×
26.08.2017
217.015.e523

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002626458
Дата охранного документа
28.07.2017
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или перекачиваются по трубопроводу. В предложенном способе для измерения физических свойств жидкости предварительно возбуждают электромагнитные колебания в волноводном резонаторе и измеряют резонансную частоту электромагнитных колебаний, при этом контролируемую жидкость помещают в коаксиальный резонатор, в котором одним из его торцевых участков является запредельный коаксиальный волновод с уменьшенным диаметром наружного проводника. В резонаторе возбуждают электромагнитные колебания типа H (m=1, 2, 3. …; р=1, 2, 3, …). Второй торцевой участок коаксиального резонатора идентичен первому торцевому участку или выполнен в виде металлической стенки волноводного резонатора. Расширение функциональных возможностей предложенного способа за счет проведения измерений физических свойств жидкости в широком диапазоне частот, в том числе на высоких частотах гигагерцового диапазона, что является техническим результатом изобретения. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств (плотности, концентрации смесей, влагосодержания и др.) различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перекачиваемых по трубопроводам.

Известны различные способы и устройства для измерения физических свойств жидкостей, основанные на определении электрофизических параметров жидкостей (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат. 1989. 208 с. С. 168-177). Эти устройства содержат емкостные и радиоволновые чувствительные элементы (конденсаторы, волноводы, резонаторы и др.).

Недостатком таких способов и реализуемых на их основе измерительных устройств является невысокая точность, обусловленная достаточно большими габаритами датчиков. Это не позволяет осуществлять локальные измерения интересующих свойств жидкости, содержащейся в какой-либо технологической емкости, а дает информацию об их интегральных значениях.

Известно также техническое решение (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 42-59, 80-86), которое содержит описание способа, по технической сущности наиболее близкого к предлагаемому способу и принятого в качестве прототипа. Этот способ-прототип заключается в возбуждении электромагнитных колебаний основного типа ТЕМ в отрезке длинной линии, пространство между проводниками которого заполняют контролируемой жидкостью. Измеряя резонансную частоту электромагнитных колебаний отрезка длинной линии, судят об измеряемом физическом свойстве контролируемой жидкости.

Недостатком этого способа-прототипа являются его ограниченные функциональные возможности, обусловленные функционированием отрезков длинной линии только на основном типе колебаний ТЕМ в мегагерцевом диапазоне частот электромагнитных волн. В этом диапазоне частот имеют место резонансные явления при реальных длинах (в диапазоне от десятков сантиметров до одного метра) отрезков длинной линии, используемых в качестве чувствительных элементов при реализации данного способа. При этом нет возможности проводить измерения физических свойств жидкостей на более высоких частотах гигагерцового диапазона, что требуется, в частности, при инвариантных к сорту жидкости измерениях влагосодержания жидкостей (нефти, нефтепродуктов и др.); в этом диапазоне частот имеет место частотная дисперсия воды, позволяя производить двухчастотные инвариантные измерения (см., например, SU 1497531 A1, 30.07.1989).

Техническим результатом настоящего изобретения расширение функциональных возможностей способа.

Технический результат в предлагаемом способе измерения физических свойств вещества, при котором возбуждают электромагнитные колебания в волноводном резонаторе и измеряют резонансную частоту электромагнитных колебаний, размещают в электромагнитном поле волноводного резонатора контролируемую жидкость, достигается тем, что в качестве волноводного резонатора применяют коаксиальный резонатор с одним из его торцевых участков в виде запредельного коаксиального волновода с уменьшенным диаметром наружного проводника, при этом в резонаторе возбуждают электромагнитные колебания типа Hm1p (m=1, 2, 3. …; р=1, 2, 3, …), а другой торцевой участок идентичен первому торцевому участку или выполнен в виде металлической стенки волноводного резонатора.

На фиг. 1 и фиг. 2 приведены первый и второй, соответственно, варианты функциональной схемы устройства для реализации способа.

Здесь показаны волноводный резонатор 1, внутренний проводник 2, наружный проводник 3, запредельный волновод 4, жидкость 5, диэлектрическая шайба 6, элемент связи 7, линия связи 8, электронный блок 9, металлическая стенка 10.

На измерительном участке - там, где следует измерять физические свойства контролируемой жидкости - образуют волноводный резонатор при соосном по отношению к внутреннему проводнику расположении наружного проводника. При этом наружный проводник и внутренний проводник образуют коаксиальную линию; так, например, при возбуждении на измерительном участке - отрезке коаксиальной линии, в пределах которого наружный проводник имеет увеличенный диаметр, - электромагнитных колебаний на первом из высших типов, существующих в коаксиальной линии, такой участок представляет собой волноводный резонатор, ограниченный с обеих сторон коаксиальными волноводами, запредельными для волн на частотах выше некоторой критической частоты, соответствующей возбужденному типу колебаний. Если на измерительном участке - волноводном резонаторе коаксиального типа - возбуждены колебания в некотором диапазоне частот соответствующем изменению физического свойства вещества в измеряемом диапазоне, то необходимо, чтобы геометрические параметры запредельных волноводов на этих частотах были такими, при которых критическая частота их возбуждения была выше максимальной частоты диапазона изменения частоты резонатора. Тогда излучение электромагнитных волн за пределы измерительного участка будет отсутствовать, а в его полости будут существовать высокодобротные колебания.

Отметим, что предлагаемый способ работоспособен именно на одном из высших типов колебаний в рассматриваемом коаксиальном резонаторе, так как колебания в нем на основном типе ТЕМ характеризуются весьма малой добротностью (торцевые "скачки" радиусов малы для наблюдения резонансных импульсов).

Особенности способа измерения. Высший тип волны в коаксиальной линии, характеризующийся наибольшей критической длиной волны λкр, есть Н11, начиная с длин волн λ>λкрH11≈π(R1+R2), где R1 и R2 - радиусы, соответственно, внутреннего и наружного проводников линии. Затем следует тип поля E01, начиная с λ>λкрE01≈π(R2-R1) и т.д. Собственная (резонансная) частота такого резонатора близка к собственной частоте закрытого коаксиального резонатора и может быть для полого резонатора оценена по формуле (монография: Милованов О.С., Собенин Н.П. Техника сверхвысоких частот. М.: Атомиздат. 464 с. С. 45-46):

где - резонансная частота полого резонатора, l - длина резонатора; р=1, 2, …; с - скорость света.

При полном заполнении полости рассматриваемого волноводного резонатора контролируемой диэлектрической жидкостью с диэлектрической проницаемостью ε в формуле (1) значение , где - значение резонансной частоты согласно формуле (1). При ε=1 имеем , что соответствует отсутствию жидкости в полости волноводного резонатора. Диэлектрическая проницаемость ε, в свою очередь, функционально связана с тем или иным физическим свойством жидкости (плотностью, концентрацией смеси, влагосодержанием и др.).

Отметим, что геометрические параметры запредельных волноводов должны быть такими, при которых критическая частота их возбуждения была выше максимальной частоты диапазона изменения резонансной частоты полого волноводного резонатора, поскольку при заполнении полости резонатора диэлектрической жидкостью, как это видно из предыдущего раздела, резонансная частота уменьшается.

Формула (1) при работе на колебаниях типа Н111 принимает вид

Среди возможных возбуждаемых колебаний типа Hm1p (m=1, 2, 3. …; р=1, 2, 3, …) низший тип есть Н111 с собственной частотой, определяемой формулой (2). В этом случае имеем следующее выражение для критической длиной волны λкрН11 (монография: Милованов О.С., Собенин Н.П. Техника сверхвысоких частот. М.: Атомиздат. 464 с. С. 45-46):

и, соответственно формуле (3), следующее выражение для :

где R - значение внутреннего радиуса R2 наружного проводника вне измерительного участка с волноводным резонатором.

Особенностью волн этих H-типов, характеризующихся произвольным первым индексом m, но вторым индексом 1, является наличие в формуле для λкр суммы радиусов R1 и R2. Именно это определяет, как нетрудно видеть, увеличение внутреннего диаметра 2R2 наружного проводника в пределах волноводного резонатора по сравнению с ее диаметром, то есть диаметром запредельных волноводов, расположенных с обеих сторон этого волноводного резонатора.

В самом деле, условие можно записать с учетом (1), (3) и (4) в следующем виде:

или, после преобразований

Здесь R - радиус наружного проводника коаксиальной линии на запредельных торцевых участках резонатора, то есть значение внутреннего радиуса R2 наружного проводника вне измерительного участка с волноводным резонатором. Поскольку второй член (дробь) произведения в правой части данного неравенства меньше единицы, то оно выполняется, если R<R2.

Устройство на фиг. 1 содержит резонаторный датчик в виде коаксиального волноводного резонатора 1, образуемого внутренним проводником 2 и наружным проводником 3, с торцевыми участками - запредельными волноводами 4, контролируемую жидкость 5, диэлектрическую шайбу 6, элемент связи 7, линию связи 8, электронный блок 9. Здесь резонаторный датчик может быть как в виде емкости (измерительной ячейки) с контролируемой жидкостью 5 (фиг. 1), так и может быть проточным при его встраивании в трубопровод при проведении измерений физических свойств перемещаемой жидкости (не показано). Датчик представляет собой волноводный резонатор 1 открытого типа в виде отрезка коаксиальной линии с сопряженными с ним на его обоих торцах отрезками коаксиальных запредельных волноводов 4. Нижняя часть волноводного резонатора 1, заполняемого контролируемой жидкостью 5, имеет герметичное дно, содержащее диэлектрическую шайбу 6. В волноводном резонаторе 1 возбуждают электромагнитные колебания. Возбуждение и съем колебаний в волноводном резонаторе, в также измерение собственной (резонансной) частоты колебаний, изменяющейся при изменении физических свойств жидкости 5, и ее преобразование в выходной сигнал осуществляют через элемент связи 7 (металлический штырь, петля связи), подсоединенный к волноводному резонатору 1, и линию связи 8 с помощью электронного блока 9. Число элементов связи (один или два) определяется применяемой схемой измерения; на данной фигуре показано возбуждение колебаний в резонаторе и их съем с помощью одного металлического штыря.

На фиг. 2 приведена иная функциональная схема устройства для реализации данного способа. В данном случае один из торцевых отражателей, которым ранее являлся нижний запредельный волновод 4, заменен на металлическую стенку 10 волноводного резонатора 1 - дно измерительного участка (измерительной ячейки).

В устройствах на фиг. 1 и фиг. 2 чувствительность их датчиков - волноводных резонаторов 1 - имеет максимально возможную величину, определяемую значением резонансной частоты волноводного резонатора, весь объем которого заполнен контролируемой жидкостью. Выбором габаритов (длины и диаметра) волноводного резонатора можно в широком диапазоне изменять, при необходимости, диапазон рабочих частот устройств, реализующих данный способ измерения.

Таким образом, данное устройство позволяет производить измерения различных физических свойств жидкостей как в емкостях (измерительных ячейках и др.), так и перемещаемых по трубопроводам, в широком диапазоне частот электромагнитных волн.

Способ измерения физических свойств жидкости, при котором возбуждают электромагнитные колебания в волноводном резонаторе и измеряют резонансную частоту электромагнитных колебаний, размещают в электромагнитном поле волноводного резонатора контролируемую жидкость, отличающийся тем, что в качестве волноводного резонатора применяют коаксиальный резонатор с одним из его торцевых участков в виде запредельного коаксиального волновода с уменьшенным диаметром наружного проводника, при этом в резонаторе возбуждают электромагнитные колебания типа H (m=1, 2, 3 …; р=1, 2, 3, …), а другой торцевой участок идентичен первому торцевому участку или выполнен в виде металлической стенки волноводного резонатора.
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТИ
Источник поступления информации: Роспатент

Показаны записи 281-290 из 304.
08.02.2020
№220.018.006c

Автономный необитаемый подводный аппарат-амфибия

Изобретение относится к области подводной робототехники, в частности к автономным необитаемым подводным аппаратам (АНПА), и может быть применено в разного рода операциях и исследованиях под водой, на водной поверхности и на суше. Автономный необитаемый подводный аппарат-амфибия содержит корпус...
Тип: Изобретение
Номер охранного документа: 0002713494
Дата охранного документа: 06.02.2020
02.03.2020
№220.018.07b7

Способ непрерывной высотной телекоммутационной связи

Изобретение относится к области передачи информации с помощью высотной телекоммутационной связи. Технический результат состоит в обеспечении непрерывной высотной телекоммутационной связи без ограничения высоты подъема воздушной высотной платформы. Для этого способ формирования беспроводных...
Тип: Изобретение
Номер охранного документа: 0002715420
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.07d1

Свч - мостовой измеритель температуры

Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники. Заявлен СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, введены первый СВЧ-генератор с варакторной перестройкой частоты,...
Тип: Изобретение
Номер охранного документа: 0002715496
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0827

Инвертирующий масштабный усилитель с регулируемой степенью

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования инвертирующего усилителя на операционных усилителях с ограниченными частотными свойствами за счет...
Тип: Изобретение
Номер охранного документа: 0002715471
Дата охранного документа: 28.02.2020
04.03.2020
№220.018.085f

Устройство для внутрипластового горения

Изобретение относится к устройствам для извлечения смеси углеводородов, в частности смеси тяжелых углеводородов, из подземного пласта путем внутрипластового горения. Устройство для внутрипластового горения содержит измельчитель алюминиевой стружки, сепаратор и датчик температуры, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002715572
Дата охранного документа: 02.03.2020
14.05.2020
№220.018.1c54

Способ организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного р-ичного гиперкуба

Изобретение относится к способу организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного p-ичного гиперкуба для многопроцессорных систем с сотнями абонентов-процессоров. Техническим результатом изобретения является повышение отказоустойчивости системной сети,...
Тип: Изобретение
Номер охранного документа: 0002720553
Дата охранного документа: 12.05.2020
15.07.2020
№220.018.3249

Способ определения покомпонентного расхода газожидкостной среды

Изобретение относится к измерительной технике и может использоваться для контроля расхода и определения массы компонента газожидкостной среды (ГЖС), извлекаемой, например, из буровой скважины. Способ определения покомпонентного расхода газожидкостной среды характеризуется тем, что периодически...
Тип: Изобретение
Номер охранного документа: 0002726304
Дата охранного документа: 13.07.2020
15.07.2020
№220.018.3295

Устройство для диагностики состояния высоковольтных изоляторов

Изобретение относится к области электроизмерительной техники и может быть использовано для дистанционного контроля рабочего состояния высоковольтных изоляторов. Технический результат: упрощение процесса диагностики. Сущность: устройство для диагностики состояния высоковольтных изоляторов...
Тип: Изобретение
Номер охранного документа: 0002726305
Дата охранного документа: 13.07.2020
12.04.2023
№223.018.4a44

Устройство для энергоснабжения привязного беспилотного летательного аппарата

Устройство для энергоснабжения привязного беспилотного летательного аппарата содержит наземный источник питания, силовой кабель, два бортовых понижающих преобразователя, управляющий ШИМ-контроллер, два формирователя сигнала ошибки. Обеспечивается повышение эффективности энергоснабжения...
Тип: Изобретение
Номер охранного документа: 0002793830
Дата охранного документа: 06.04.2023
20.04.2023
№223.018.4ac8

Способ и система автономного децентрализованного коллективного определения положения движущихся на трассе объектов автотранспорта

Изобретение относится к области вычислительной техники и направлено на разработку способа и системы определения местоположения движущихся объектов автономно, без привлечения внешних средств, и децентрализованно, без выделения в системе центра управления. Способ автономного децентрализованного...
Тип: Изобретение
Номер охранного документа: 0002778861
Дата охранного документа: 26.08.2022
Показаны записи 221-228 из 228.
21.11.2019
№219.017.e432

Способ измерения положения границы раздела двух веществ в резервуаре

Изобретение может быть использовано для измерения положения границы раздела двух веществ, находящихся в резервуаре одно над другим и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обоих веществ....
Тип: Изобретение
Номер охранного документа: 0002706455
Дата охранного документа: 19.11.2019
20.04.2023
№223.018.4bcd

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств Устройство для измерения физических свойств жидкости содержит волноводный резонатор в виде отрезка коаксиальной длинной линии с двумя, рабочим и эталонным,...
Тип: Изобретение
Номер охранного документа: 0002760641
Дата охранного документа: 29.11.2021
20.04.2023
№223.018.4c18

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб. Техническим результатом изобретения является упрощение процесса измерения. Технический результат достигается тем, что в способе измерения длины металлической трубы, при...
Тип: Изобретение
Номер охранного документа: 0002765897
Дата охранного документа: 04.02.2022
15.05.2023
№223.018.57ec

Способ измерения физических свойств диэлектрической жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002767585
Дата охранного документа: 17.03.2022
15.05.2023
№223.018.57ee

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного измерения внутреннего диаметра металлических труб. Техническим результатом является расширение функциональных возможностей устройства. Технический результат достигается тем, что устройство, содержащее...
Тип: Изобретение
Номер охранного документа: 0002767586
Дата охранного документа: 17.03.2022
21.05.2023
№223.018.6913

Устройство для измерения уровня диэлектрической жидкости в емкости

Изобретение относится к измерительной технике и служит для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. Технический результат - повышение точности измерений. Результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости...
Тип: Изобретение
Номер охранного документа: 0002794447
Дата охранного документа: 18.04.2023
29.05.2023
№223.018.7271

Способ определения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Технический результат – повышение точности определения длины...
Тип: Изобретение
Номер охранного документа: 0002796388
Дата охранного документа: 22.05.2023
05.06.2023
№223.018.76c3

Способ измерения физической величины

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение...
Тип: Изобретение
Номер охранного документа: 0002786526
Дата охранного документа: 21.12.2022
+ добавить свой РИД