×
26.08.2017
217.015.e515

Результат интеллектуальной деятельности: Способ промывки проппанта из колонны труб и призабойной зоны скважины после гидроразрыва пласта

Вид РИД

Изобретение

№ охранного документа
0002626495
Дата охранного документа
28.07.2017
Аннотация: Изобретение относится к нефтегазобывающей промышленности, в частности к технологиям промывки проппантовых пробок в скважинах. Способ включает спуск в скважину в интервал пласта колонны труб с пакером, установку пакера над пластом, закачку жидкости гидроразрыва в продуктивный пласт, проведение дренирования пласта с удалением из него жидкости гидроразрыва и незакрепленного в пласте проппанта в скважину, затем спуск колонны гибких труб - ГТ через колонну труб и промывку проппанта из скважины. Нижний конец колонны труб оснащают опрессовочным седлом. Перед проведением гидравлического разрыва пласта (ГРП) колонну труб опрессовывают при давлении, превышающем ожидаемое давление разрыва пласта в 1,5 раза. После проведения ГРП и дренирования из пласта жидкости гидроразрыва и незакрепленного в пласте проппанта в колонну труб производят спуск колонны ГТ с пером на конце и промывают проппант из скважины в два этапа. На первом этапе спускают колонну ГТ до опрессовочного седла колонны труб, затем технологической жидкостью с вязкостью от 1,0 до 2,0 МПа⋅с вымывают проппант из колонны труб, после чего доспускают колонну ГТ до забоя скважины и вымывают проппант из призабойной зоны скважины загущенной технологической жидкостью с вязкостью от 6 до 8 МПа⋅с, после чего приподнимают колонну ГТ на глубину 100 м, выдерживают паузу на технологический отстой частиц, повторным спуском колонны ГТ с пером определяют забой скважины. Повышается надежность и качество промывки, упрощается реализация способа. 2 ил.

Изобретение относится к нефтегазобывающей промышленности, в частности к технологиям промывки проппантовых пробок в добывающих и нагнетательных скважинах.

Известен способ промывки проппантовой пробки в газовой или газоконденсатной скважине после завершения гидравлического разрыва пласта (ГРП) (патент RU №2373379, МПК Е21В 37/00, опубл. 20.11.2009 г., бюл. №32), включающий ступенчатый спуск колонны гибкой трубы (ГТ) по мере промывки и закачивание в скважину промывочной жидкости с поддержанием минимальной разницы между давлением столба промывочной жидкости в кольцевом пространстве и давлением поглощения этой жидкости трещиной гидроразрыва. Причем спуск колонны ГТ до головы проппантовой пробки проводят со скоростью 0,1 м/с. После этого осуществляют промывку ствола скважины и ступенчатое углубление колонны ГТ на глубину 1-3 м со скоростью 0,001 м/с, постоянной подачей аэрированной промывочной жидкости и поддержанием 100% выхода циркуляции из скважины на каждой ступени углубления колонны ГТ. При этом циркуляцию на каждой ступени проводят не менее двух циклов, а поддержание минимальной разницы между давлением столба промывочной жидкости в кольцевом пространстве и давлением поглощения этой жидкости трещиной гидроразрыва осуществляется с помощью внешнего источника газообразного агента в виде компрессора и азотно-бустерной установки в комплексе с остальным оборудованием.

Недостатки способа:

- во-первых, ограниченность применения, т.е. способ применим только в газовой или газоконденсатной скважине;

- во-вторых, низкая надежность промывки проппанта из скважины после проведения ГРП, связанная с высокой вероятностью прихвата колонны ГТ в призабойной зоне пласта вследствие слабой несущей способности аэрированной жидкости из-за ее низкой вязкости, что может привести к поглощению аэрированной жидкости пластом и потере циркуляции аэрированной жидкости в скважине;

- в-третьих, низкое качество промывки проппанта из скважины аэрированной жидкостью (проппант остается на забое).

Наиболее близким по технической сущности является способ промывки проппантовой пробки в скважине (патент RU №2310103, МПК Е21В 43/14, 43/27, 47/12, опубл. 10.11.2007 г., бюл. №31), включающий спуск в скважину с пластами колонны труб с пакером и струйным насосом. При этом пакер устанавливают между нижним и первым промежуточным пластами. Проводят закачку жидкости гидроразрыва в нижний пласт, после чего производят дренирование этого пласта с удалением из него жидкости гидроразрыва и выносом незакрепленного в пласте проппанта в скважину, регистрируя давление в скважине под пакером с помощью автономного манометра. После чего приводят пакер в транспортное положение. Приподнимают колонну труб с пакером и струйным насосом и проводят распакеровку пакера между следующими промежуточными пластами. Устанавливают проппантовую пробку в интервале от забоя до подошвы промежуточного пласта. Затем повторяют те же операции и так далее в зависимости от количества продуктивных пластов. После чего через колонну труб и струйный насос спускают колонну ГТ и вымывают проппант из скважины технологической жидкостью, в качестве которой используется пластовая вода.

Недостатки способа:

- во-первых, низкая надежность промывки проппанта из скважины после проведения ГРП, связанная с высокой вероятностью прихвата колонны ГТ в призабойной зоне пласта вследствие слабой несущей способности технологической жидкости, имеющей низкую вязкость 1-2 МПа⋅с, что может привести к поглощению технологической жидкости пластом и потере циркуляции технологической жидкости в скважине;

- во-вторых, низкое качество промывки проппанта из скважины, вследствие того что, промывку проппанта осуществляют после того, как проведут ГРП во всех пластах, поэтому не весь проппант удается вымыть с забоя скважины; способ не позволяет проконтролировать весь ли проппант вымыт из скважины;

- в-третьих, сложный технологический процесс реализации, связанный с проведением технологических операций в нескольких пластах и с применением струйного насоса.

Техническими задачами изобретения являются повышение надежности и качества промывки проппанта с забоя скважины, а также упрощение процесса реализации способа.

Поставленные задачи решаются способом промывки проппанта из колонны труб и призабойной зоны скважины после гидроразрыва пласта - ГРП, включающим спуск в скважину в интервал пласта колонны труб с пакером, установку пакера над пластом, закачку жидкости гидроразрыва в продуктивный пласт, проведение дренирования пласта с удалением из него жидкости гидроразрыва и незакрепленного в пласте проппанта в скважину, затем спуск колонны гибких труб - ГТ через колонну труб и промывку проппанта из скважины.

Новым является то, что нижний конец колонны труб оснащают опрессовочным седлом, а перед проведением ГРП колонну труб опрессовывают при давлении, превышающем ожидаемое давление разрыва пласта в 1,5 раза, после проведения ГРП и дренирования из пласта жидкости гидроразрыва и незакрепленного в пласте проппанта в колонну труб производят спуск колонны ГТ с пером на конце и промывают проппант из скважины в два этапа, причем на первом этапе спускают колонну ГТ до опрессовочного седла колонны труб, затем технологической жидкостью с вязкостью от 1,0 до 2,0 МПа⋅с вымывают проппант из колонны труб, после чего доспускают колонну ГТ до забоя скважины и вымывают проппант из призабойной зоны скважины загущенной технологической жидкостью с вязкостью от 6 до 8 МПа⋅с, после чего приподнимают колонну ГТ на глубину 100 м, выдерживают паузу на технологический отстой частиц, повторным спуском колонны ГТ с пером определяют забой скважины.

На фиг. 1 и 2 схематично и последовательно изображен процесс реализации способа.

Предлагаемый способ реализуется следующим образом.

В скважину 1 (см. фиг. 1) и интервал пласта 2 спускают колонну труб 3 с пакером 4 и опрессовочным седлом 5, выполненным конусным, сужающимся сверху вниз с проходным диаметром у нижнего основания D, установленным на нижнем конце колонны труб 3.

Например, в качестве колоны труб 3 используют колонну насосно-компрессорных труб (НКТ) диаметром 89 мм, на нижнем конце которой установлено опрессовочное седло 5 проходным диаметром D=50 мм.

Колонну труб 3 размещают в скважине 1 так, чтобы опрессовочное седло 5 находилось выше кровли пласта 2 на расстоянии 2 м с целью исключения прихвата колонны труб 3 проппантом в случае возникновения резкого скачка давления при продавке проппанта в процессе ГРП.

Пакер 4 устанавливают над пластом 2 с целью защиты стенок скважины от воздействия высокого давления, возникающего в процессе ГРП, например, устанавливают пакер 4 на 5 м выше кровли пласта 2.

Производят опрессовку колонны труб 3 при давлении, превышающем ожидаемое давление разрыва пласта в 1,5 раза. Например, ожидаемое давление разрыва пласта 2 согласно моделированию процесса в программе Frac-pro составляет 27,0 МПа.

Производят опрессовку колонны, например, для этого с устья скважины 1 на канате в колонну труб 3 спускают опрессовочный конус (на фиг. 1 и 2 не показан), который сажают на опрессовочное седло 5 (см. фиг. 1) труб 3, герметизируют колонну труб 3 на устье скважины 1 и опрессовывают колонну труб 3 при давлении 27,0 МПа ⋅ 1,5=40,5 МПа с помощью насосного агрегата (на фиг. 1 и 2 не показан). Выдерживают в течение 30 мин колонну труб 3 под давлением 40,5 МПа.

Колонна труб 3 считается герметично при выполнении условия:

где Рд - допустимое давление опрессовки, МПа;

Ропр - давление опрессовки колонны труб, МПа.

Т.е. допустимое давление опрессовки составляет Рд=40,5 МПа - (40,5 МПа⋅5% /100%)=38,5 МПа.

Например, в данном случае снижение давления составило 1,0 МПа, то есть давление опрессовки в колонне труб 3 по истечении 30 мин составило Ропр=39,5 МПа.

38,5 МПа<39,5 МПа

Как видно неравенство (1) соблюдается, т.е. снижение давления в колонне труб 3 в результате опрессовки не превышает допустимого значения.

Производят гидроразрыв пласта 2 с образованием трещины 6 и последующим ее креплением проппантом.

По окончании ГРП производят дренирование пласта 2 с удалением из него жидкости гидроразрыва и незакрепленного в пласте проппанта 7.

Далее производят промывку проппанта из скважины спуском колонны гибких ГТ 8 с наружным диаметром d, при этом на устье скважины производят герметизацию сальником (на фиг. 1 и 2 показан условно) колонны ГТ в процессе ее перемещения:

где d - наружный диаметр ГТ, мм;

D - проходной диаметр опрессовочного седла у нижнего основания, мм.

Опытным путем установлено, что при таком соотношении проходного диаметра D опрессовочного седла 5 и наружного диаметра d колонны ГТ исключаются гидравлические сопротивления при промывке проппанта 7 из призабойной зоны 9 скважины 1.

Исходя из условия (2), подбирают наружный диаметр ГТ 8 из существующего ряда гибких труб, предназначенных для промывки по колонне НКТ, d: 25,4 мм; 31,75 мм; 38,1 мм; 44,45 мм.

Подставляя числовые значения в условие (2), получаем:

d<D/1,5=50 мм /1,5=33,3 мм

Таким образом, под условие (2) подходит ГТ 8 с наружным диаметром 25,4 мм и 31,75 мм. Выберем ГТ 8 с диаметром d=31,75 мм.

Промывку проппанта 7 с помощью колонны ГТ 8 из скважины 1 осуществляют в два этапа.

На первом этапе спускают колонну ГТ 8 до опрессовочного седла 5 колонны труб 3 и технологической жидкостью, в качестве которой применяют пластовую воду вязкостью от 1,0 до 2,0 МПа⋅с, промывают проппант 7 из колонны труб 3.

Для этого на устье скважины 1 оснащают нижний конец ГТ 8 пером 10 наружным диаметром, равным 31,75 мм, т.е. равным наружному диаметру d колонны ГТ 8.

Гидравлически обвязывают на устье скважины насосный агрегат 11 для подачи технологической жидкости с ГТ 8, а межколонное пространство 12 между колонной труб 3 и колонной ГТ 8 - с желобной емкостью 13.

Спускают колонну ГТ 8 (см. фиг. 1) в колонну труб 3 и циркуляцией пластовой воды, например, вязкостью 1,6 МПа⋅с по колонне ГТ 8 и перу 10 через межколонное пространство 12 вымывают проппант 7 из колонны НКТ 3 в желобную емкость 13, т.е. от устья колонны труб 3 до опрессовочного седла 5 с расходом технологической жидкости 8 л/с=8⋅10-3 м3/с.

В процессе спуска колонны ГТ 8 в колонну труб 3, например, со скоростью 1 м/с производят периодические расхаживания подъемом ГТ 8 на 2 м вверх через каждые 100-150 м (для проверки отсутствия прихвата колонны ГТ 8 проппантом 7 внутри колонны труб 3).

Таким образом, циркуляцией пластовой воды полностью вымывают проппант 7 из колонны труб 3 (см. фиг. 2), что определяют визуально в желобной емкости 13 по отсутствию проппанта в поступающей в желобную емкость 13 пластовой воде.

Далее реализуют второй этап.

Доспускают колонну гибких труб 3 (см. фиг. 2) до забоя 14 скважины 1 и вымывают проппант 7 из призабойной зоны 9 скважины загущенной технологической жидкостью, в качестве которой используют 1,0% раствор крахмала в пластовой воде с вязкостью от 6 до 8 МПа⋅с, следующим образом.

Опытным путем получено, что для получения загущенной технологической жидкости вязкостью 6-8,0 МПа⋅с необходимо смешать 1,0% крахмала по объему в 99% по объему пластовой воды с минерализацией 220 г/л. Данную загущенную технологическую жидкость готовят на базе, например, химического сервиса или на устье скважины 1 при наличии смесителя (на фиг. 1 и 2 не показан).

Например, для приготовления 20 м3 загущенной технологической жидкости необходимо 19,8 м3 пластовой воды (99%) смешать с 0,2 м3 крахмала (1%). Емкость (на фиг. 1 и 2 не показана) с загущенной технологической жидкостью подсоединяют к насосному агрегату 11 (см. фиг. 2).

Далее сначала доспуском колонны ГТ 8 на 2 м ниже опрессовочного седла 5 колонны труб 3 проверяют заход пера 10 в опрессовочное седло 5 колонны НКТ 3 со скоростью 2 м/мин (0,033 м/с) с промывкой загущенной технологической жидкостью (подачей насосным агрегатом 11 по колонне ГТ 8 и перу 10, через межколонное пространство 12 в желобную емкость 13).

После чего приподнимают колонну ГТ 8 с пером 10 до интервала установки опрессовочного седла 5 колонны НКТ 3, не прекращая циркуляции, переходят на промывку колонны НКТ 3 загущенной технологической жидкостью.

Циркулируют загущенную технологическую жидкость в течение 30 мин по ГТ 8, перу 10, через межколонное пространство 12 в желобную емкость 13 с целью вноса проппанта из подпакерной зоны скважины 1 ниже пакера 4, но выше нижнего конца колонны труб 3.

Далее создают циркуляцию загущенной технологической жидкости при давлении закачки Ρ=18,0-20,0 МПа и расходе технологической жидкости 4,5 л/с=4,5⋅10-3 м3/с, производят спуск колонны ГТ 8 с пером 10 через опрессовочное седло 5 колонны НКТ 3 до забоя 14 скважины 1 со скоростью 0,25 м/с.

Загущенная технологическая жидкость циркулирует по ГТ 8, перу 10, призабойной зоне скважины 9, межколонному пространству 12 и желобной емкости 13 с периодическим расхаживанием ГТ 8 в призабойной зоне скважины (например, подъемом колонны ГТ вверх на 1 м после спуска колонны ГТ вниз на 5 м), пока не закончит выходить проппант, что определяют визуально по отсутствию проппанта на выходе отработанной загущенной жидкости в желобную емкость 13.

Повышается надежность реализации способа, так как использование загущенной технологической жидкости при промывке призабойной зоны пласта позволяет повысить несущую (выносящую) способность технологической жидкости при промывке проппанта и исключает прихват колонн ГТ в призабойной зоне скважины. Кроме того, применение вязкой технологической жидкости в способе снижает ее поглощение пластом и вероятность потери циркуляции технологической жидкости в скважине.

Не прекращая циркуляцию загущенной технологической жидкости, поднимают колонну ГТ 8 с пером 10 в колонне труб 3 скважины 1 на глубину 100 м.

Глубина 100 м исключает прихват колонны ГТ 8 в колонне труб 3 при наличии остаточного проппанта 7 или при условии, что проппант 7 продолжает выходить из закрепленной трещины 6 пласта 2.

Производят паузу в течение 2 ч на технологический отстой с целью оседания твердых частиц (песка, шлама), поднятых с забоя вместе с проппантом 7. По окончании технологического отстоя доспуском колонны ГТ 8 с пером 10 нащупывают забой 14 скважины 1 с целью проверки качества промывки проппанта 7 из скважины 1 и сверяют его с забоем 14, который был до проведения ГРП. Например, забой 14 скважины 1 до проведения ГРП составлял 1675 м, а после вымыва проппанта 7, т.е. после реализации предлагаемого способа, забой 14 скважины 1 составил 1675 м. Это означает, что проппант 7 полностью вымыт из скважины 1.

Повышается качество промывки проппанта из скважины вследствие того, что промывку проппанта осуществляют после каждого проведенного ГРП, а не после того, как проведут ГРП во всех пластах, как описано в прототипе. При этом после промывки производится контрольный спуск ГТ с определением текущего забоя скважины с целью определения качества промывки проппанта из скважины.

После чего извлекают из скважины 1 колонну ГТ 8 с пером 10.

При наличии нескольких пластов, подлежащих ГРП, колонну труб распакеровывают и переводят в другой интервал пласта скважины, после чего после опрессовки и проведения ГРП все вышеописанные операции по промывке проппанта повторяются.

Упрощается технологический процесс вследствие реализации способа без привлечения струйного насоса и отдельно по каждому пласту, подлежащему ГРП.

Предлагаемый способ промывки проппанта из колонны труб и призабойной зоны скважины после ГРП позволяет:

- повысить надежность промывки проппанта из скважины;

- повысить качество промывки проппанта с забоя скважины;

- упростить процесс реализации способа.

Способ промывки проппанта из колонны труб и призабойной зоны скважины после гидроразрыва пласта - ГРП, включающий спуск в скважину в интервал пласта колонны труб с пакером, установку пакера над пластом, закачку жидкости гидроразрыва в продуктивный пласт, проведение дренирования пласта с удалением из него жидкости гидроразрыва и незакрепленного в пласте проппанта в скважину, затем спуск колонны гибких труб - ГТ через колонны труб и промывку проппанта из скважины, отличающийся тем, что нижний конец колонны труб оснащают опрессовочным седлом, а перед проведением ГРП колонну труб опрессовывают при давлении, превышающем ожидаемое давление разрыва пласта в 1,5 раза, после проведения ГРП и дренирования из пласта жидкости гидроразрыва и незакрепленного в пласте проппанта в колонну труб производят спуск колонны ГТ с пером на конце и промывают проппант из скважины в два этапа, причем на первом этапе спускают колонну ГТ до опрессовочного седла колонны труб, затем технологической жидкостью с вязкостью от 1,0 до 2,0 МПа⋅с вымывают проппант из колонны труб, после чего доспускают колонну ГТ до забоя скважины и вымывают проппант из призабойной зоны скважины загущенной технологической жидкостью с вязкостью от 6 до 8 МПа⋅с, после чего приподнимают колонну ГТ на глубину 100 м, выдерживают паузу на технологический отстой частиц, повторным спуском колонны ГТ с пером определяют забой скважины.
Способ промывки проппанта из колонны труб и призабойной зоны скважины после гидроразрыва пласта
Способ промывки проппанта из колонны труб и призабойной зоны скважины после гидроразрыва пласта
Способ промывки проппанта из колонны труб и призабойной зоны скважины после гидроразрыва пласта
Источник поступления информации: Роспатент

Показаны записи 341-350 из 578.
15.10.2018
№218.016.9240

Способ герметизации эксплуатационной колонны скважины

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам герметизации эксплуатационной колонны скважины. Способ включает определение интервала нарушения эксплуатационной колонны, спуск насосно-компрессорных труб (НКТ) в интервал нарушения или ниже. При этом перед...
Тип: Изобретение
Номер охранного документа: 0002669650
Дата охранного документа: 12.10.2018
15.10.2018
№218.016.9266

Способ разработки залежи высоковязкой и сверхвязкой нефти тепловыми методами на поздней стадии разработки

Изобретение относится к нефтедобывающей промышленности. Технический результат - заканчивание скважин при тепловом воздействии без разрушения структуры пласта с одновременным снижением затрат. Способ разработки залежи высоковязкой и сверхвязкой нефти тепловыми методами на поздней стадии...
Тип: Изобретение
Номер охранного документа: 0002669647
Дата охранного документа: 12.10.2018
19.10.2018
№218.016.939d

Оборудование для свабирования скважин по эксплуатационной колонне

Изобретение относится к нефтедобывающей промышленности и может быть использовано для свабирования по эксплуатационной колонне скважин с вязкой продукцией, на которых исключена возможность газонефтепроявлений. Оборудование для свабирования скважин по эксплуатационной колонне включает тройник с...
Тип: Изобретение
Номер охранного документа: 0002669966
Дата охранного документа: 17.10.2018
19.10.2018
№218.016.93be

Гелеобразующий состав

Изобретение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих скважинах и регулирования охвата пласта и профиля приемистости нагнетательных скважин. Гелеобразующий состав содержит 13-19,5 мас.% силиката натрия, 1,6-2,2 мас.% сульфата...
Тип: Изобретение
Номер охранного документа: 0002669970
Дата охранного документа: 17.10.2018
19.10.2018
№218.016.93ca

Способ разработки залежи битуминозной нефти из горизонтальной скважины

Изобретение относится к области горного дела и может быть использовано для разработки залежей углеводородных флюидов, в частности при добыче высоковязкой нефти и природного битума с высоким газовым фактором. Технический результат - исключение прорыва теплоносителя в газовые шапки, снижение...
Тип: Изобретение
Номер охранного документа: 0002669967
Дата охранного документа: 17.10.2018
19.10.2018
№218.016.93e3

Способ разработки залежи битуминозной нефти из горизонтальной скважины

Изобретение относится к области горного дела и может быть использовано для разработки залежей углеводородных флюидов, в частности, при добыче высоковязкой нефти и природного битума с высоким газовым фактором. Технический результат – исключение прорыва теплоносителя в газовые шапки, увеличение...
Тип: Изобретение
Номер охранного документа: 0002669968
Дата охранного документа: 17.10.2018
27.10.2018
№218.016.96ca

Способ герметизации эксплуатационной колонны

Изобретение относится к нефтедобывающей промышленности, в частности к способам герметизации эксплуатационной колонны. Способ герметизации эксплуатационной колонны включает спуск в эксплуатационную колонну скважины пакера на посадочном инструменте, посадку пакера в эксплуатационной колонне ниже...
Тип: Изобретение
Номер охранного документа: 0002670816
Дата охранного документа: 25.10.2018
27.10.2018
№218.016.9739

Способ сокращения продолжительности ремонта скважины с применением установки с гибкой трубой

Изобретение относится к нефтяной промышленности и может быть использовано при ремонте скважин с применением установки с гибкой трубой (ГТ). При осуществлении способа определяют интервал промывки, верхнюю границу которого устанавливают на 10-20 м выше забоя скважины, а нижней границей промывки...
Тип: Изобретение
Номер охранного документа: 0002670795
Дата охранного документа: 25.10.2018
01.11.2018
№218.016.98cb

Гидравлический вибратор

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для интенсификации отбора нефти или закачки воды. Гидравлический вибратор содержит корпус с неподвижно установленным стволом с донным отверстием и золотник, посаженный шариковыми опорами на ствол. Золотник и...
Тип: Изобретение
Номер охранного документа: 0002671242
Дата охранного документа: 30.10.2018
01.11.2018
№218.016.98e0

Шаровой кран

Изобретение относится к трубопроводной арматуре, предназначенной для перекрытия канала трубопровода, а также для обеспечения движения рабочей среды только в одном направлении. Шаровой кран содержит корпус, в котором в двух седлах установлен сферический запорный орган. Он связан с приводом его...
Тип: Изобретение
Номер охранного документа: 0002671001
Дата охранного документа: 29.10.2018
Показаны записи 341-350 из 391.
10.07.2019
№219.017.ac5f

Пакер-пробка

Изобретение относится к нефтедобывающей промышленности для временного перекрытия ствола скважины, обеспечивает простоту конструкции, гарантированное и безопасное извлечение пакера-пробки без заклинивания. Пакер-пробка включает ствол, уплотнительный элемент, фиксатор положения уплотнительного...
Тип: Изобретение
Номер охранного документа: 0002391488
Дата охранного документа: 10.06.2010
10.07.2019
№219.017.ad46

Способ эксплуатации двухустьевой скважины

Изобретение относится к области разработки месторождений углеводородов двухустьевыми горизонтальными скважинами и может быть использовано для добычи высоковязких нефтей и битума. Обеспечивает упрощение монтажа пакера в скважине, а также возможность с помощью пакера проведения изоляции...
Тип: Изобретение
Номер охранного документа: 0002351753
Дата охранного документа: 10.04.2009
10.07.2019
№219.017.ae9d

Способ добычи из подземной залежи тяжелых и высоковязких углеводородов

Изобретение относится к способу добычи углеводородов из подземной залежи гудронового песка или залежи тяжелой нефти, имеющих высокую вязкость. Для получения углеводородов из таких залежей необходимо их нагревание. Обеспечивает упрощение способа, увеличение точности ориентации горизонтальных...
Тип: Изобретение
Номер охранного документа: 0002322574
Дата охранного документа: 20.04.2008
10.07.2019
№219.017.ae9e

Способ добычи из подземной залежи тяжелых и высоковязких углеводородов

Изобретение относится к способу добычи углеводородов из подземной залежи гудронового песка или залежи тяжелой нефти, имеющих высокую вязкость. Обеспечивает упрощение способа и повышение его эффективности за счет увеличения площади охвата залежи горизонтальными участками. Сущность изобретения:...
Тип: Изобретение
Номер охранного документа: 0002322577
Дата охранного документа: 20.04.2008
10.07.2019
№219.017.aeb6

Способ добычи из подземной залежи тяжелых и/или высоковязких углеводородов

Изобретение относится к способу добычи углеводородов из подземной залежи гудронового песка или залежи тяжелой нефти, имеющих высокую вязкость. Для получения углеводородов из таких залежей необходимо их нагревание. Обеспечивает упрощение технологического процесса и увеличение точности ориентации...
Тип: Изобретение
Номер охранного документа: 0002321735
Дата охранного документа: 10.04.2008
10.07.2019
№219.017.b02a

Способ разработки месторождения высоковязкой нефти

Изобретение относится к нефтяной промышленности, в частности к добыче высоковязкой тяжелой и битуминозной нефти. Обеспечивает повышение эффективности способа за счет возможности увеличения паровой камеры и регулирования температуры горения в этой камере. Сущность изобретения: способ включает...
Тип: Изобретение
Номер охранного документа: 0002403382
Дата охранного документа: 10.11.2010
10.07.2019
№219.017.b07b

Способ освоения пласта скважины свабированием и устройство для его осуществления

Изобретение относится к области нефтяной и нефтегазовой промышленности и может быть использовано при освоении скважин после бурения и в процессе эксплуатации. Обеспечивает упрощение способа и конструкции устройства, а также исключение попадания скважинной жидкости в освоенный пласт. Сущность...
Тип: Изобретение
Номер охранного документа: 0002436944
Дата охранного документа: 20.12.2011
10.07.2019
№219.017.b10a

Способ определения пластового давления в нагнетательных скважинах

Изобретение относится к области добычи нефти и может быть использовано для определения пластового давления в нагнетательных скважинах. Способ определения пластового давления включает закачку рабочего агента в пласт и измерение забойного давления. Зона вскрытия пласта в скважине сверху и снизу...
Тип: Изобретение
Номер охранного документа: 0002441152
Дата охранного документа: 27.01.2012
10.07.2019
№219.017.b121

Пакер-пробка

Изобретение относится к нефтедобывающей промышленности и предназначено для временного перекрытия ствола скважины при проведении изоляционных работ при капитальном ремонте скважин, исследовании и обработке пластов. Обеспечивает надежность фиксации пакер-пробки в скважине при высоких давлениях,...
Тип: Изобретение
Номер охранного документа: 0002440484
Дата охранного документа: 20.01.2012
01.08.2019
№219.017.bb15

Гидропескоструйный перфоратор для поинтервальной перфорации и гидравлического разрыва пласта

Изобретение относится к нефтяной промышленности, в частности к устройствам для поинтервального перфорирования скважин гидроабразивной струей направленного действия. Гидропескоструйный перфоратор содержит корпус с отверстиями, в которых установлены струйные насадки, размещенную в корпусе...
Тип: Изобретение
Номер охранного документа: 0002696035
Дата охранного документа: 30.07.2019
+ добавить свой РИД