×
26.08.2017
217.015.e523

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002626458
Дата охранного документа
28.07.2017
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или перекачиваются по трубопроводу. В предложенном способе для измерения физических свойств жидкости предварительно возбуждают электромагнитные колебания в волноводном резонаторе и измеряют резонансную частоту электромагнитных колебаний, при этом контролируемую жидкость помещают в коаксиальный резонатор, в котором одним из его торцевых участков является запредельный коаксиальный волновод с уменьшенным диаметром наружного проводника. В резонаторе возбуждают электромагнитные колебания типа H (m=1, 2, 3. …; р=1, 2, 3, …). Второй торцевой участок коаксиального резонатора идентичен первому торцевому участку или выполнен в виде металлической стенки волноводного резонатора. Расширение функциональных возможностей предложенного способа за счет проведения измерений физических свойств жидкости в широком диапазоне частот, в том числе на высоких частотах гигагерцового диапазона, что является техническим результатом изобретения. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств (плотности, концентрации смесей, влагосодержания и др.) различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перекачиваемых по трубопроводам.

Известны различные способы и устройства для измерения физических свойств жидкостей, основанные на определении электрофизических параметров жидкостей (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат. 1989. 208 с. С. 168-177). Эти устройства содержат емкостные и радиоволновые чувствительные элементы (конденсаторы, волноводы, резонаторы и др.).

Недостатком таких способов и реализуемых на их основе измерительных устройств является невысокая точность, обусловленная достаточно большими габаритами датчиков. Это не позволяет осуществлять локальные измерения интересующих свойств жидкости, содержащейся в какой-либо технологической емкости, а дает информацию об их интегральных значениях.

Известно также техническое решение (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. 280 с. С. 42-59, 80-86), которое содержит описание способа, по технической сущности наиболее близкого к предлагаемому способу и принятого в качестве прототипа. Этот способ-прототип заключается в возбуждении электромагнитных колебаний основного типа ТЕМ в отрезке длинной линии, пространство между проводниками которого заполняют контролируемой жидкостью. Измеряя резонансную частоту электромагнитных колебаний отрезка длинной линии, судят об измеряемом физическом свойстве контролируемой жидкости.

Недостатком этого способа-прототипа являются его ограниченные функциональные возможности, обусловленные функционированием отрезков длинной линии только на основном типе колебаний ТЕМ в мегагерцевом диапазоне частот электромагнитных волн. В этом диапазоне частот имеют место резонансные явления при реальных длинах (в диапазоне от десятков сантиметров до одного метра) отрезков длинной линии, используемых в качестве чувствительных элементов при реализации данного способа. При этом нет возможности проводить измерения физических свойств жидкостей на более высоких частотах гигагерцового диапазона, что требуется, в частности, при инвариантных к сорту жидкости измерениях влагосодержания жидкостей (нефти, нефтепродуктов и др.); в этом диапазоне частот имеет место частотная дисперсия воды, позволяя производить двухчастотные инвариантные измерения (см., например, SU 1497531 A1, 30.07.1989).

Техническим результатом настоящего изобретения расширение функциональных возможностей способа.

Технический результат в предлагаемом способе измерения физических свойств вещества, при котором возбуждают электромагнитные колебания в волноводном резонаторе и измеряют резонансную частоту электромагнитных колебаний, размещают в электромагнитном поле волноводного резонатора контролируемую жидкость, достигается тем, что в качестве волноводного резонатора применяют коаксиальный резонатор с одним из его торцевых участков в виде запредельного коаксиального волновода с уменьшенным диаметром наружного проводника, при этом в резонаторе возбуждают электромагнитные колебания типа Hm1p (m=1, 2, 3. …; р=1, 2, 3, …), а другой торцевой участок идентичен первому торцевому участку или выполнен в виде металлической стенки волноводного резонатора.

На фиг. 1 и фиг. 2 приведены первый и второй, соответственно, варианты функциональной схемы устройства для реализации способа.

Здесь показаны волноводный резонатор 1, внутренний проводник 2, наружный проводник 3, запредельный волновод 4, жидкость 5, диэлектрическая шайба 6, элемент связи 7, линия связи 8, электронный блок 9, металлическая стенка 10.

На измерительном участке - там, где следует измерять физические свойства контролируемой жидкости - образуют волноводный резонатор при соосном по отношению к внутреннему проводнику расположении наружного проводника. При этом наружный проводник и внутренний проводник образуют коаксиальную линию; так, например, при возбуждении на измерительном участке - отрезке коаксиальной линии, в пределах которого наружный проводник имеет увеличенный диаметр, - электромагнитных колебаний на первом из высших типов, существующих в коаксиальной линии, такой участок представляет собой волноводный резонатор, ограниченный с обеих сторон коаксиальными волноводами, запредельными для волн на частотах выше некоторой критической частоты, соответствующей возбужденному типу колебаний. Если на измерительном участке - волноводном резонаторе коаксиального типа - возбуждены колебания в некотором диапазоне частот соответствующем изменению физического свойства вещества в измеряемом диапазоне, то необходимо, чтобы геометрические параметры запредельных волноводов на этих частотах были такими, при которых критическая частота их возбуждения была выше максимальной частоты диапазона изменения частоты резонатора. Тогда излучение электромагнитных волн за пределы измерительного участка будет отсутствовать, а в его полости будут существовать высокодобротные колебания.

Отметим, что предлагаемый способ работоспособен именно на одном из высших типов колебаний в рассматриваемом коаксиальном резонаторе, так как колебания в нем на основном типе ТЕМ характеризуются весьма малой добротностью (торцевые "скачки" радиусов малы для наблюдения резонансных импульсов).

Особенности способа измерения. Высший тип волны в коаксиальной линии, характеризующийся наибольшей критической длиной волны λкр, есть Н11, начиная с длин волн λ>λкрH11≈π(R1+R2), где R1 и R2 - радиусы, соответственно, внутреннего и наружного проводников линии. Затем следует тип поля E01, начиная с λ>λкрE01≈π(R2-R1) и т.д. Собственная (резонансная) частота такого резонатора близка к собственной частоте закрытого коаксиального резонатора и может быть для полого резонатора оценена по формуле (монография: Милованов О.С., Собенин Н.П. Техника сверхвысоких частот. М.: Атомиздат. 464 с. С. 45-46):

где - резонансная частота полого резонатора, l - длина резонатора; р=1, 2, …; с - скорость света.

При полном заполнении полости рассматриваемого волноводного резонатора контролируемой диэлектрической жидкостью с диэлектрической проницаемостью ε в формуле (1) значение , где - значение резонансной частоты согласно формуле (1). При ε=1 имеем , что соответствует отсутствию жидкости в полости волноводного резонатора. Диэлектрическая проницаемость ε, в свою очередь, функционально связана с тем или иным физическим свойством жидкости (плотностью, концентрацией смеси, влагосодержанием и др.).

Отметим, что геометрические параметры запредельных волноводов должны быть такими, при которых критическая частота их возбуждения была выше максимальной частоты диапазона изменения резонансной частоты полого волноводного резонатора, поскольку при заполнении полости резонатора диэлектрической жидкостью, как это видно из предыдущего раздела, резонансная частота уменьшается.

Формула (1) при работе на колебаниях типа Н111 принимает вид

Среди возможных возбуждаемых колебаний типа Hm1p (m=1, 2, 3. …; р=1, 2, 3, …) низший тип есть Н111 с собственной частотой, определяемой формулой (2). В этом случае имеем следующее выражение для критической длиной волны λкрН11 (монография: Милованов О.С., Собенин Н.П. Техника сверхвысоких частот. М.: Атомиздат. 464 с. С. 45-46):

и, соответственно формуле (3), следующее выражение для :

где R - значение внутреннего радиуса R2 наружного проводника вне измерительного участка с волноводным резонатором.

Особенностью волн этих H-типов, характеризующихся произвольным первым индексом m, но вторым индексом 1, является наличие в формуле для λкр суммы радиусов R1 и R2. Именно это определяет, как нетрудно видеть, увеличение внутреннего диаметра 2R2 наружного проводника в пределах волноводного резонатора по сравнению с ее диаметром, то есть диаметром запредельных волноводов, расположенных с обеих сторон этого волноводного резонатора.

В самом деле, условие можно записать с учетом (1), (3) и (4) в следующем виде:

или, после преобразований

Здесь R - радиус наружного проводника коаксиальной линии на запредельных торцевых участках резонатора, то есть значение внутреннего радиуса R2 наружного проводника вне измерительного участка с волноводным резонатором. Поскольку второй член (дробь) произведения в правой части данного неравенства меньше единицы, то оно выполняется, если R<R2.

Устройство на фиг. 1 содержит резонаторный датчик в виде коаксиального волноводного резонатора 1, образуемого внутренним проводником 2 и наружным проводником 3, с торцевыми участками - запредельными волноводами 4, контролируемую жидкость 5, диэлектрическую шайбу 6, элемент связи 7, линию связи 8, электронный блок 9. Здесь резонаторный датчик может быть как в виде емкости (измерительной ячейки) с контролируемой жидкостью 5 (фиг. 1), так и может быть проточным при его встраивании в трубопровод при проведении измерений физических свойств перемещаемой жидкости (не показано). Датчик представляет собой волноводный резонатор 1 открытого типа в виде отрезка коаксиальной линии с сопряженными с ним на его обоих торцах отрезками коаксиальных запредельных волноводов 4. Нижняя часть волноводного резонатора 1, заполняемого контролируемой жидкостью 5, имеет герметичное дно, содержащее диэлектрическую шайбу 6. В волноводном резонаторе 1 возбуждают электромагнитные колебания. Возбуждение и съем колебаний в волноводном резонаторе, в также измерение собственной (резонансной) частоты колебаний, изменяющейся при изменении физических свойств жидкости 5, и ее преобразование в выходной сигнал осуществляют через элемент связи 7 (металлический штырь, петля связи), подсоединенный к волноводному резонатору 1, и линию связи 8 с помощью электронного блока 9. Число элементов связи (один или два) определяется применяемой схемой измерения; на данной фигуре показано возбуждение колебаний в резонаторе и их съем с помощью одного металлического штыря.

На фиг. 2 приведена иная функциональная схема устройства для реализации данного способа. В данном случае один из торцевых отражателей, которым ранее являлся нижний запредельный волновод 4, заменен на металлическую стенку 10 волноводного резонатора 1 - дно измерительного участка (измерительной ячейки).

В устройствах на фиг. 1 и фиг. 2 чувствительность их датчиков - волноводных резонаторов 1 - имеет максимально возможную величину, определяемую значением резонансной частоты волноводного резонатора, весь объем которого заполнен контролируемой жидкостью. Выбором габаритов (длины и диаметра) волноводного резонатора можно в широком диапазоне изменять, при необходимости, диапазон рабочих частот устройств, реализующих данный способ измерения.

Таким образом, данное устройство позволяет производить измерения различных физических свойств жидкостей как в емкостях (измерительных ячейках и др.), так и перемещаемых по трубопроводам, в широком диапазоне частот электромагнитных волн.

Способ измерения физических свойств жидкости, при котором возбуждают электромагнитные колебания в волноводном резонаторе и измеряют резонансную частоту электромагнитных колебаний, размещают в электромагнитном поле волноводного резонатора контролируемую жидкость, отличающийся тем, что в качестве волноводного резонатора применяют коаксиальный резонатор с одним из его торцевых участков в виде запредельного коаксиального волновода с уменьшенным диаметром наружного проводника, при этом в резонаторе возбуждают электромагнитные колебания типа H (m=1, 2, 3 …; р=1, 2, 3, …), а другой торцевой участок идентичен первому торцевому участку или выполнен в виде металлической стенки волноводного резонатора.
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТИ
Источник поступления информации: Роспатент

Показаны записи 161-170 из 304.
25.08.2017
№217.015.ce71

Датчик физических свойств вещества

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, сыпучих веществ, газов), находящихся в емкостях (технологических резервуарах,...
Тип: Изобретение
Номер охранного документа: 0002620773
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce89

Способ определения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для высокоточного определения положения границ раздела сред, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является упрощение процесса измерения и повышение точности. В способе определения положения границ...
Тип: Изобретение
Номер охранного документа: 0002620780
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cea4

Способ измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Способ измерения массового расхода жидких сред...
Тип: Изобретение
Номер охранного документа: 0002620774
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cedd

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Устройство для измерения расхода жидких сред...
Тип: Изобретение
Номер охранного документа: 0002620779
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.e31f

Устройство для бесконтактного измерения диаметра провода

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Предлагаемое устройство для бесконтактного измерения диаметра провода содержит размещаемую снаружи провода коаксиально с ним...
Тип: Изобретение
Номер охранного документа: 0002626063
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e377

Способ измерения уровня жидкости и сыпучих сред в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости и сыпучих сред, находящихся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, цемента и др. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002626386
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e380

Устройство для измерения электрического тока

Предлагаемое устройство относится к области информационно-измерительной техники. Техническим результатом является повышение точности и чувствительности измерения электрического тока. Устройство для измерения электрического тока содержит измерительную цепь, подключенную к входу нагревателя, и...
Тип: Изобретение
Номер охранного документа: 0002626387
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e3c4

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002626409
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e3d6

Способ контроля сварных швов труб

Использование: для контроля сварных швов труб. Сущность изобретения заключается в том, что зондируют поверхность сварного шва трубы лучом и по принимаемому сигналу определяют предельные значения характеристик дефекта сварного шва по сравнению с нормативными параметрами, при этом трубу закрытыми...
Тип: Изобретение
Номер охранного документа: 0002626307
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e42a

Способ диагностики механизмов, агрегатов и машин на основе оценки микровариаций вращения вала

Изобретение относится к области неразрушающего контроля и может быть использовано для диагностики состояния механизмов, агрегатов и машин, составной частью которых являются элементы, совершающие вращательное движение. Способ заключается в том, что на валу контролируемого изделия устанавливают...
Тип: Изобретение
Номер охранного документа: 0002626388
Дата охранного документа: 26.07.2017
Показаны записи 161-170 из 228.
25.08.2017
№217.015.ce71

Датчик физических свойств вещества

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (плотности, концентрации, смеси веществ, влагосодержания и др.) веществ (жидкостей, сыпучих веществ, газов), находящихся в емкостях (технологических резервуарах,...
Тип: Изобретение
Номер охранного документа: 0002620773
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ce89

Способ определения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для высокоточного определения положения границ раздела сред, в частности воздуха и двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является упрощение процесса измерения и повышение точности. В способе определения положения границ...
Тип: Изобретение
Номер охранного документа: 0002620780
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cea4

Способ измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах, в частности при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Способ измерения массового расхода жидких сред...
Тип: Изобретение
Номер охранного документа: 0002620774
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.cedd

Устройство для измерения массового расхода жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрических жидкостей в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов, сжиженных газов. Устройство для измерения расхода жидких сред...
Тип: Изобретение
Номер охранного документа: 0002620779
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.e31f

Устройство для бесконтактного измерения диаметра провода

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Предлагаемое устройство для бесконтактного измерения диаметра провода содержит размещаемую снаружи провода коаксиально с ним...
Тип: Изобретение
Номер охранного документа: 0002626063
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e377

Способ измерения уровня жидкости и сыпучих сред в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости и сыпучих сред, находящихся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов, цемента и др. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002626386
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e380

Устройство для измерения электрического тока

Предлагаемое устройство относится к области информационно-измерительной техники. Техническим результатом является повышение точности и чувствительности измерения электрического тока. Устройство для измерения электрического тока содержит измерительную цепь, подключенную к входу нагревателя, и...
Тип: Изобретение
Номер охранного документа: 0002626387
Дата охранного документа: 26.07.2017
26.08.2017
№217.015.e3c4

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002626409
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e3d6

Способ контроля сварных швов труб

Использование: для контроля сварных швов труб. Сущность изобретения заключается в том, что зондируют поверхность сварного шва трубы лучом и по принимаемому сигналу определяют предельные значения характеристик дефекта сварного шва по сравнению с нормативными параметрами, при этом трубу закрытыми...
Тип: Изобретение
Номер охранного документа: 0002626307
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e42a

Способ диагностики механизмов, агрегатов и машин на основе оценки микровариаций вращения вала

Изобретение относится к области неразрушающего контроля и может быть использовано для диагностики состояния механизмов, агрегатов и машин, составной частью которых являются элементы, совершающие вращательное движение. Способ заключается в том, что на валу контролируемого изделия устанавливают...
Тип: Изобретение
Номер охранного документа: 0002626388
Дата охранного документа: 26.07.2017
+ добавить свой РИД