×
26.08.2017
217.015.e3e9

СПОСОБ РАБОТЫ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ РАДИАЛЬНОГО ДВИЖЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к электротехнике, а именно к прямому преобразованию потоков жидкостей и газов в трубопроводах в электрическую энергию, и может быть использовано для питания датчиков и приборов, установленных на трубопроводах в труднодоступных для централизованного энергоснабжения и удаленных районах нефтедобычи и нефте-газоперекачки и передачи информации по измеряемым параметрам. Электрическая машина радиального движения вырабатывает электроэнергию на основе использования магнитогидродинамического эффекта, возникающего при взаимодействии потока воды, электролитов, проводящей жидкости с внешним магнитным полем. Техническим результатом является повышение эффективности. Электрическая машина радиального движения содержит корпус, постоянные магниты и рабочие каналы с электропроводящей подвижной массой с числом каналов более двух, в которых электромагнитные и электродвижущие силы создаются при взаимодействии с постоянным магнитным полем. Рабочие каналы радиально расположены между постоянными магнитами, выполнены сужающимися по направлению к центральной оси и снабжены внешними перемычками, соединяющими их последовательно. В качестве корпуса используют цилиндрический магнитопровод с входным и выходным отверстиями для электропроводной подвижной массы. Два кольцевых и один дисковый постоянные магниты расположены внутри корпуса с возможностью размещения между ними рабочих каналов. Электроды наклонно расположены с внутренней стороны каждого рабочего канала и изолированы между собой изолирующими вставками из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением. 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к способу прямого преобразования потоков жидкостей и газов в трубопроводах в электрическую энергию, а именно к способу работы электрической машины радиального движения, и может быть использовано для питания датчиков и приборов, установленных на трубопроводах в труднодоступных для централизованного энергоснабжения и удаленных районах нефтедобычи и нефте-газоперекачки и передачи информации по измеряемым параметрам. Электрическая машина радиального движения (ЭМРД) вырабатывает электроэнергию на основе использования магнитогидродинамического (МГД) эффекта, возникающего при взаимодействии потока воды, электролитов, проводящей жидкости с внешним магнитным полем.

МГД-генерация (МГДГ) - генерация электрической энергии путем непосредственного преобразования энергии потока рабочего тела (электропроводящей среды), движущегося во внешнем магнитном поле. Суть явления заключается в том, что при движении рабочей среды в магнитном поле в ней индуцируется (наводится) электрический ток. Это проявление эффекта отклонения заряженных частиц к электродам в магнитном поле под действием силы Лоренца, являющейся произведением величины заряда q на векторное произведение скорости потока v на величину магнитной индукции поля В по формуле:

Накапливающиеся на электродах заряды создают электрическое поле E/ формирующее ток, для описания которого используется закон Ома, устанавливающий связь тока с электрическим и магнитным полями. В отсутствие эффекта Холла он имеет вид:

Коэффициент пропорциональности σ между j и Е' есть удельная электрическая проводимость среды.

Но в некоторых средах (жидкости, газы, полупроводники) может проявляться эффект Холла. Действительно, под действием поля электроны е плотностью nе (числом электронов в единице объема) будут еще двигаться относительно среды со средней скоростью ve, создавая дополнительный электрический ток плотностью jе=(-e)neve. Полная скорость е будет (v+ve), при этом можно считать, что скорость ионов пренебрежима и vi=0 в силу их большой массы. Полная сила, действующая на электрон со стороны электрического и магнитного полей, будет:

За счет этой силы Fe электрон движется и испытывает соударения с окружающими частицами и ионами. Сила F/e, действующая на электрон, движущийся из-за соударений, направлена против его скорости и будет тем больше, чем больше масса электрона mе, относительная скорость ve и число соударений νe в единицу времени: F/e=-meveνe=-mevee, где τе - время между его соударениями с другими частицами. При установившемся процессе Fe=F/e и

Подставляя ve=(-j/enc) в ур.(4), используя соотношение σ=е2ncτe/me и учитывая, что еВ/mсе - циклотронная частота вращения электрона в магнитном поле В, получим значение наводимого тока J с параметром β=ωеτе по обобщенному закону Ома:

[Специальные электрические машины: учеб. пособие для вузов / под ред. А.И. Бертинова; изд. Букинист, 1982. с. 72].

Для МГД-генерации обычно используют МГД-генераторы Фарадея, в которых верхняя и нижняя стенки канала - сплошные проводящие электроды, боковые стенки - непроводящие. Магнитная система создает в канале магнитное поле В. Если электроды замкнуты на пассивную электрическую цепь с омической нагрузкой, а рабочая среда (электролит, вода, газ, плазма) движется в канале под внешним воздействием, на проводящих электродах появляется электродвижущая сила (ЭДС) ε, подобная той, которая возникает в электромеханическом генераторе при движении проводника в поперечном магнитном поле, а напряжение на электродах будет равно U=Ez⋅h, где h - высота канала.

Если принять систему координат, в которой поток рабочей среды направлен вдоль оси x, вектор магнитной индукции - вдоль оси y, то наведенная электрическая напряженность Е=v×B (ЭДС на единицу длины) направлена вдоль оси z. Но если электроды сплошные, то при существенных значениях параметра Холла β≥1 может проявляться эффект Холла, заключающийся в том, что в поперечном магнитном поле Ву вектор плотности тока j поворачивается на некоторый угол по отношению к вектору электрической напряженности Ez. Его продольная (вдоль направления потока) составляющая jx будет замыкаться через сплошные электроды и станет бесполезной. Этого можно избежать, если электроды сделать секционированными - набирать из отдельных изолированных друг от друга электродных секций, и когда каждая секция подключается к отдельной нагрузке. В этом случае jx=0 и ток в канале имеет только составляющую jz, но это означает потерю существенной части j. К недостаткам секционированного МГДГ относится также сложность электрической цепи из-за большого числа независимых нагрузок и низкое выходное напряжение.

Таким образом, в способе работы МГДГ существует проблема низкой эффективности, связанная с влиянием эффекта Холла, конструкцией и сложностью электрической цепи, а также низкой проводимостью, когда рабочей средой является жидкость и газ. В способе работы МГДГ может проявляться эффект Холла (β≥1), заключающийся в том, что в поперечном магнитном поле вектор плотности тока j поворачивается на угол θ по отношению к вектору Е и j становится малоэффективной, поскольку по мере увеличения β продольная составляющая jx замыкается через электроды и оказываясь бесполезной, при этом из-за наличия одного канала МГДГ дает недостаточное значение ЭДС ε, особенно когда в качестве рабочей среды используются вода, газ и другие рабочие среды с малой удельной электрической проводимостью σ. То есть возникает необходимость увеличения числа каналов и времени воздействия полей на рабочую среду в одном МГДГ. В соответствии с уравнением (2) для увеличения плотности тока j необходимо повысить удельную электрическую проводимость рабочей среды.

Решение проблемы низкой эффективности способа работы МГДГ видится в следующем.

1. Вместо того чтобы бороться с холловским током с β≥1, можно использовать его для генерирования электрической мощности. Для этого рационально использовать канал, состоящий из проводящих взаимно изолированных рамок, со сдвигом Δ соединенных диагональными перемычками - т.н. диагональный кондукционный МГДГ. В диагональном МГДГ проводящие рамки наклонены к оси канала под углом θ:

[Специальные электрические машины: учеб. пособие для вузов / под ред. А.И. Бертинова; изд. Букинист, 1982. с. 510, рис. 12.5, 12.6]. В нем первая и последняя рамки замкнуты на нагрузку RH, т.е. при β≥1 продольный холловский ток с помощью рамок на входе и выходе также замыкается через нагрузку.

Каждый поперечный слой канала в нем является элементарным генератором, в котором ток совпадает по направлению с поперечным наведенным электрическим полем Eν=v×В. При этом кулоновское электрическое полe Е будет направлено перпендикулярно наклонным плоскостям рамок, поскольку они являются эквипотенциальными поверхностями и полное электрическое поле будет равно Е'=E+v×В.

Меняя угол наклона θ рамок, можно менять направления E, Е' и j. При некотором оптимальном значении угла θ плотность тока j в ЭПМ имеет только поперечную составляющую. Это позволяет получить на выходе канала значительно большие напряжения, чем у фарадеевского МГДГ. Действительно, для кондукционного диагонального МГДГ с длиной канала :

(для фарадеевского МГДГ, U=Ez⋅h), т.е. при tgθ=β напряжение диагонального МГДГ будет в раз выше, чем у фарадеевского, поскольку появляется возможность использовать и длину канала. Для типичных значений β=1÷2 и эта разница может быть более чем десятикратной. К другим преимуществам диагонального МГДГ относится простота внешней электрической цепи и устойчивость работы из-за отсутствия поперечных электромагнитных сил.

Удельная мощность кондукционного диагонального МГДГ будет:

где kz=Ez/vxBy=U/ε - коэффициент нагрузки, Ez, vx, Ву - компоненты Е, v и В на оси координат z, х и y, а ε - ЭДС фарадеевского МГДГ. Таким образом, мощность генератора увеличивается с ростом σ, v2 и В2, а выбор угла наклона перемычек (рамок) обеспечит максимальную эффективность за счет роста jz и Еz. Диагональный кондукционный МГДГ подобен набору элементарных источников тока, соединенных последовательно с помощью диагональных перемычек.

2. Увеличение числа каналов МГДГ и соответственно кратное увеличение ЭДС по формуле (7), когда в качестве рабочей среды используют воду, газ и другие рабочие среды с малой удельной электрической проводимостью σ, можно добиться использованием электрической машины радиального действия, в которой возможно увеличение числа радиальных каналов.

3. Увеличение плотности полезного тока j можно добиться, повысив удельную электрическую проводимости σ рабочей среды за счет известного трибоэлектрического эффекта, когда за счет трения рабочей среды о диэлектрическую поверхность, на ней появляются электрические заряды (янтарь), уносимые движущейся средой и увеличивающие ее проводимость.

Аналогом является способ работы магнитогидродинамического генератора по патенту РФ на изобретение №2456735 С1, МПК H02K 44/08, H02K 44/12, 238.01.2011, по которому МГДГ имеет каналы для электропроводящей среды, выполненные в виде сопел, обращенных перпендикулярно к оси генератора, и магнитной полюсной системой, обеспечивающей магнитный поток в зоне каналов, при этом число каналов кратно четырем, каналы соединены последовательно, причем расширяющиеся и суживающиеся области каналов расположены симметрично относительно оси МГДГ и направлены к этой оси поочередно суживающейся и расширяющейся частью.

Недостатком аналога является низкая эффективность работы ЭМРД вследствие неоднородности магнитного поля и снижения значения поля в расширяющихся областях каналов.

Прототипом является способ работы электрической машины радиального движения по патенту РФ №2346378 C1, МПК H02K 44/02, H02K 44/08, H02K 44/12, 23.10.2007, по которому электрическая машина радиального движения (ЭМРД) состоит из корпуса, выполненного из двух участков труб - внутренней и наружной, охватывающего двенадцать каналов, сужающихся от наружной трубы к внутренней.

Между каналами расположены постоянные магниты, создающие в каналах магнитный поток. В результате взаимодействия протекающего через каналы тока с потоком жидкого металла, в каналах наводится ЭДС, при этом ЭМРД содержит цилиндрический индуктор для создания магнитного потока и канал с электропроводящей подвижной массой, в которой электромагнитные и электродвижущие силы создаются во взаимодействии с магнитным полем, а каналы радиально расположены между источниками магнитного поля индуктора и выполнены сужающимися по направлению к центральной оси машины.

Недостатком прототипа является низкая эффективность работы ЭМРД из-за большого числа постоянных магнитов, создающих большое гидродинамическое сопротивление потоку рабочей жидкости, что ведет к повышению давления на входе ЭМРД.

Задачей изобретения является разработка способа работы электрической машины радиального движения, в котором устранены недостатки аналога и прототипа.

Техническим результатом изобретения является повышение эффективности работы электрической машины радиального движения за счет устранения неоднородности магнитного поля, снижения гидродинамического сопротивления путем уменьшения количества постоянных магнитов, а также за счет расширения диапазона работы на рабочие среды с низкими проводимостями путем увеличения носителей заряда, упрощения схемы электрической цепи.

Технический результат достигается тем, что в способе работы электрической машины радиального движения, содержащей корпус, постоянные магниты и рабочие каналы с электропроводящей подвижной массой с числом каналов более двух, в которых электромагнитные и электродвижущие силы создаются во взаимодействии с постоянным магнитным полем, при этом рабочие каналы радиально расположены между постоянными магнитами и выполнены сужающимися по направлению к центральной оси машины, причем рабочие каналы с электродами снабжены внешними перемычками, соединяющими их последовательно, согласно изобретению в качестве корпуса используют цилиндрический магнитопровод с входным и выходным отверстиями для электропроводной подвижной массы, в качестве постоянных магнитов используют два кольцевых и один дисковый постоянные магниты, расположенные внутри корпуса с возможностью размещения между ними рабочих каналов, в качестве электродов используют электроды, наклонно расположенные с внутренней стороны каждого рабочего канала и изолированные между собой изолирующими вставками из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением, при этом поток электропроводной подвижной массы входит в корпус через входное отверстие, движется по рабочим каналам с наклонными электродами в радиальных направлениях к периферии корпуса и при этом подвергается воздействию постоянного магнитного поля, создаваемого первым кольцевым и дисковым постоянными магнитами, затем электропроводная подвижная масса меняет направление потока на противоположное и по рабочим каналам с наклонными электродами движется от периферии к центру, подвергается воздействию постоянного магнитного поля, создаваемого дисковым и вторым кольцевым постоянными магнитами, затем электропроводная подвижная масса выходит через выходное отверстие, при этом с электродов на протяжении всех рабочих каналов за счет трибоэлектрического эффекта от изолирующих вставок из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением поступают дополнительные заряды, а на концевых крайних разнополярных выводных клеммах индуцируется электрический потенциал, который замкнут на нагрузку.

Сущность изобретения поясняется чертежами ЭМРД, которая реализует предлагаемый способ работы. На фиг. 1, фиг. 2 и фиг. 3 изображена конструкция ЭМРД в разных проекциях и два рабочих канала.

Цифрами на фиг. 1, 2 и 3 обозначены:

1 - корпус,

2 - входное отверстие для электропроводной подвижной массы,

3 - выходное отверстие для электропроводной подвижной массы,

4 - первый кольцевой постоянный магнит,

5 - второй кольцевой постоянный магнит,

6 - дисковый постоянный магнит,

7, 8 - рабочие каналы,

9 - наклонно расположенные электроды,

10 - изолирующие вставки из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением,

11 - крайние разнополярные выводные клеммы,

12 - нагрузка,

13 - внешние перемычки.

Электрическая машина радиального действия содержит корпус 1, постоянные магниты и рабочие каналы 7, 8 с электропроводящей подвижной массой (ЭПМ) с числом каналов более двух, в которых электромагнитные и электродвижущие силы создаются во взаимодействии с постоянным магнитным полем, при этом рабочие каналы 7 и 8 радиально расположены между постоянными магнитами и выполнены сужающимися по направлению к центральной оси машины, причем рабочие каналы 7 и 8 с электродами 9 снабжены внешними перемычками 13, соединяющими их последовательно.

Отличительной особенностью предлагаемого способа работы электрической машины радиального движения является то, что в качестве корпуса 1 используют цилиндрический магнитопровод с входным 2 и выходным 3 отверстиями для ЭПМ, в качестве постоянных магнитов используют два кольцевых 4, 5 и один дисковый 6 постоянные магниты, расположенные внутри корпуса 1 с возможностью размещения между ними рабочих каналов 7 и 8, в качестве электродов 9 используют электроды, наклонно расположенные с внутренней стороны каждого рабочего канала 7, 8 и изолированные между собой изолирующими вставками 10 из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением, при этом поток ЭПМ входит в корпус 1 через входное отверстие 2, движется по рабочим каналам 7 с наклонными электродами 9 в радиальных направлениях к периферии корпуса 1 и при этом подвергается воздействию постоянного магнитного поля, создаваемого первым кольцевым 4 и дисковым 6 постоянными магнитами, затем ЭПМ меняет направление потока на противоположное и по рабочим каналам 8 с наклонными электродами 9 движется от периферии к центру, подвергается воздействию постоянного магнитного поля, создаваемого дисковым 6 и вторым кольцевым 5 постоянными магнитами, затем ЭПМ выходит через выходное отверстие 3, при этом с электродов 9 на протяжении всех рабочих каналов 7 и 8 за счет трибоэлектрического эффекта от изолирующих вставок 10 из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением поступают дополнительные заряды, а на концевых крайних разнополярных выводных клеммах 11 индуцируется электрический потенциал, который замкнут на нагрузку 12.

Таким образом, отличительной особенностью предлагаемого способа работы ЭМРД является то, что:

силовые линии магнитного поля постоянных магнитов 4, 5 и 6 замыкаются через ферромагнитный корпус 1 трансформаторного («горшкового») типа, повышая значение магнитной индукции поля;

ЭПМ осуществляет радиальное движение по рабочим каналам 7 от оси корпуса 1 и рабочим каналам 8 от периферии к оси корпуса 1, двукратно увеличивая расстояние и время воздействия на нее магнитного поля для каждой пары каналов и многократно при большем числе каналов;

два кольцевых 4, 5 и один плоский 6 постоянные магниты создают однородное магнитное поле в зоне рабочих каналов 7 и 8, увеличивающее эффективность ЭМРД за счет максимального одинаково равномерного распределения тока между всеми электродами 9 по всей длине рабочих каналов 7 и 8;

диагональное расположение электродов 9, угол наклона θ которых выбирается в зависимости от параметра Холла β через уравнение tgθ=h/Δ=β, устраняет отклонение генерируемого тока от наводимого электрического поля;

внешние перемычки 13, соединяющие концевые электроды в каналах, последовательно увеличивают суммарный потенциал электродов 9;

изолирующие вставки 10 из полимерного материала с высокой трибоэлектрической способностью повышают электрическую проводимость σ электропроводной подвижной массы;

крайние разнополярные выводные клеммы 11 замыкают суммарный потенциал электродов 9 на нагрузку 12.

Способ работы электрической машины радиального движения реализуют следующим образом.

Поток ЭПМ входит в корпус 1 через входное отверстие 2, движется по рабочим каналам 7 с внутренними наклонными электродами 9 в радиальных направлениях к периферии корпуса и при этом подвергается воздействию постоянного магнитного поля, создаваемого первым кольцевым 4 и дисковым 6 постоянными магнитами, затем ЭПМ меняет направление потока на противоположное и по рабочим каналам 8 с внутренними наклонными электродами 9 движется от периферии к центру, подвергается воздействию постоянного магнитного поля, создаваемого дисковым 6 и вторым кольцевым 5 постоянными магнитами, наклонные электроды 9 в рабочих каналах изолированы полимерными вставками 10, с которых на протяжении всех каналов за счет трибоэлектрического эффекта поступают дополнительные заряды, на концевых крайних разнополярных выводных клеммах 11 индуцируется электрический потенциал, который замкнут на нагрузку 12, затем ЭПМ выходит через выходное отверстие 3.

Если использовать диагональный кондукционный МГДГ с длиной и высотой канала (расстоянием между электродами) h=0.01 м, то согласно формуле (4) при магнитном поле В=1 Тл, проводимости 1/σ жидкости не менее 5⋅10-5 См⋅м, скорости потока v=12 м/с, между электродами в каналах возникнет ЭДС ε=160 мВ.

При наличии же 32 радиальных рабочих каналов (16×2) в ЭМРД с использованием конструкции фиг. 1-3, при тех же значениях параметров рабочих каналов м и h=0.01, постоянном эффекте Холла β=2, отношении длины к высоте и последовательном соединении электродов, получим ЭДС ε=32 В.

В предлагаемом способе работы ЭМРД генерируемая ЭДС в 200 раз превышает значение ЭДС одноканального диагонального МГДГ при тех же параметрах.

Таким образом, использование изобретения позволит повысить эффективность работы ЭМРД за счет устранения неоднородности магнитного поля, снижения гидродинамического сопротивления путем уменьшения количества постоянных магнитов, а также за счет расширения диапазона работы на рабочие среды с низкими проводимостями путем увеличения носителей заряда, упрощения схемы электрической цепи.

Способ работы электрической машины радиального движения, содержащей корпус, постоянные магниты и рабочие каналы с электропроводящей подвижной массой с числом каналов более двух, в которых электромагнитные и электродвижущие силы создаются во взаимодействии с постоянным магнитным полем, при этом рабочие каналы радиально расположены между постоянными магнитами и выполнены сужающимися по направлению к центральной оси машины, причем рабочие каналы с электродами снабжены внешними перемычками, соединяющими их последовательно, отличающийся тем, что в качестве корпуса используют цилиндрический магнитопровод с входным и выходным отверстиями для электропроводной подвижной массы, в качестве постоянных магнитов используют два кольцевых и один дисковый постоянные магниты, расположенные внутри корпуса с возможностью размещения между ними рабочих каналов, в качестве электродов используют электроды, наклонно расположенные с внутренней стороны каждого рабочего канала и изолированные между собой изолирующими вставками из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением, при этом поток электропроводной подвижной массы входит в корпус через входное отверстие, движется по рабочим каналам с наклонными электродами в радиальных направлениях к периферии корпуса и при этом подвергается воздействию постоянного магнитного поля, создаваемого первым кольцевым и дисковым постоянными магнитами, затем электропроводная подвижная масса меняет направление потока на противоположное и по рабочим каналам с наклонными электродами движется от периферии к центру, подвергается воздействию постоянного магнитного поля, создаваемого дисковым и вторым кольцевым постоянными магнитами, затем электропроводная подвижная масса выходит через выходное отверстие, при этом с электродов на протяжении всех рабочих каналов за счет трибоэлектрического эффекта от изолирующих вставок из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением поступают дополнительные заряды, а на концевых крайних разнополярных выводных клеммах индуцируется электрический потенциал, который замкнут на нагрузку.
СПОСОБ РАБОТЫ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ РАДИАЛЬНОГО ДВИЖЕНИЯ
СПОСОБ РАБОТЫ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ РАДИАЛЬНОГО ДВИЖЕНИЯ
СПОСОБ РАБОТЫ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ РАДИАЛЬНОГО ДВИЖЕНИЯ
СПОСОБ РАБОТЫ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ РАДИАЛЬНОГО ДВИЖЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 164.
20.06.2013
№216.012.4b6c

Применение шлама, образующегося на водоподготовительной установке, в качестве сорбента при очистке газовых выбросов тэс

Изобретение относится к области производства сорбентов. В качестве сорбента для очистки газов предложен шлам, образующийся при совместной коагуляции и известковании сырой воды на водоподготовительной установке тепловых электрических станций. Шлам имеет химический состав:...
Тип: Изобретение
Номер охранного документа: 0002484890
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5482

Устройство для обработки призабойной зоны скважины и способ обработки призабойной зоны скважины

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения эффективности обработки призабойной зоны скважины. Устройство для обработки призабойной зоны скважины, содержащее воздушную камеру с атмосферным давлением, выполненную длиной 20-50 м и соединенную при...
Тип: Изобретение
Номер охранного документа: 0002487237
Дата охранного документа: 10.07.2013
27.09.2013
№216.012.7035

Способ информационного квч воздействия на живой организм

Способ информационного КВЧ воздействия на живой организм относится к области биологии и медицины и может быть использован для стимуляции жизнедеятельности живых организмов или растений, в частности для лечения ряда заболеваний человека и животных. Технический результат - упрощение процесса и...
Тип: Изобретение
Номер охранного документа: 0002494376
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.70bc

Способ контроля провиса провода линии электропередачи

Изобретение относится к электротехнике. Способ включает размещение на проводе подвесного датчика температуры, а под проводом - контрольного устройства. При помощи первого и второго ультразвуковых приемопередатчиков осуществляют посредством контрольного устройства совместно с подвесным датчиком...
Тип: Изобретение
Номер охранного документа: 0002494511
Дата охранного документа: 27.09.2013
20.10.2013
№216.012.76cc

Теплообменная труба

Изобретение относится к энергетике. Теплообменная труба, у которой канал выполнен с выступами и канавками, причем канал выполнен с геометрическими соотношениями: h/Д=0,03, l=(90-100)/h, l=(90-100)h, где h - высота выступа, мм, Д - внутренний диаметр теплообменной трубы, мм, l - длина выступа,...
Тип: Изобретение
Номер охранного документа: 0002496072
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.78be

Способ получения сорбента для газовой хроматографии

Изобретение относится к аналитической газовой хроматографии, в частности к способам создания сорбентов для анализа органических веществ, в том числе и загрязнителей окружающей среды. Предложен способ получения сорбента для газовой хроматографии, предусматривающий нанесение на твердый носитель...
Тип: Изобретение
Номер охранного документа: 0002496572
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7953

Способ получения гидрофобного адсорбента для очистки природных и сточных вод от нефтепродуктов

Изобретение относится к способам получения адсорбентов для очистки вод, загрязненных нефтью и нефтепродуктами, и может быть использовано при очистке сточных вод тепловых электрических станций и удалении разливов нефти и нефтепродуктов с поверхности воды. Способ получения гидрофобного адсорбента...
Тип: Изобретение
Номер охранного документа: 0002496721
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7f92

Способ определения дальности до однофазного замыкания на землю в линиях электропередачи

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной...
Тип: Изобретение
Номер охранного документа: 0002498331
Дата охранного документа: 10.11.2013
27.11.2013
№216.012.8610

Способ определения дальности до однофазного замыкания на землю в линиях электропередачи

Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной...
Тип: Изобретение
Номер охранного документа: 0002499998
Дата охранного документа: 27.11.2013
27.11.2013
№216.012.8617

Способ получения голографических интерферограмм фазового объекта

Изобретение может быть использовано при измерении малых разностей хода (менее 0,1λ длины волны) слабых оптических неоднородностей в прозрачных средах, например, при обтекании тел в потоках малой плотности, распыливании топлива из форсунок в разреженное пространство, изучении процессов смешения,...
Тип: Изобретение
Номер охранного документа: 0002500005
Дата охранного документа: 27.11.2013
Показаны записи 1-10 из 181.
20.02.2013
№216.012.2847

Адаптивное цифровое прогнозирующее и дифференцирующее устройство

Изобретение относится к средствам обработки информации для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в повышении качества и точности управления в цифровых динамических системах контроля. Устройство содержит: блок сглаживания, субблок...
Тип: Изобретение
Номер охранного документа: 0002475831
Дата охранного документа: 20.02.2013
20.03.2013
№216.012.3040

Цифровое прогнозирующее устройство

Изобретение относится к автоматике и вычислительной технике. Техническим результатом является повышение качества и точности управления в цифровых системах контроля и наведения различных объектов. Цифровое прогнозирующее устройство, в состав которого входят: блок сглаживания, содержащий...
Тип: Изобретение
Номер охранного документа: 0002477887
Дата охранного документа: 20.03.2013
27.03.2013
№216.012.31ad

Устройство управления асинхронными электродвигателями с короткозамкнутым ротором

Изобретение относится к области электротехники и может быть использовано в частотно-регулируемых электроприводах (ЧРЭП) промышленности и электрического транспорта, особенно электрического железнодорожного. Технический результат заключается в обеспечении синхронной работы N параллельно...
Тип: Изобретение
Номер охранного документа: 0002478255
Дата охранного документа: 27.03.2013
10.04.2013
№216.012.34e5

Способ обнаружения гололедных образований на проводах и грозозащитных тросах линий электропередачи

Использование: в области электроэнергетики для обнаружения гололеда на проводах линии электропередачи. Технический результат заключается в повышении надежности. Согласно способу передают от начала линии до конца линии электропередачи радиоимпульсы, имеющие колоколообразную форму огибающей, в...
Тип: Изобретение
Номер охранного документа: 0002479084
Дата охранного документа: 10.04.2013
27.04.2013
№216.012.397c

Способ получения гидрофобного адсорбента для очистки природных и сточных вод от нефтепродуктов

Изобретение относится к способам получения гранулированных адсорбентов. Способ получения гранулированного адсорбента включает предварительную термообработку шлама осветлителей тепловых электрических станций (ТЭС) при 180-220°С, приготовление модифицирующей эмульсии путем перемешивания до...
Тип: Изобретение
Номер охранного документа: 0002480277
Дата охранного документа: 27.04.2013
10.05.2013
№216.012.3df7

Способ изготовления шпалы

Изобретение относится к производству строительных материалов и может быть использовано при изготовлении шпал для железнодорожного и электрического транспорта. Способ изготовления шпалы включает подготовку заготовки, формирование шпалы и выполнение отверстий под крепежные элементы опор для...
Тип: Изобретение
Номер охранного документа: 0002481430
Дата охранного документа: 10.05.2013
20.05.2013
№216.012.4224

Устройство для измерения тока в высоковольтной цепи с дистанционной передачей информации

Изобретение относится к измерительной технике, в частности к цифровым приборам измерения переменного и постоянного тока, преимущественно при напряжениях от 6(10) кВ. Техническим результатом является повышение надежности работы устройства. Технический результат достигается благодаря тому, что в...
Тип: Изобретение
Номер охранного документа: 0002482502
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4225

Устройство для измерения напряжения в высоковольтной цепи с дистанционной передачей информации

Изобретение относится к измерительной технике, в частности к цифровым приборам измерения переменного и постоянного напряжения, преимущественно в электроэнергетических сетях 6 (10) кВ и выше. Техническим результатом выступает повышение надежности и точности измерений за счет исключения...
Тип: Изобретение
Номер охранного документа: 0002482503
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.4231

Способ определения расположения трубопровода

Изобретение относится к области геоакустики и может быть использовано для определения расположения трубопровода, находящегося в грунте и имеющего запорно-регулирующую аппаратуру. Сущность: трубопровод освобождают от транспортируемой среды. Снимают запорно-регулирующую аппаратуру и устанавливают...
Тип: Изобретение
Номер охранного документа: 0002482515
Дата охранного документа: 20.05.2013
27.05.2013
№216.012.442b

Способ очистки сточных вод от нефтепродуктов

Изобретение относится к способам сорбционной очистки вод от нефтепродуктов и может быть использовано при охране окружающей среды. Способ очистки сточных вод от нефтепродуктов включает механическую очистку и доочистку фильтрованием через слой неподвижного сорбента. В качестве сорбента используют...
Тип: Изобретение
Номер охранного документа: 0002483028
Дата охранного документа: 27.05.2013
+ добавить свой РИД