×
26.08.2017
217.015.e3e4

Результат интеллектуальной деятельности: СПОСОБ ПРИПЕКАНИЯ МОНОСЛОЯ МЕДНЫХ ШАРИКОВ К МЕТАЛЛИЧЕСКОЙ КОНТАКТНОЙ ПОВЕРХНОСТИ ТЕПЛОМАССООБМЕННИКА

Вид РИД

Изобретение

№ охранного документа
0002626263
Дата охранного документа
25.07.2017
Аннотация: Изобретение относится к технологии изготовления изделий для теплообмена и проведения гетерогенного катализа, а более конкретно к cпособу припекания монослоя из медных шариков к металлической контактной поверхности тепломассообменника, и может быть использовано в производстве аппаратов для каталитической химии, теплообменников, а также в экспериментальной криогенике и производстве эффективных криоинструментов для хирургии. Контактную поверхность тепломассообменника предварительно покрывают слоем высоковакуумного масла, теплообменник помещают в контейнер для спекания, засыпают упомянутый контейнер медными шариками размером от 100 до 500 мкм, высыпают из упомянутого контейнера все не прилипшие к покрытой высоковакуумным маслом поверхности медные шарики, насыпают в контейнер для спекания с избытком шарики из окиси алюминия, которые равновелики или меньше медных шариков, загружают контейнер в вакуумную печь с уровнем вакуума не ниже 10 мм ртутного столба и нагревают до температуры спекания, составляющей от 800 до 900°С. Нагрев проводят с выдержкой при температуре кипения высоковакуумного масла для полного удаления паров масла. Затем осуществляют спекание монослоя из медных шариков с контактной поверхностью тепломассообменника в течение от 2 до 4 ч. Обеспечивается припекание монослоя металлических шариков к заранее определенным участкам поверхности тепломассообменника вне зависимости от их пространственной ориентации. 1 пр.

Область техники, к которой относится изобретение

Изобретение относится к технологии изготовления изделий для теплообмена и проведения гетерогенного катализа, а более конкретно к способам припекания монослоя медных шариков к металлической контактной поверхности тепломассообменника, и может быть использовано в производстве аппаратов для каталитической химии, теплообменников, а также в экспериментальной криогенике и производстве эффективных криоинструментов для хирургии.

Уровень техники

Контактные аппараты гетерогенного катализа, особенно те, в которых реагируют газы на твердых катализаторах, должны работать непрерывно, обладать высокой интенсивностью, обеспечивать режим процесса, близкий к оптимальному, в особенности оптимальный температурный режим. Для повышения интенсивности процесса используют катализаторы с развитой поверхностью.

В экспериментальной технике для получения ультранизких температур для снижения скачка температуры (скачка Капицы П.Л.), который существует на границе раздела «твердая стенка теплообменника - жидкая фаза гелия-3 в гелии-4» (См. О.В. Лоунасмаа. Принципы и методы получения температур ниже 1 К. «Мир», Москва, 1977, стр. 52), обычно развивают площадь поверхности этой стенки путем припекания на нее толстого слоя медного или серебряного микропорошка сферической формы в вакуумной печи (См. «Диффузионная сварка материалов». Справочник под ред. Н.Ф. Казакова. М., Машиностроение, 1981. И. V.N. Pavlov. Cryogenics 6 (1982) 318).

Аналогичная задача возникает при создании криогенных аппликаторов для деструкции патологических тканей в хирургии.

Так, в уровне технике есть сведения, описанные в заявке на изобретение №2007146902/14 от 2007 г. «Криоаппликатор для хирургического аппарата». Здесь описано покрытие криоаппликатора, при котором контактная пластина имеет на внутренней стороне радиально расположенные вертикальные ребра с припеченным на них монослоем медного порошка шаровой формы.

В данной задаче развивать площадь теплообменной поверхности криоаппликатора нужно только с внутренней стороны контактной пластины, на которой собственно и происходит процесс кипения жидкого азота и теплосъем за счет скрытой теплоты испарения хладагента. При этом слой припеченного порошка не должен быть толстым, поскольку жидкой фазы азота в глубинных слоях спеченной структуры не может быть из-за почти 200-кратного превышения объема равновесного пара над количеством испаряющегося жидкого азота. В таком случае весь тепловой поток процесса испарения прикладывается только к тонкому слою (практически к монослою) развитой поверхности теплообменной металлической стенки. И поэтому глубоко лежащие слои развитой поверхности стенки оказываются ненужным барьером для прямой передачи холода на рабочую сторону контактной пластины криоаппликатора. Аналогичные процессы протекают в аппаратах гетерогенного катализа. Так что оптимальное развитие площади поверхности контактной пластины заключается в припекании к ней монослоя металлического порошка из меди шаровой формы зерном от 100 до 500 мкм. При этом создается гексагональная плотно упакованная структура из шариков. Нет никаких препятствий насыпать монослой порошка на горизонтально лежащую стенку. Но нет сведений, раскрывающих возможность закрепления монослоя на вертикальных ребрах теплообменной стенки. Причем необходимо не только их наносить, но и обеспечить равномерность распределения монослоя металлических шариков по поверхности тепломассообменника.

Раскрытие изобретения

Опирающееся на это оригинальное наблюдение настоящее изобретение, главным образом, имеет целью предложить способ припекания монослоя медных шариков к металлической контактной поверхности тепломассообменника, позволяющий, по меньшей мере, сгладить как минимум один из указанных выше недостатков, а именно обеспечить припекание монослоя медных шариков к заранее определенным участкам поверхности тепломассообменника вне зависимости от их пространственной ориентации, что и является поставленной технический задачей.

Для достижения этой цели способ дополнительно сдержит следующие этапы, при которых:

• контактную поверхность предварительно покрывают тонким слоем высоковакуумного масла,

• теплообменник помещают в контейнер для спекания,

• засыпают упомянутый контейнер медными шариками размером от 100 до 500 мкм,

• высыпают из упомянутого контейнера все не прилипшие к покрытой высоковакуумным маслом поверхности медные шарики,

• насыпают в контейнер для спекания с избытком шарики из окиси алюминия, которые равновелики или меньше медных шариков,

• загружают контейнер в вакуумную печь с уровнем вакуума не ниже 10-5 мм ртутного столба,

• нагревают до температуры спекания, составляющей от 800°С до 900°С,

• при этом нагрев проводят с выдержкой при температуре кипения высоковакуумного масла для полного удаления паров масла, и

• осуществляют спекание монослоя из медных шариков с контактной поверхностью тепломассообменника в течение от 2 до 4 часов.

Осуществление изобретения

Этап 1. Предварительно покрывают поверхность стенки тепломассообменника тонким слоем высоковакуумного масла для диффузионного насоса.

Этап 2. Такую стенку помещают в технологический открытый контейнер.

Этап 3. Засыпают последний медными шариками.

Этап 4. Затем шарики высыпают из контейнера. На замасленых поверхностях стенки останется прилипшим тонкий (практически монослой) шариков.

Этап 5. Теперь в контейнер со стенкой тепломассообменника насыпают доверху порошок из окиси алюминия.

Этап 6. Проводят процесс спекания в вакуумной технологической печи. Подъем температуры печи должен быть медленным с выдержкой при температуре кипения вакуумного масла для полного удаления паров масла из пористой сборки деталей. Прием фиксации и поджатия каждого зерна порошка на вертикальных стенках теплообменника с помощью плотной объемной упаковки насыпанного порошка окиси алюминия обеспечивает необходимые условия для диффузионной сварки металлов в вакууме. Форма зерен порошка из окиси алюминия также должна быть сферической, а размер соответствовать размеру шариков для спекания.

Этап 7. После завершения высокотемпературного процесса спекания в оптимальном режиме и остывания печи порошок окиси алюминия высыпают из контейнера и извлекают из него теплообменную стенку тепломассообменника с припеченным на все ее поверхности монослоем медных шариков.

Пример. Покрытие криволинейной поверхности криоинструмента

Этап 1. Предварительно покрывают криволинейную поверхность стенки криоинструмента тонким слоем высоковакуумного масла для диффузионного насоса. Применяется масло, используемое в конкретном паромасляном вакуумном насосе (например, ВМ-1, ВМ-5).

Этап 2. Такую стенку криоинструмента помещают в технологический открытый контейнер.

Этап 3. Засыпают последний медными шариками. В качестве материала шариков используют медь. Размер шариков от 100 до 500 мкм.

Этап 4. Затем шарики высыпают из контейнера. На замасленых поверхностях стенки останется прилипшим тонкий (практически монослой) шариков.

Этап 5. Теперь в контейнер со стенкой тепломассообменника насыпают доверху порошок из окиси алюминия. Размер фракций окиси алюминия - равновелики или чуть меньше диаметра медных шариков.

Этап 6. Проводят процесс спекания в вакуумной технологической печи. Уровень вакуума не хуже 10-5 мм рт. ст. Нагрев до температуры спекания используемого металла - от 800 до 900°С, окись алюминия в процессе спекания не подвергается процессу спекания, ее задача - удержать шарики от смещения в процессе спекания. В печи время, необходимое для спекания от 2 до 4 час.

Этап 7. После завершения высокотемпературного процесса спекания в оптимальном режиме и остывания печи порошок окиси алюминия высыпают из контейнера и извлекают из него криоинструмент с припеченным на все его поверхности монослоем медных шариков.

Промышленная применимость.

Предлагаемый способ припекания монослоя медных шариков к металлической контактной поверхности тепломассообменника может быть осуществлен специалистом на практике и при осуществлении обеспечивает реализацию заявленного назначения, что позволяет сделать вывод о соответствии критерию «промышленная применимость» для изобретения.

Таким образом, за счет того, что контактную поверхность предварительно покрывают тонким слоем высоковакуумного масла, тепломассообменник помещают в контейнер для спекания, засыпают контейнер для спекания медными шариками, высыпают из контейнера для спекания все не прилипшие к покрытой высоковакуумным маслом поверхности медные шарики, насыпают в контейнер для спекания с избытком шарики из окиси алюминия, загружают контейнер в вакуумную печь, нагревают до температуры спекания и производят спекание медных шариков с контактной поверхностью тепломассообменника, таким образом достигается заявленный технический результат, а именно: припекание монослоя медных шариков к заранее определенным участкам поверхности тепломассообменника вне зависимости от их пространственной ориентации.

Способ припекания монослоя из медных шариков к металлической контактной поверхности тепломассообменника, отличающийся тем, что контактную поверхность тепломассообменника предварительно покрывают слоем высоковакуумного масла, теплообменник помещают в контейнер для спекания, засыпают упомянутый контейнер медными шариками размером от 100 до 500 мкм, высыпают из упомянутого контейнера все не прилипшие к покрытой высоковакуумным маслом поверхности медные шарики, насыпают в контейнер для спекания с избытком шарики из окиси алюминия, которые равновелики или меньше медных шариков, загружают контейнер в вакуумную печь с уровнем вакуума не ниже 10 мм рт. ст., нагревают до температуры спекания, составляющей от 800 до 900°С, при этом нагрев проводят с выдержкой при температуре кипения высоковакуумного масла для полного удаления паров масла, и осуществляют спекание монослоя из медных шариков с контактной поверхностью тепломассообменника в течение от 2 до 4 ч.
Источник поступления информации: Роспатент

Показаны записи 21-21 из 21.
04.04.2018
№218.016.3698

Способ преодоления устойчивости бактерий к антибиотикам в эксперименте

Изобретение относится к медицине, а именно к фармакологии и клинической микробиологии, и предназначено для преодоления лекарственной устойчивости бактерий к антибиотикам в эксперименте in vitro. Одновременно применяют антибиотик и 1-5% водный раствор унитиола. Использование изобретения повышает...
Тип: Изобретение
Номер охранного документа: 0002646460
Дата охранного документа: 05.03.2018
Показаны записи 21-28 из 28.
27.07.2019
№219.017.b9db

Способ перфузионной компьютерной томографии в диагностике образований предстательной железы

Изобретение относится к медицине, а именно к лучевой диагностике, урологии и онкологии, может быть использовано для диагностики образований предстательной железы (ПЖ). Проводят перфузионную компьютерную томографию ПЖ. Сначала выполняют сканирование в нативном режиме. При этом верхняя граница...
Тип: Изобретение
Номер охранного документа: 0002695763
Дата охранного документа: 25.07.2019
10.09.2019
№219.017.c98c

Способ диагностики протяженности спонгиофиброза мочеиспускательного канала у пациентов со стриктурной болезнью уретры

Изобретение относится к медицине, а именно к урологии и лучевой диагностике, и может быть использовано для проведения исследования для диагностики протяженности спонгиофиброза при стриктурах уретры. Проводят оптическую когерентную томографию нижних мочевыводящих путей и окружающих тканей в...
Тип: Изобретение
Номер охранного документа: 0002699729
Дата охранного документа: 09.09.2019
06.10.2019
№219.017.d34b

Устройство для подачи хладагента криохирургического аппарата в аппликатор

Устройство относится к медицинской технике и предназначено для использования при проведении хирургических операций с применением глубокого замораживания патологических тканей с помощью жидкого азота. Устройство для подачи хладагента криохирургического аппарата в аппликатор содержит систему...
Тип: Изобретение
Номер охранного документа: 0002702153
Дата охранного документа: 04.10.2019
10.11.2019
№219.017.e084

Полипептид для ингибирования миграции и инвазии плоскоклеточного рака полости рта

Изобретение относится к области биотехнологии, медицины и молекулярной биофармакологии. Предложено применение полипептида, имеющего аминокислотную последовательность, соответствующую SEQ ID NO:1, для подавления жизнеспособности, миграции и инвазии клеток плоскоклеточного рака полости рта,...
Тип: Изобретение
Номер охранного документа: 0002705547
Дата охранного документа: 07.11.2019
17.01.2020
№220.017.f6bd

Полипептид для ингибирования миграции и инвазии рака предстательной железы

Изобретение относится к области биотехнологии, конкретно к противораковым пептидным агентам на основе фрагмента эндостатина, и может быть использовано в медицине в терапии рака предстательной железы. Пептид получают в результате слияния гексапептида RGDRGD с участком NH-конца эндостатина (с 1...
Тип: Изобретение
Номер охранного документа: 0002711085
Дата охранного документа: 15.01.2020
02.04.2020
№220.018.1278

Способ робот-ассистированной радикальной цистэктомии у больных с раком мочевого пузыря

Изобретение относится к медицине, а именно к онкологии, урологии, и может быть использовано с целью радикального лечения рака мочевого пузыря. Проводят установку оптического, трех роботических и двух ассистентских троакаров хирургической системы Да Винчи, идентификацию и диссекцию мочеточников,...
Тип: Изобретение
Номер охранного документа: 0002718279
Дата охранного документа: 01.04.2020
15.05.2023
№223.018.58e7

Способ ранней диагностики острого почечного повреждения у онкоурологических пациентов после радикальной цистэктомии

Изобретение относится к области медицины, в частности к лабораторной диагностике, и может быть использовано при обследовании пациентов для диагностики начальной стадии острого почечного повреждения (ОПП) в послеоперационном периоде. Способ диагностики острого почечного повреждения после...
Тип: Изобретение
Номер охранного документа: 0002760501
Дата охранного документа: 25.11.2021
15.05.2023
№223.018.58e8

Способ ранней диагностики острого почечного повреждения у онкоурологических пациентов после радикальной цистэктомии

Изобретение относится к области медицины, в частности к лабораторной диагностике, и может быть использовано при обследовании пациентов для диагностики начальной стадии острого почечного повреждения (ОПП) в послеоперационном периоде. Способ диагностики острого почечного повреждения после...
Тип: Изобретение
Номер охранного документа: 0002760501
Дата охранного документа: 25.11.2021
+ добавить свой РИД