×
26.08.2017
217.015.e339

Результат интеллектуальной деятельности: СПОСОБ ЗАЩИТЫ УГЛЕГРАФИТОВОЙ ПОДИНЫ АЛЮМИНИЕВОГО ЭЛЕКТРОЛИЗЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу защиты углеграфитовой футеровки алюминиевого электролизера при производстве алюминия электролизом криолит-глиноземных расплавов, и может быть использовано при вводе алюминиевого электролизера в эксплуатацию. Способ включает формирование слоя электрического сопротивления на подине проекции анода, отдачу пускового сырья в пространство "борт-анод" и включение тока серии. Слой электрического сопротивления формируют из шихты, содержащей кокс, карбонат лития и кристаллический кремний, после формирования слоя проводят обжиг подины при температуре от 950 до 970°С. Обеспечивается снижение негативных эффектов, связанных с адсорбцией и проникновением натрия в углеграфитовую футеровку на стадии пуска электролизера, повышение стойкости и прочности углеграфитовой футеровки, увеличить срок службы и производительности электролизера, улучшение сортности получаемого алюминия и снижение расхода электроэнергии за счет уменьшения удельного электрического сопротивления углеграфитовой футеровки. 3 табл.

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом криолит-глиноземных расплавов, и может быть использовано при вводе алюминиевого электролизера в эксплуатацию.

Известен способ защиты катодного устройства алюминиевого электролизера (патент РФ №2401885, опубл. 20.10.2010 г.), где защита углеграфитовых блоков достигается за счет нанесения плазменным напылением расплавленного кремния толщиной не более 2 мм снизу и сбоку.

Недостатком данного способа является то, что для качественного напыления необходим нагрев до высоких температур.

Известен способ защиты катодного устройства алюминиевого электролизера (патент РФ №2401886, опубл. 20.10.2010 г.), в котором верхнюю поверхность угольных подовых блоков предварительно пропитывают водными растворами чистых солей алюминия или смесью солей алюминия с солями натрия, выдерживают 20-30 минут, при этом чередуют пропитку и сушку углеграфитовых блоков 2-4 раза, чтобы увеличить глубину пропитки и уменьшить сечение пор.

Недостатком данного способа является пропитка угольных подовых блоков солями натрия во время процесса электролиза, которые приводят к натриевому расширению и разрушению подины, а также при взаимодействии во время сушки с парами воды возможно образование цианидов натрия.

Известен способ обжига алюминиевого электролизера после капитального ремонта (патент РФ №2101393, опубл. 10.01.1998 г.), в котором срок службы электролизера повышается за счет того, что обжиг проводят при постоянном токе через электросопротивление из слоя 60-100 мм порошкообразного алюминия крупностью 150-350 мкм при постепенном повышении токовой нагрузки.

Недостатком данного способа является полное расплавление алюминия при температуре 700°С и дальнейшее повышение температуры для осуществления обжига прекращается из-за высокой электропроводности расплавленного алюминия.

Известен способ защиты угольной футеровки алюминиевого электролизера (патент РФ №2164556, опубл. 27.03.2001), принятый за прототип, в котором для повышения стойкости угольной футеровки перед включением алюминиевого электролизера в цепь электрического тока на подине проекции анода формируют слой электрического сопротивления из шихты, содержащей борный ангидрид или борную кислоту, диоксид титана и кокс.

Недостатком данного способа является то, что добавление борного ангидрида или борной кислоты в шихту для формирования электрического слоя сопротивления приводит к выделению бора в слое алюминия, что ухудшает литейные свойства алюминия.

Техническим результатом изобретения является повышение стойкости углеграфитовой футеровки для повышения срока службы и производительности электролизера, улучшения сортности алюминия, снижения расхода электроэнергии за счет уменьшения удельного электрического сопротивления углеграфитовой футеровки.

Технический результат достигается тем, что слой формируют из шихты, содержащей кокс, карбонат лития и кристаллический кремний, после формирования слоя проводят обжиг подины при температуре от 950 до 970°С

Способ реализуется следующим образом. На подине электролизера с обожженными анодами для формирования защитного покрытия последовательно засыпается слой сопротивления толщиной 45 мм, состоящий из кокса, порошка карбоната лития и дробленного кристаллического кремния в отношении 65:21:14 мас. %. Данное соотношение компонентов обеспечивает протекание реакций восстановления лития при образовании устойчивых соединений LiC6. Предварительно шихту разравнивают уровневой линейкой и прокатывают ручным катком, затем на слой сопротивления опускают анодный массив. В пространство борт-анод последовательно загружают пусковое сырье в составе мас. %: кальций фтористый - 6; криолит - 25; электролит оборотный - 45; криолит флотационный - 6 и глинозем - остальное. После замыкания системы включают ток с использованием шунтов-реостатов, и начинают обжиг на сопротивлении при постепенном росте температуры от 950 до 970°С в температурном режиме 20°С/ч. При выходе электролизера на полную нагрузку тока, соответствующего току серии электролиза, продолжительность обжига составляет по времени от 48 часов и больше, и зависит от размера и параметров шахты электролизера, электрического сопротивления на участке электрический слой сопротивления - катодные блоки, а также количества теплоизоляционных материалов, применяемых на обжиге.

Использование компонентов шихты электрического слоя объясняется следующим образом. Под действием электрического тока и роста температуры при использовании данного состава шихты, на поверхности углеграфитовой футеровки образуется защитный антидиффузионный слой. Углеграфитовые материалы имеют свойство образовывать фазы внедрения при постепенном нагреве благодаря их слоистой структуре и протеканию реакции взаимодействия (интеркаляции) в межслоевых пространствах углерода и графита с высокой скоростью. Применение карбоната лития совместно с кристаллическим кремнием обеспечивает снижение негативных эффектов, связанных с адсорбцией и проникновением натрия в углеграфитовую футеровку на стадии пуска электролизера, поскольку атомы лития из-за своего маленького радиуса, в отличие от других щелочных металлов, способны внедряться в слои и поры угольного материла без искажения кристаллической структуры углерода. Эффективность процесса интеркаляции лития в углеграфитовом материале зависит от его структуры и состава, которые определяют кинетические и количественные характеристики процесса внедрения лития.

Под действием роста температур карбонат лития при 750-800°С переходит в форму оксида лития по реакции 1, который в дальнейшем при температуре 950°С и выше взаимодействует с кристаллическим кремнием, образуя оксид кремния и свободный литий по реакции 2. После проникновения в поверхностные слои углеграфитовой подины под действием постоянного тока и температуры 950°С и выше атомы лития взаимодействуют с узлами решетки графита с образованием устойчивых соединений LiC6, при котором изменяются структура и свойства катодных блоков. Также происходит упрочнение поверхности катодных блоков подины с увеличением удельного веса материала за счет металлизации внутренних слоев.

Испытания предлагаемого способа по созданию защитного антидиффузионного слоя проводили на лабораторной установке с параметрами пускового режима, приближенными к промышленным условиям. Лабораторная установка выполнена в виде электролитической ячейки. В качестве анода использовался стандартный образец обожженного анода, в качестве катода - образец стандартного катодного блока ПБ-40 и ПБ-35 МЭ. Для формирования защитного покрытия на катод насыпали и выравнивали слой сопротивления толщиной 30 мм из шихты кокса, карбоната лития и кристаллического кремния в пропорциях 65:21:14 мас. %. После замыкания системы включают ток и проводят обжиг при температуре от 950 до 970°С. Показания температуры регистрируют по поверхности углеграфитового блока при помощи контактной термопары ТХА. При достижении температуры от 950 до 970°С обжиг прекращают, а образцы обожженного катода отправляют на аналитическое исследование для определения свойств катодных блоков.

При проведении атомно-эмиссионного исследования образцов, отобранных от блоков после обжига, доказано, что на первом этапе обжига углеграфитового блока происходит внедрение лития и поверхностная металлизация пор, при этом в структуре образуются соединения внедрения различного стехиометрического состава типа LixCy, которые накапливаются в поверхностных слоях, с течением времени при повышении температуры по высоте катодного блока подины, и между слоями графита на стадии интеркаляции формируется устойчивая фаза LiC6.

Изменение свойств катодных блоков при реализации способа поясняются примерами.

Пример 1. При недостаточной температуре обжига (менее 950°С) для катодного блока ПБ-35 МЭ по сравнению со стандартным образцом удельное электросопротивление снизилось с 35 мкОм⋅м до 34 мкОм⋅м, кажущаяся плотность уменьшилась с 1,54 г/см3 до 1,53 г/см3, кажущаяся плотность уменьшилась с 1,94 г/см3 до 1,92 г/см3, прочность при сжатии, прочность при изгибе и модуль упругости не изменились. Изменения свойств катодного блока ПБ-35 МЭ при недостаточной температуре обжига (менее 950°С) отображены в таблице 1. Также при визуальном исследовании поверхности образца катодного блока остались непрореагировавшие компоненты шихты.

Пример 2. При обжиге от 950 до 970°С для катодного блока ПБ-40 по сравнению со стандартным образцом удельное электросопротивление снизилось с 40 мкОм⋅м до 32-36 мкОм⋅м, кажущаяся плотность увеличилась с 1,54 г/см3 до 1,59-1,69 г/см3, кажущаяся плотность увеличилась с 1,85 г/см3 до 1,86-1,91 г/см3, прочность при сжатии увеличилась с 30 МПа до 39-45 МПа, прочность при изгибе повысилась с 7 МПа до 8 МПа, а модуль упругости вырос с 13 ГПа до 14 ГПа. Изменения свойств катодного блока ПБ-40 при обжиге от 950 до 970°С отображены в таблице 2.

Пример 3. При обжиге от 950 до 970°С для катодного блока ПБ-35 МЭ по сравнению со стандартным образцом удельное электросопротивление снизилось с 35 мкОм⋅м до 25-30 мкОм⋅м, кажущаяся плотность увеличилась с 1,54 г/см3 до 1,59-1,68 г/см3, кажущаяся плотность увеличилась с 1,94 г/см3 до 2,02-2,06 г/см3, прочность при сжатии увеличилась с 28 МПа до 32-39 МПа, прочность при изгибе повысилась с 9 МПа до 9-11 МПа, а модуль упругости увеличился с 13 ГПа до 13-15 ГПа. Изменения свойств катодного блока ПБ-35 МЭ при обжиге от 950 до 970°С отображены в таблице 3.

Пример 4. При избыточной температуре обжига (более 970°С) на поверхности образцов катодных блоков обнаружено нарушение целостности структуры, пригары прореагировавших компонентов шихты на поверхности катодного блока и подошвы анода.

При изучении образцов установлено, что катодные блоки на основе углеграфитовых материалов после обжига под слоем шихты, состоящей из кокса, карбоната лития и кристаллического кремния, отличаются более высокими физико-техническими характеристиками по сравнению с первичными стандартными образцами.

Использование предлагаемого способа позволит повысить стойкость и прочность углеграфитовой футеровки, увеличить срок службы и производительности электролизера, улучшить сортность получаемого алюминия, снизить расход электроэнергии за счет уменьшения удельного электрического сопротивления углеграфитовой футеровки.

Способ защиты углеграфитовой футеровки алюминиевого электролизера, включающий формирование слоя электрического сопротивления на подине проекции анода, загрузку пускового сырья в пространство борт-анод и включение тока серии электролиза для обжига подины, отличающийся тем, что упомянутый слой электрического сопротивления формируют из шихты, состоящей из кокса, карбоната лития и кристаллического кремния, и обжиг подины электролизера проводят при температуре от 950 до 970°C.
Источник поступления информации: Роспатент

Показаны записи 171-180 из 218.
03.10.2019
№219.017.d18a

Виброактивный исполнительный орган

Изобретение относится к горному делу и может быть использовано при проходке тоннелей проходческими щитами с роторными исполнительными органами в условиях кембрийских глин с включениями известняков и песчаников. Технический результат – повышение разрушающей способности исполнительного органа....
Тип: Изобретение
Номер охранного документа: 0002701764
Дата охранного документа: 01.10.2019
12.10.2019
№219.017.d547

Устройство для измерения эксергии рабочей среды

Изобретение относится к области теплоэнергетики, а именно к устройствам измерения эксергии тепловой энергии конвективным теплообменом. Модель может быть использована в контрольно-измерительных приборах для систем отопления и позволяет вести учет эксергии тепловой энергии. Предложено устройство...
Тип: Изобретение
Номер охранного документа: 0002702701
Дата охранного документа: 09.10.2019
17.10.2019
№219.017.d716

Автономный гибридный комплекс для борьбы с асфальто-смоло-парафиновыми отложениями в нефтяной скважине

Изобретение относится к нефтедобывающей промышленности и предназначено для ликвидации асфальто-смоло-парафиновых отложений (АСПО) на стенках насосно-компрессорных труб (НКТ) нефтяных скважин. Техническим результатом является ввод в работу комплекса фотоэлектрической системы в качестве...
Тип: Изобретение
Номер охранного документа: 0002703040
Дата охранного документа: 15.10.2019
16.11.2019
№219.017.e34f

Способ получения гранулированного шлака

Изобретение относится к области металлургии и может быть использовано при переработке жидких металлургических шлаков для получения строительных материалов различного назначения. Для получения гранулированного шлака осуществляют грануляцию в водной среде в присутствии сорбента, представляющего...
Тип: Изобретение
Номер охранного документа: 0002706273
Дата охранного документа: 15.11.2019
19.11.2019
№219.017.e39d

Состав смазочной композиции для кристаллизатора

Изобретение относится к цветной металлургии и может быть использовано в производстве алюминиевых слитков на машинах непрерывного литья. Предложен состав смазочной композиции для кристаллизатора, содержащий воду, нефтяное масло и окислитель. Дополнительно состав содержит полиоксиэтилен сорбитан...
Тип: Изобретение
Номер охранного документа: 0002706352
Дата охранного документа: 18.11.2019
01.12.2019
№219.017.e8e7

Тампонажный раствор

Изобретение относится к области строительства скважин, в частности к тампонажным растворам для цементирования обсадных колонн, газоконденсатных и нефтяных скважин, осложненных наличием слабосвязанных, склонных к гидроразрыву многолетних мерзлых пород. Техническим результатом является создание...
Тип: Изобретение
Номер охранного документа: 0002707837
Дата охранного документа: 29.11.2019
13.12.2019
№219.017.ecb9

Гипсоцементно-пуццолановая композиция

Изобретение относится к строительным материалам и может быть использовано при производстве звукопоглощающих перегородочных плит и панелей, звукопоглощающих строительных растворов для внутренних частей здания. Гипсоцементно-пуццолановая композиция содержит полуводный гипс, портландцемент,...
Тип: Изобретение
Номер охранного документа: 0002708779
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed08

Звукопоглощающий бетон

Изобретение относится к составам бетона и может быть использовано в гражданском и промышленном строительстве для изготовления цементных композитов с высокими звукопоглощающими свойствами. Звукопоглощающий бетон получен из смеси, содержащей, мас. %: портландцемент 28,5-38,4, золу-уноса 6,4,...
Тип: Изобретение
Номер охранного документа: 0002708776
Дата охранного документа: 11.12.2019
21.12.2019
№219.017.f024

Способ получения мезофазного пека

Изобретение относится к технологии получения сырья для производства изотропных плотных графитированных конструкционных материалов и может быть использовано в нефтеперерабатывающей промышленности. Для получения мезофазного пека проводят разогрев и последующую карбонизацию сырья с поднятием...
Тип: Изобретение
Номер охранного документа: 0002709446
Дата охранного документа: 17.12.2019
24.01.2020
№220.017.f923

Установка для нанесения покрытий в среде легкоплавких материалов

Изобретение относится к установкам, предназначенным для создания диффузионных металлических покрытий на стальных изделиях химико-термической обработкой для улучшения физико-химических и механических свойств, и может использоваться в различных отраслях промышленности. Установка для нанесения...
Тип: Изобретение
Номер охранного документа: 0002711701
Дата охранного документа: 21.01.2020
Показаны записи 101-107 из 107.
16.11.2019
№219.017.e34f

Способ получения гранулированного шлака

Изобретение относится к области металлургии и может быть использовано при переработке жидких металлургических шлаков для получения строительных материалов различного назначения. Для получения гранулированного шлака осуществляют грануляцию в водной среде в присутствии сорбента, представляющего...
Тип: Изобретение
Номер охранного документа: 0002706273
Дата охранного документа: 15.11.2019
01.12.2019
№219.017.e8e7

Тампонажный раствор

Изобретение относится к области строительства скважин, в частности к тампонажным растворам для цементирования обсадных колонн, газоконденсатных и нефтяных скважин, осложненных наличием слабосвязанных, склонных к гидроразрыву многолетних мерзлых пород. Техническим результатом является создание...
Тип: Изобретение
Номер охранного документа: 0002707837
Дата охранного документа: 29.11.2019
15.03.2020
№220.018.0c24

Гибридный цемент

Изобретение относится к составам гибридных вяжущих на основе молотого гранулированного металлургического шлака и может быть использовано в подземном, транспортном и гражданском строительстве для изготовления цементных бетонов. Техническим результатом является создание вяжущего пониженной...
Тип: Изобретение
Номер охранного документа: 0002716661
Дата охранного документа: 13.03.2020
18.07.2020
№220.018.3495

Тампонажная смесь

Изобретение относится к области строительства и обслуживания скважин, в частности к тампонажным смесям для цементирования обсадных колонн, газоконденсатных и нефтяных скважин, осложненных наличием слабосвязанных, склонных к гидроразрыву многолетних мерзлых пород. Тампонажная смесь содержит...
Тип: Изобретение
Номер охранного документа: 0002726695
Дата охранного документа: 15.07.2020
31.07.2020
№220.018.3acd

Противоморозная добавка для бетонной смеси

Изобретение относится к области строительных материалов и может быть использовано при изготовлении бетонов и строительных растворов, твердеющих при отрицательных температурах. Противоморозная добавка для бетонной смеси включает, мас.%: кремнегель 79,43–87,49, суперпластификатор на...
Тип: Изобретение
Номер охранного документа: 0002728023
Дата охранного документа: 28.07.2020
12.04.2023
№223.018.47e4

Способ возведения опорного основания дорожной одежды

Изобретение относится к области дорожного строительства и может быть использовано при новом строительстве или проведении ремонта автомобильных дорог, взлетно-посадочных полос аэродромов, вертолетных и иных площадок в условиях слабых грунтов на заболоченных территориях, а также на подвижных...
Тип: Изобретение
Номер охранного документа: 0002747181
Дата охранного документа: 28.04.2021
23.04.2023
№223.018.51c6

Способ контроля параметров дуговых печей

Изобретение относится к области автоматизации контроля технологических параметров в электрометаллургических технологических процессах и может быть использовано в системах адаптивного управления для автоматического регулирования теплового режима дуговых печей. Способ включает регулирование...
Тип: Изобретение
Номер охранного документа: 0002731711
Дата охранного документа: 08.09.2020
+ добавить свой РИД