×
26.08.2017
217.015.e523

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002626458
Дата охранного документа
28.07.2017
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или перекачиваются по трубопроводу. В предложенном способе для измерения физических свойств жидкости предварительно возбуждают электромагнитные колебания в волноводном резонаторе и измеряют резонансную частоту электромагнитных колебаний, при этом контролируемую жидкость помещают в коаксиальный резонатор, в котором одним из его торцевых участков является запредельный коаксиальный волновод с уменьшенным диаметром наружного проводника. В резонаторе возбуждают электромагнитные колебания типа H (m=1, 2, 3. …; р=1, 2, 3, …). Второй торцевой участок коаксиального резонатора идентичен первому торцевому участку или выполнен в виде металлической стенки волноводного резонатора. Расширение функциональных возможностей предложенного способа за счет проведения измерений физических свойств жидкости в широком диапазоне частот, в том числе на высоких частотах гигагерцового диапазона, что является техническим результатом изобретения. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств (плотности, концентрации смесей, влагосодержания и др.) различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перекачиваемых по трубопроводам.

Известны различные способы и устройства для измерения физических свойств жидкостей, основанные на определении электрофизических параметров жидкостей (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат. 1989. 208 с. С. 168-177). Эти устройства содержат емкостные и радиоволновые чувствительные элементы (конденсаторы, волноводы, резонаторы и др.).

Недостатком таких способов и реализуемых на их основе измерительных устройств является невысокая точность, обусловленная достаточно большими габаритами датчиков. Это не позволяет осуществлять локальные измерения интересующих свойств жидкости, содержащейся в какой-либо технологической емкости, а дает информацию об их интегральных значениях.

Известно также техническое решение (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 42-59, 80-86), которое содержит описание способа, по технической сущности наиболее близкого к предлагаемому способу и принятого в качестве прототипа. Этот способ-прототип заключается в возбуждении электромагнитных колебаний основного типа ТЕМ в отрезке длинной линии, пространство между проводниками которого заполняют контролируемой жидкостью. Измеряя резонансную частоту электромагнитных колебаний отрезка длинной линии, судят об измеряемом физическом свойстве контролируемой жидкости.

Недостатком этого способа-прототипа являются его ограниченные функциональные возможности, обусловленные функционированием отрезков длинной линии только на основном типе колебаний ТЕМ в мегагерцевом диапазоне частот электромагнитных волн. В этом диапазоне частот имеют место резонансные явления при реальных длинах (в диапазоне от десятков сантиметров до одного метра) отрезков длинной линии, используемых в качестве чувствительных элементов при реализации данного способа. При этом нет возможности проводить измерения физических свойств жидкостей на более высоких частотах гигагерцового диапазона, что требуется, в частности, при инвариантных к сорту жидкости измерениях влагосодержания жидкостей (нефти, нефтепродуктов и др.); в этом диапазоне частот имеет место частотная дисперсия воды, позволяя производить двухчастотные инвариантные измерения (см., например, SU 1497531 A1, 30.07.1989).

Техническим результатом настоящего изобретения расширение функциональных возможностей способа.

Технический результат в предлагаемом способе измерения физических свойств вещества, при котором возбуждают электромагнитные колебания в волноводном резонаторе и измеряют резонансную частоту электромагнитных колебаний, размещают в электромагнитном поле волноводного резонатора контролируемую жидкость, достигается тем, что в качестве волноводного резонатора применяют коаксиальный резонатор с одним из его торцевых участков в виде запредельного коаксиального волновода с уменьшенным диаметром наружного проводника, при этом в резонаторе возбуждают электромагнитные колебания типа Hm1p (m=1, 2, 3. …; р=1, 2, 3, …), а другой торцевой участок идентичен первому торцевому участку или выполнен в виде металлической стенки волноводного резонатора.

На фиг. 1 и фиг. 2 приведены первый и второй, соответственно, варианты функциональной схемы устройства для реализации способа.

Здесь показаны волноводный резонатор 1, внутренний проводник 2, наружный проводник 3, запредельный волновод 4, жидкость 5, диэлектрическая шайба 6, элемент связи 7, линия связи 8, электронный блок 9, металлическая стенка 10.

На измерительном участке - там, где следует измерять физические свойства контролируемой жидкости - образуют волноводный резонатор при соосном по отношению к внутреннему проводнику расположении наружного проводника. При этом наружный проводник и внутренний проводник образуют коаксиальную линию; так, например, при возбуждении на измерительном участке - отрезке коаксиальной линии, в пределах которого наружный проводник имеет увеличенный диаметр, - электромагнитных колебаний на первом из высших типов, существующих в коаксиальной линии, такой участок представляет собой волноводный резонатор, ограниченный с обеих сторон коаксиальными волноводами, запредельными для волн на частотах выше некоторой критической частоты, соответствующей возбужденному типу колебаний. Если на измерительном участке - волноводном резонаторе коаксиального типа - возбуждены колебания в некотором диапазоне частот соответствующем изменению физического свойства вещества в измеряемом диапазоне, то необходимо, чтобы геометрические параметры запредельных волноводов на этих частотах были такими, при которых критическая частота их возбуждения была выше максимальной частоты диапазона изменения частоты резонатора. Тогда излучение электромагнитных волн за пределы измерительного участка будет отсутствовать, а в его полости будут существовать высокодобротные колебания.

Отметим, что предлагаемый способ работоспособен именно на одном из высших типов колебаний в рассматриваемом коаксиальном резонаторе, так как колебания в нем на основном типе ТЕМ характеризуются весьма малой добротностью (торцевые "скачки" радиусов малы для наблюдения резонансных импульсов).

Особенности способа измерения. Высший тип волны в коаксиальной линии, характеризующийся наибольшей критической длиной волны λкр, есть Н11, начиная с длин волн λ>λкрH11≈π(R1+R2), где R1 и R2 - радиусы, соответственно, внутреннего и наружного проводников линии. Затем следует тип поля E01, начиная с λ>λкрE01≈π(R2-R1) и т.д. Собственная (резонансная) частота такого резонатора близка к собственной частоте закрытого коаксиального резонатора и может быть для полого резонатора оценена по формуле (монография: Милованов О.С., Собенин Н.П. Техника сверхвысоких частот. М.: Атомиздат. 464 с. С. 45-46):

где - резонансная частота полого резонатора, l - длина резонатора; р=1, 2, …; с - скорость света.

При полном заполнении полости рассматриваемого волноводного резонатора контролируемой диэлектрической жидкостью с диэлектрической проницаемостью ε в формуле (1) значение , где - значение резонансной частоты согласно формуле (1). При ε=1 имеем , что соответствует отсутствию жидкости в полости волноводного резонатора. Диэлектрическая проницаемость ε, в свою очередь, функционально связана с тем или иным физическим свойством жидкости (плотностью, концентрацией смеси, влагосодержанием и др.).

Отметим, что геометрические параметры запредельных волноводов должны быть такими, при которых критическая частота их возбуждения была выше максимальной частоты диапазона изменения резонансной частоты полого волноводного резонатора, поскольку при заполнении полости резонатора диэлектрической жидкостью, как это видно из предыдущего раздела, резонансная частота уменьшается.

Формула (1) при работе на колебаниях типа Н111 принимает вид

Среди возможных возбуждаемых колебаний типа Hm1p (m=1, 2, 3. …; р=1, 2, 3, …) низший тип есть Н111 с собственной частотой, определяемой формулой (2). В этом случае имеем следующее выражение для критической длиной волны λкрН11 (монография: Милованов О.С., Собенин Н.П. Техника сверхвысоких частот. М.: Атомиздат. 464 с. С. 45-46):

и, соответственно формуле (3), следующее выражение для :

где R - значение внутреннего радиуса R2 наружного проводника вне измерительного участка с волноводным резонатором.

Особенностью волн этих H-типов, характеризующихся произвольным первым индексом m, но вторым индексом 1, является наличие в формуле для λкр суммы радиусов R1 и R2. Именно это определяет, как нетрудно видеть, увеличение внутреннего диаметра 2R2 наружного проводника в пределах волноводного резонатора по сравнению с ее диаметром, то есть диаметром запредельных волноводов, расположенных с обеих сторон этого волноводного резонатора.

В самом деле, условие можно записать с учетом (1), (3) и (4) в следующем виде:

или, после преобразований

Здесь R - радиус наружного проводника коаксиальной линии на запредельных торцевых участках резонатора, то есть значение внутреннего радиуса R2 наружного проводника вне измерительного участка с волноводным резонатором. Поскольку второй член (дробь) произведения в правой части данного неравенства меньше единицы, то оно выполняется, если R<R2.

Устройство на фиг. 1 содержит резонаторный датчик в виде коаксиального волноводного резонатора 1, образуемого внутренним проводником 2 и наружным проводником 3, с торцевыми участками - запредельными волноводами 4, контролируемую жидкость 5, диэлектрическую шайбу 6, элемент связи 7, линию связи 8, электронный блок 9. Здесь резонаторный датчик может быть как в виде емкости (измерительной ячейки) с контролируемой жидкостью 5 (фиг. 1), так и может быть проточным при его встраивании в трубопровод при проведении измерений физических свойств перемещаемой жидкости (не показано). Датчик представляет собой волноводный резонатор 1 открытого типа в виде отрезка коаксиальной линии с сопряженными с ним на его обоих торцах отрезками коаксиальных запредельных волноводов 4. Нижняя часть волноводного резонатора 1, заполняемого контролируемой жидкостью 5, имеет герметичное дно, содержащее диэлектрическую шайбу 6. В волноводном резонаторе 1 возбуждают электромагнитные колебания. Возбуждение и съем колебаний в волноводном резонаторе, в также измерение собственной (резонансной) частоты колебаний, изменяющейся при изменении физических свойств жидкости 5, и ее преобразование в выходной сигнал осуществляют через элемент связи 7 (металлический штырь, петля связи), подсоединенный к волноводному резонатору 1, и линию связи 8 с помощью электронного блока 9. Число элементов связи (один или два) определяется применяемой схемой измерения; на данной фигуре показано возбуждение колебаний в резонаторе и их съем с помощью одного металлического штыря.

На фиг. 2 приведена иная функциональная схема устройства для реализации данного способа. В данном случае один из торцевых отражателей, которым ранее являлся нижний запредельный волновод 4, заменен на металлическую стенку 10 волноводного резонатора 1 - дно измерительного участка (измерительной ячейки).

В устройствах на фиг. 1 и фиг. 2 чувствительность их датчиков - волноводных резонаторов 1 - имеет максимально возможную величину, определяемую значением резонансной частоты волноводного резонатора, весь объем которого заполнен контролируемой жидкостью. Выбором габаритов (длины и диаметра) волноводного резонатора можно в широком диапазоне изменять, при необходимости, диапазон рабочих частот устройств, реализующих данный способ измерения.

Таким образом, данное устройство позволяет производить измерения различных физических свойств жидкостей как в емкостях (измерительных ячейках и др.), так и перемещаемых по трубопроводам, в широком диапазоне частот электромагнитных волн.

Способ измерения физических свойств жидкости, при котором возбуждают электромагнитные колебания в волноводном резонаторе и измеряют резонансную частоту электромагнитных колебаний, размещают в электромагнитном поле волноводного резонатора контролируемую жидкость, отличающийся тем, что в качестве волноводного резонатора применяют коаксиальный резонатор с одним из его торцевых участков в виде запредельного коаксиального волновода с уменьшенным диаметром наружного проводника, при этом в резонаторе возбуждают электромагнитные колебания типа H (m=1, 2, 3 …; р=1, 2, 3, …), а другой торцевой участок идентичен первому торцевому участку или выполнен в виде металлической стенки волноводного резонатора.
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТИ
Источник поступления информации: Роспатент

Показаны записи 181-190 из 304.
19.01.2018
№218.016.00d5

Устройство для измерения влагосодержания жидкости

Изобретение относится к измерительной технике, в частности к промышленным влагомерам. Устройство для измерения влагосодержания жидкости содержит два измерительных участка, на каждом из которых размещен резонатор, включенный в качестве частотозадающего элемента в схему соответствующего...
Тип: Изобретение
Номер охранного документа: 0002629701
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0ba6

Привязной тепловой аэростат с подогревом по электрическому кабелю с земли

Изобретение относится к области воздухоплавательных аппаратов легче воздуха. Привязной тепловой аэростат содержит оболочку с теплоизолирующим слоем, нагреватель с вентилятором, датчиками температуры, электрически управляемый клапан сброса теплого воздуха в верхней части оболочки и систему...
Тип: Изобретение
Номер охранного документа: 0002632551
Дата охранного документа: 05.10.2017
20.01.2018
№218.016.1123

Устройство анализа результатов тестирования для локализации двукратных неисправностей

Изобретение относится к области тестирования дискретных объектов большой размерности. Технический результат заключается в повышении кратности неисправностей при их локализации. Устройство анализа результатов тестирования для локализации двукратных неисправностей содержит m m-разрядных...
Тип: Изобретение
Номер охранного документа: 0002633908
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1153

Способ встречного разгона и столкновения нейтральных микрочастиц

Изобретение относится к способам встречного разгона нейтральных микрочастиц. При вращении ротора 1 внутри неподвижного статора 8, 10 исследуемые образцы (жидкость или газ) поступают во входные окна 18 и затем проходят через зазоры, образованные зубцами статора 10 и ротора 7. При этом движение...
Тип: Изобретение
Номер охранного документа: 0002633964
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.115d

Устройство для встречного разгона нейтральных микрочастиц

Изобретение относится к устройствам для встречного разгона нейтральных микрочастиц. Устройство содержит систему управления и состоит из коаксиально установленных двух ускорителей, направленных суженной стороной навстречу друг другу, с зазором и вращающихся относительно друг друга ротора 1 и...
Тип: Изобретение
Номер охранного документа: 0002633994
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1166

Способ перистальтического нагнетания текучих сред на основе пьезоэлектрических элементов

Изобретение относится к способам для нагнетания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. В способе нагнетания текучих сред используют бегущую волну деформаций замкнутого объема...
Тип: Изобретение
Номер охранного документа: 0002633975
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1aee

Устройство для распознавания степени научности опубликованных построений

Изобретение относится к вычислительной технике и может быть использовано для распознавания степени научности опубликованных построений (ОП) в случаях необходимости определения ненаучного, протонаучного и научного исследования. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002635882
Дата охранного документа: 16.11.2017
04.04.2018
№218.016.2f8a

Спецпроцессор для задачи выполнимости булевых формул

Изобретение относится к средствам для решения задач о выполнении булевых функций. Технический результат заключается в решения задачи о выполнимости булевых функций, заданных в конъюнктивной нормальной форме, имеющих N переменных и до М=2 дизъюнктов. При этом упрощение структуры спецпроцессора...
Тип: Изобретение
Номер охранного документа: 0002644505
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.2fde

Перистальтический насос на пьезоэлектрических элементах

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. Устройство для перекачивания текучих сред содержит пьезомодули, установленные в...
Тип: Изобретение
Номер охранного документа: 0002644643
Дата охранного документа: 13.02.2018
Показаны записи 181-190 из 228.
19.01.2018
№218.016.00d5

Устройство для измерения влагосодержания жидкости

Изобретение относится к измерительной технике, в частности к промышленным влагомерам. Устройство для измерения влагосодержания жидкости содержит два измерительных участка, на каждом из которых размещен резонатор, включенный в качестве частотозадающего элемента в схему соответствующего...
Тип: Изобретение
Номер охранного документа: 0002629701
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0ba6

Привязной тепловой аэростат с подогревом по электрическому кабелю с земли

Изобретение относится к области воздухоплавательных аппаратов легче воздуха. Привязной тепловой аэростат содержит оболочку с теплоизолирующим слоем, нагреватель с вентилятором, датчиками температуры, электрически управляемый клапан сброса теплого воздуха в верхней части оболочки и систему...
Тип: Изобретение
Номер охранного документа: 0002632551
Дата охранного документа: 05.10.2017
20.01.2018
№218.016.1123

Устройство анализа результатов тестирования для локализации двукратных неисправностей

Изобретение относится к области тестирования дискретных объектов большой размерности. Технический результат заключается в повышении кратности неисправностей при их локализации. Устройство анализа результатов тестирования для локализации двукратных неисправностей содержит m m-разрядных...
Тип: Изобретение
Номер охранного документа: 0002633908
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1153

Способ встречного разгона и столкновения нейтральных микрочастиц

Изобретение относится к способам встречного разгона нейтральных микрочастиц. При вращении ротора 1 внутри неподвижного статора 8, 10 исследуемые образцы (жидкость или газ) поступают во входные окна 18 и затем проходят через зазоры, образованные зубцами статора 10 и ротора 7. При этом движение...
Тип: Изобретение
Номер охранного документа: 0002633964
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.115d

Устройство для встречного разгона нейтральных микрочастиц

Изобретение относится к устройствам для встречного разгона нейтральных микрочастиц. Устройство содержит систему управления и состоит из коаксиально установленных двух ускорителей, направленных суженной стороной навстречу друг другу, с зазором и вращающихся относительно друг друга ротора 1 и...
Тип: Изобретение
Номер охранного документа: 0002633994
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1166

Способ перистальтического нагнетания текучих сред на основе пьезоэлектрических элементов

Изобретение относится к способам для нагнетания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. В способе нагнетания текучих сред используют бегущую волну деформаций замкнутого объема...
Тип: Изобретение
Номер охранного документа: 0002633975
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1aee

Устройство для распознавания степени научности опубликованных построений

Изобретение относится к вычислительной технике и может быть использовано для распознавания степени научности опубликованных построений (ОП) в случаях необходимости определения ненаучного, протонаучного и научного исследования. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002635882
Дата охранного документа: 16.11.2017
04.04.2018
№218.016.2f8a

Спецпроцессор для задачи выполнимости булевых формул

Изобретение относится к средствам для решения задач о выполнении булевых функций. Технический результат заключается в решения задачи о выполнимости булевых функций, заданных в конъюнктивной нормальной форме, имеющих N переменных и до М=2 дизъюнктов. При этом упрощение структуры спецпроцессора...
Тип: Изобретение
Номер охранного документа: 0002644505
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.2fde

Перистальтический насос на пьезоэлектрических элементах

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. Устройство для перекачивания текучих сред содержит пьезомодули, установленные в...
Тип: Изобретение
Номер охранного документа: 0002644643
Дата охранного документа: 13.02.2018
+ добавить свой РИД