов»). Недостатком данного типа устройств является низкая точность измерения, обусловленная ограниченным быстродействием многоразрядных счетчиков.

Известны также измерители временных интервалов, принцип работы которых основан на использовании многоотводной линии задержки (см., например, патент РФ №2393519 «Рециркуляционный преобразователь время-код»). Недостатками данного типа устройств являются сложность изготовления и калибровки многоотводной линии задержки, что затрудняет их использование в многоканальных измерителях временных интервалов, а также необходимость термостабилизации схемы для сохранения калиброванных значений задержек в многоотводной линии задержки.

Известны также измерители временных интервалов, принцип работы которых основан на использовании сдвинутых по фазе тактовых сигналов одинаковой частоты (например, «Low resource FPGA-based Time to Digital Converter», Cornell University, 2012, Alessandro Balla, Matteo Beretta, Paolo Ciambrone, Maurizio Gatta, Francesco Gonnella, Lorenzo Iafolla, Matteo Mascolo, Roberto Messi, Dario Moricciani, Domenico Riondino, http://arxiv.org/vc/arxiv/papers/1206/1206.0679v3.pdf). Недостатками данного типа устройств являются относительно низкая точность измерения и ее сильная зависимость от качества опорного тактового сигнала высокой частоты.

Известны также измерители временных интервалов, принцип работы которых основан на использовании нониусных генераторов (например, «Нониусный измеритель временных интервалов», патент РФ №2128853). Недостатками данного типа устройств являются высокая сложность схемной реализации, затрудняющая создание многоканального устройства, а также температурный дрейф параметров нониусных генераторов, частота которых должна быть известна с высокой точностью.

Наиболее близким аналогом, принятым за прототип, является одноканальный нониусный измеритель времени, в котором существенно упрощена схемная реализация при сохранении высокой точности измерения временного интервала («FPGA-Based High Area Efficient Time-To-Digital IP Design», Kun-Shan University, 2006, M.C. Lin, G.R. Tsai, C.Y. Liu, S.S. Chu, TENCON 2006. 2006 IEEE Region 10 Conference, Department of Electronics Engineering, http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4142396&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4142396).

Данный измеритель времени содержит канал измерения, состоящий из двух триггеров, двух мультивибраторов, двух счетчиков и фазового детектора. Импульс, длительность которого необходимо измерить, поступает на тактовый вход первого триггера, работающего по фронту сигнала, и на тактовый вход второго триггера, работающего по срезу сигнала, выходы триггеров подключаются к запускающим входам первого и второго мультивибраторов соответственно, выходы мультивибраторов подключаются соответственно к первому и второму счетчикам, а также подключаются к входам фазового детектора, выход которого подключается к входам очистки первого и второго триггеров. Данный измеритель времени работает следующим образом. После появления переднего фронта измеряемого импульса первый триггер переключается в состояние «лог. 1», и это значение поступает на управляющий вход первого мультивибратора, который начинает вырабатывать импульсы с периодом Тстарт. Импульсы от первого мультивибратора поступают на первый счетчик. После появления заднего фронта измеряемого импульса второй триггер переключается в состояние «лог. 1», и это значение поступает на управляющий вход второго мультивибратора, который начинает вырабатывать импульсы с периодом Тстоп. Импульсы от второго мультивибратора поступают на второй счетчик. Также импульсы от обоих мультивибраторов поступают на фазовый детектор, который выдает на выходе сигнал «лог. 1» в тот момент, когда фазы сигналов от мультивибраторов совпадут. Сигнал от фазового детектора сбрасывает два триггера в состояние «лог. 0», мультивибраторы прекращают генерацию, и в счетчиках фиксируются значения C1 и С2. Измеренный временной интервал вычисляется по формуле Тизм.=(C1-1)×Тстарт-(С2-1)×Тстоп. Недостатками данного устройства являются необходимость точного измерения частоты каждого мультивибратора, наличие температурного дрейфа частоты генерации мультивибраторов, а также наличие только одного измерительного канала. Термостабилизация схемы существенно усложняет конструкцию прибора и повышает энергопотребление схемы в целом. Также, в ряде случаев (например, в многолучевых лазерных локаторах) требуются многоканальные измерители временных интервалов, нуждающиеся в тщательной калибровке каждого канала.

Задачами предлагаемого устройства являются исключение необходимости в термостабилизации, что позволяет упростить техническую реализацию устройства и снизить энергопотребление, и создание многоканального устройства для эффективного использования, например, в многолучевых лазерных локаторах.

Первая задача решается за счет вычисления частоты генерации мультивибраторов в процессе работы измерителя путем дополнительного введения в устройство высокостабильного генератора секундных импульсов и генератора опорной частоты, блока измерения опорной частоты, блока измерения частоты мультивибраторов, контроллера, а также введением в схему сигнала принудительной генерации, подключенного к дополнительно введенному в схему мультивибраторов входу принудительной генерации.

Вторая задача решается на базе предлагаемого одноканального варианта исполнения устройства путем дополнительного введения n идентичных каналов измерения временных интервалов и коммутирующего блока.

На фиг. 1 приведена структурная схема устройства для измерения временных интервалов в одноканальном варианте исполнения.

На фиг. 2 приведена структурная схема многоканального устройства для измерения временных интервалов.

На фиг. 3 приведена временная диаграмма работы одного канала измерения.

Устройство для измерения временных интервалов в одноканальном варианте исполнения (фиг. 1) включает канал измерения временных интервалов, содержащий триггер фиксации момента начала измерения 1, триггер фиксации момента конца измерения 2, мультивибратор канала «старт» 3, фазовый детектор 4, мультивибратор канала «стоп» 5, счетчик канала «старт» 6 и счетчик канала «стоп» 7, а также содержит блок измерения опорной частоты 8, блок измерения частоты мультивибраторов 9, генератор секундных импульсов 10, генератор опорной частоты 11 и контроллер 12.

При этом выход генератора секундных импульсов 10 и выход генератора опорной частоты 11 подключены к входам блока измерения опорной частоты 8, выход которого подключается к входу контроллера 12; сигнал начала измерения временных интервалов подается на вход триггера фиксации момента начала измерения 1, выход которого подключается к управляющему входу мультивибратора 3, выход которого подключается к входу счетчика 6, первому входу фазового детектора 4 и блоку измерения частоты мультивибраторов 9; выход счетчика 6 подключается к входу контроллера 12; сигнал окончания временного интервала подается на вход триггера фиксации момента конца измерения 2, выход которого подключается к управляющему входу мультивибратора 5, выход которого подключается к входу счетчика 7, второму входу фазового детектора 4 и блоку измерения частоты мультивибраторов 9; выход счетчика 7 подключается к входу контроллера 12; выход фазового детектора 4 подключается к входу контроллера 12 и к входу сброса триггеров 1 и 2; на второй вход блока измерения частоты 9 подключается выход генератора опорной частоты 11; выход блока измерения частоты 9 подключается к входу контроллера 12.

Устройство для измерения временных интервалов в одноканальном варианте исполнения работает следующим образом.

Используя сигнал с высокостабильного генератора секундных импульсов 10 как опорный, блок измерения опорной частоты 8 производит измерение частоты сигнала на выходе генератора опорной частоты 11 и обновляет значение на выходе каждую секунду. Это значение считывается контроллером 12. Используя в качестве источника секундных импульсов приемник GPS/ГЛОНАСС или цезиевый генератор, можно получить значение нестабильности секундного интервала в пределах ±100 нс (PPSJ=100 нс) во всем диапазоне рабочих температур. Погрешность измерения опорной частоты F рассчитывается по формуле ΔF=PPSJ×F Гц. Так как сигнал опорной частоты является высокочастотным и составляет порядка 200 МГц, точность измерения его частоты составит примерно ΔF=20 Гц, что соответствует точности измерения периода опорной частоты ΔТ=ΔF/F2=0,5 фс.

В некоторые моменты времени, например при реверсе сканирующего зеркала лазерного локатора, контроллер 12 переводит один из мультивибраторов (3 или 5) в состояние принудительной генерации и задает адрес этого мультивибратора в блоке измерения частоты мультивибраторов 9, который делит поступающую на его вход частоту на коэффициент D, задаваемый исходя из требуемой точности измерения периода генерации мультивибратора, после чего, используя опорную частоту, производит измерение количества периодов опорной частоты, укладывающихся в период поделенной на коэффициент D частоты мультивибратора. По завершении измерения данные передаются в контроллер 12, т.к. точность измерения периода опорной частоты составляет ±0.5 фс, эта погрешность умножается на измеренное значение и определяет погрешность измерения периода мультивибратора. Точность измерения периода мультивибратора в таком случае зависит от соотношения частоты мультивибратора, коэффициента D и опорной частоты, и для частоты мультивибратора 330 МГц, коэффициента D=214, опорной частоты 200 МГц соответствует 5 пс. При этом данная погрешность является случайной величиной с нормальным распределением, и с помощью усреднения по 64 последним измерениям можно добиться точности измерения периода мультивибратора 625 фс.

Мультивибраторы в измерительном канале имеют специальную архитектуру, такую что первый мультивибратор генерирует сигнал с периодом Тн, а второй - Тв, при этом Тнв и разность периодов Трнв составляет несколько десятков пикосекунд.

Процедура измерения временных интервалов начинается при появлении возрастающего фронта на входе триггера 1 «Старт-импульс». При этом триггер 1 фиксирует появление импульса, и устанавливается в состояние логической «1», т.к. выход этого триггера подключен к управляющему входу мультивибратора 3, мультивибратор 3 начинает генерировать импульсы с периодом Тн. Импульсы поступают на вход счетчика 6. Также они поступают на первый вход фазового детектора 4. После появления возрастающего фронта на входе «Стоп-импульс» триггер 2 фиксирует его и переходит в состояние логической «1». Этот сигнал запускает генерацию импульсов мультивибратором 5, с периодом Тв. Импульсы поступают на вход счетчика 7. Также они поступают на второй вход фазового детектора 4. В момент совпадения фаз сигналов двух мультивибраторов фазовый детектор 4 вырабатывает импульс, сбрасывающий триггеры 1 и 2, таким образом прекращая генерацию мультивибраторов 3 и 5. Этот же импульс поступает на контроллер 12, сигнализируя о завершении измерения. Контроллер 12 производит считывание значений счетчиков 6 и 7.

Измеренный временной интервал, вычисляется по формуле:

где

Т - измеренный временной интервал,

C1 - значение счетчика 6,

С2 - значение счетчика 7,

D - коэффициент деления частоты мультивибратора в блоке измерения частоты мультивибраторов,

M1 - значение, полученное при измерении частоты мультивибратора 3 блоком измерения частоты мультивибраторов 9 (обозначает количество периодов опорной частоты укладывающихся в интервал времени, равный периоду сигнала мультивибратора, умноженного на коэффициент D),

М2 - значение, полученное при измерении частоты мультивибратора 5 блоком измерения частоты мультивибраторов 9,

F - частота опорного сигнала, полученная от блока измерения опорной частоты 8.

Устройство для измерения временных интервалов в многоканальном варианте исполнения (многоканальное устройство для измерения временных интервалов) (фиг. 2) содержит N триггеров фиксации момента начала измерения 1.1…1.N, N триггеров фиксации момента конца измерения 2.1…2.N, N мультивибраторов каналов «старт» 3.1…3.N, N фазовых детекторов 4.1…4.N, N мультивибраторов каналов «стоп» 5.1…5.N, N счетчиков каналов «старт» 6.1…6.N, N счетчиков каналов «стоп» 7.1…7.N, блок измерения опорной частоты 8, блок измерения частоты мультивибраторов 9, коммутирующий блок 13, генератор секундных импульсов 10, генератор опорной частоты 11 и контроллер 12.

При этом выход генератора секундных импульсов 10 и выход генератора опорной частоты 11 подключены к входам блока измерения опорной частоты 8, выход которого подключается к входу контроллера 12; сигнал начала измерения временных интервалов подается на входы триггеров фиксации момента начала измерения 1.1…1.N, выходы которых подключаются к управляющим входам мультивибраторов 3.1…3.N, выходы которых подключаются к входам счетчиков 6.1…6.N, первым входам фазовых детекторов 4.1…4.N и к входу блока измерения частоты мультивибраторов 9; выходы счетчиков 6.1…6.N подключаются к входу коммутирующего блока 13; сигналы окончания временных интервалов подаются на входы триггеров фиксации момента конца измерения 2.1…2.N, выходы которых подключаются к управляющим входам мультивибраторов 5.1…5.N, выходы которых подключаются к входам счетчиков 7.1…7.N, вторым входам фазовых детекторов 4.1…4.N и к входу блока измерения частоты мультивибраторов 9; выходы счетчиков 7.1…7.N подключаются к входу коммутирующего блока 13; выходы фазовых детекторов 4.1…4.N подключаются к входу контроллера 12 и к входу сброса триггеров 1.1…1.N и 2.1…2.N; на второй вход блока измерения частоты мультивибраторов 9 подключается выход генератора опорной частоты 11; выход блока измерения частоты мультивибраторов 9 подключается к входу контроллера 12; выход коммутирующего блока 13 подключается к входу контроллера 12.

Многоканальное устройство для измерения временных интервалов работает следующим образом.

Все блоки работают аналогично блокам измерителя временных интервалов в одноканальном исполнении, однако имеется ряд дополнений.

Все каналы измерения временных интервалов многоканального устройства работают параллельно. Все выходы фазовых детекторов 4.1…4.N подключены ко входам контроллера 12, а выходы счетчиков 6.1…6.N и 7.1…7.N подключены к входу коммутирующего блока 13. Измерения периода генерации всех мультивибраторов всех каналов происходят в блоке измерения частоты мультивибраторов 9 по очереди.

Временной интервал, измеренный конкретным каналом, вычисляется по формуле:

,

где

Т - измеренный временной интервал,

С1k - значение счетчика 6.k канала k,

С2k - значение счетчика 7.k канала k,

D - коэффициент деления частоты мультивибратора в блоке измерения частоты мультивибраторов,

M1k - значение, полученное при измерении частоты мультивибратора 3 канала к блоком измерения частоты 9 (обозначает количество периодов опорной частоты, укладывающихся в интервал времени, равный периоду сигнала мультивибратора, умноженного на коэффициент D),

М2k - значение, полученное при измерении частоты мультивибратора 5 канала k блоком измерения частоты 9,

F - частота опорного сигнала, полученная от блока измерения опорной частоты 8.

Техническим результатом является упрощение технической реализации устройства, снижение энергопотребления и повышение эффективности использования в многолучевых лазерных локаторах.


Многоканальное устройство для измерения временных интервалов
Многоканальное устройство для измерения временных интервалов
Многоканальное устройство для измерения временных интервалов
Многоканальное устройство для измерения временных интервалов
Многоканальное устройство для измерения временных интервалов
Источник поступления информации: Роспатент

Показаны записи 11-20 из 32.
25.08.2017
№217.015.9dfc

Устройство для испытания мобильных роботов

Изобретение относится к робототехнике, а именно к устройствам, с помощью которых осуществляют испытания мобильных роботов, в том числе, в рамках игровых мероприятий и соревнований. Конструктивные узлы, выполняющие роль препятствий для прохождения роботов, установлены на общем основании и...
Тип: Изобретение
Номер охранного документа: 0002610810
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.ae20

Система импульсной лазерной локации

Изобретение относится к области оптической локации. Система содержит импульсный лазер, выходную оптическую систему, фотоприемное устройство, однокоординатное сканирующее устройство, оптический объектив фотоприемного устройства, вычислительное устройство, массив фотоприемных устройств,...
Тип: Изобретение
Номер охранного документа: 0002612874
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.bad8

Устройство для измерения плотности потока нейтронов ядерной энергетической установки в условиях фоновой помехи от гамма-квантов и высокоэнергетичных космических электронов и протонов

Изобретение относится к области ядерного приборостроения. Устройство для измерения плотности потока нейтронов ядерной энергетической установки в условиях фоновой помехи от гамма-квантов и высокоэнергетичных космических электронов и протонов содержит замедлитель нейтронов, блок питания и два...
Тип: Изобретение
Номер охранного документа: 0002615709
Дата охранного документа: 07.04.2017
25.08.2017
№217.015.cc28

Робототехническая система сервисного космического аппарата с силомоментной обратной связью

Изобретение относится к области инструментов для использования в космосе и предназначено для выполнения операций орбитального обслуживания космических аппаратов. Робототехническая система содержит семистепенной манипулятор с конечным звеном в виде устройства для фиксации сменного инструмента,...
Тип: Изобретение
Номер охранного документа: 0002620540
Дата охранного документа: 26.05.2017
29.12.2017
№217.015.f525

Способ градуировки многокомпонентных датчиков сил и моментов и устройство его реализующее

Изобретение относится к области испытания и градуировки устройств измерения сил и моментов, а именно к области градуировки силомоментных датчиков (ДСМ) с числом компонент от одной до шести. Поставленная цель достигается за счет того, что ДСМ, установочный фланец которого соединяется с тросами...
Тип: Изобретение
Номер охранного документа: 0002637721
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.faf4

Способ струйного электролитно-плазменного полирования металлических изделий сложного профиля и устройство для его реализации

Изобретение относится к области гальванотехники и может быть использовано для полирования штампов, пресс-форм, турбинных лопаток, крыльчаток и других изделий. Способ включает обработку поверхности изделия - анода струей электролита, подаваемой из сопла- катода, при напряжении 230-350 В и...
Тип: Изобретение
Номер охранного документа: 0002640213
Дата охранного документа: 27.12.2017
08.07.2018
№218.016.6e59

Система импульсной лазерной локации

Изобретение относится к области оптической локации и касается системы импульсной лазерной локации. Система содержит импульсный лазер, выходную оптическую систему передающего канала, фотоприемное устройство регистрации момента лазерного импульса, однокоординатное сканирующее устройство,...
Тип: Изобретение
Номер охранного документа: 0002660390
Дата охранного документа: 06.07.2018
12.09.2018
№218.016.8660

Способ индикации механических резонансов по фотографиям следов флуоресцирующих маркеров

Изобретение относится к области измерительной техники. Способ индикации механических резонансов объекта вибрационной диагностики с использованием оптических средств заключается в том, что рядом с исследуемым объектом располагают фотокамеру с дистанционным управлением от компьютера, производят...
Тип: Изобретение
Номер охранного документа: 0002666583
Дата охранного документа: 11.09.2018
20.02.2019
№219.016.c219

Способ поиска и определения координат источников гамма-излучения

Изобретение относится к средствам поиска и обнаружения источников гамма-излучения и предназначается для оснащения дистанционно управляемых мобильных роботов. Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения, заключающийся в регистрации...
Тип: Изобретение
Номер охранного документа: 0002471205
Дата охранного документа: 27.12.2012
21.03.2019
№219.016.ead0

Способ высокоточной калибровки дисторсии цифровых видеоканалов

Способ калибровки дисторсии видеоканала, содержащего объектив и матричный приемник изображения, в котором видеоканал закрепляют перед коллиматором, в параллельном пучке между видеоканалом и объективом коллиматора помещают воздушно-зеркальный клин (ВЗК), который формирует веер эквидистантных...
Тип: Изобретение
Номер охранного документа: 0002682588
Дата охранного документа: 19.03.2019
Показаны записи 11-20 из 24.
25.08.2017
№217.015.9dfc

Устройство для испытания мобильных роботов

Изобретение относится к робототехнике, а именно к устройствам, с помощью которых осуществляют испытания мобильных роботов, в том числе, в рамках игровых мероприятий и соревнований. Конструктивные узлы, выполняющие роль препятствий для прохождения роботов, установлены на общем основании и...
Тип: Изобретение
Номер охранного документа: 0002610810
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.ae20

Система импульсной лазерной локации

Изобретение относится к области оптической локации. Система содержит импульсный лазер, выходную оптическую систему, фотоприемное устройство, однокоординатное сканирующее устройство, оптический объектив фотоприемного устройства, вычислительное устройство, массив фотоприемных устройств,...
Тип: Изобретение
Номер охранного документа: 0002612874
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.bad8

Устройство для измерения плотности потока нейтронов ядерной энергетической установки в условиях фоновой помехи от гамма-квантов и высокоэнергетичных космических электронов и протонов

Изобретение относится к области ядерного приборостроения. Устройство для измерения плотности потока нейтронов ядерной энергетической установки в условиях фоновой помехи от гамма-квантов и высокоэнергетичных космических электронов и протонов содержит замедлитель нейтронов, блок питания и два...
Тип: Изобретение
Номер охранного документа: 0002615709
Дата охранного документа: 07.04.2017
25.08.2017
№217.015.cc28

Робототехническая система сервисного космического аппарата с силомоментной обратной связью

Изобретение относится к области инструментов для использования в космосе и предназначено для выполнения операций орбитального обслуживания космических аппаратов. Робототехническая система содержит семистепенной манипулятор с конечным звеном в виде устройства для фиксации сменного инструмента,...
Тип: Изобретение
Номер охранного документа: 0002620540
Дата охранного документа: 26.05.2017
29.12.2017
№217.015.f525

Способ градуировки многокомпонентных датчиков сил и моментов и устройство его реализующее

Изобретение относится к области испытания и градуировки устройств измерения сил и моментов, а именно к области градуировки силомоментных датчиков (ДСМ) с числом компонент от одной до шести. Поставленная цель достигается за счет того, что ДСМ, установочный фланец которого соединяется с тросами...
Тип: Изобретение
Номер охранного документа: 0002637721
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.faf4

Способ струйного электролитно-плазменного полирования металлических изделий сложного профиля и устройство для его реализации

Изобретение относится к области гальванотехники и может быть использовано для полирования штампов, пресс-форм, турбинных лопаток, крыльчаток и других изделий. Способ включает обработку поверхности изделия - анода струей электролита, подаваемой из сопла- катода, при напряжении 230-350 В и...
Тип: Изобретение
Номер охранного документа: 0002640213
Дата охранного документа: 27.12.2017
08.07.2018
№218.016.6e59

Система импульсной лазерной локации

Изобретение относится к области оптической локации и касается системы импульсной лазерной локации. Система содержит импульсный лазер, выходную оптическую систему передающего канала, фотоприемное устройство регистрации момента лазерного импульса, однокоординатное сканирующее устройство,...
Тип: Изобретение
Номер охранного документа: 0002660390
Дата охранного документа: 06.07.2018
21.03.2019
№219.016.ead0

Способ высокоточной калибровки дисторсии цифровых видеоканалов

Способ калибровки дисторсии видеоканала, содержащего объектив и матричный приемник изображения, в котором видеоканал закрепляют перед коллиматором, в параллельном пучке между видеоканалом и объективом коллиматора помещают воздушно-зеркальный клин (ВЗК), который формирует веер эквидистантных...
Тип: Изобретение
Номер охранного документа: 0002682588
Дата охранного документа: 19.03.2019
18.05.2019
№219.017.54fc

Оптический резонатор лазера

Изобретение относится к квантовой электронике, в частности к оптическим резонаторам лазеров, и может быть использовано при разработке лазеров различного типа и в широком диапазоне выходных мощностей. Устройство состоит из глухого и выходного зеркал, активной среды и двух призм Порро,...
Тип: Изобретение
Номер охранного документа: 0002297084
Дата охранного документа: 10.04.2007
02.10.2019
№219.017.ce65

Лазерный излучатель с управляемым интерферометром в качестве выходного зеркала

Изобретение относится к лазерной технике. Лазер с модуляцией добротности и синхронизацией мод содержит активную среду, два концевых зеркала и один оптический модулятор, используемый как для модуляции добротности, так и для синхронизации мод лазера. Одно из концевых зеркал резонатора является...
Тип: Изобретение
Номер охранного документа: 0002700343
Дата охранного документа: 16.09.2019
+ добавить свой РИД